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Preface

We are proud to introduce to you the third edition of Programming Massively Parallel 
Processors: A Hands-on Approach.

Mass-market computing systems that combine multi-core CPUs and many-thread 
GPUs have brought terascale computing to laptops and petascale computing to clus-
ters. Armed with such computing power, we are at the dawn of pervasive use of 
computational experiments for science, engineering, health, and business disciplines. 
Many will be able to achieve breakthroughs in their disciplines using computational 
experiments that are of unprecedented level of scale, accuracy, controllability and 
observability. This book provides a critical ingredient for the vision: teaching parallel 
programming to millions of graduate and undergraduate students so that computa-
tional thinking and parallel programming skills will be as pervasive as calculus.

Since the second edition came out in 2012, we have received numerous com-
ments from our readers and instructors. Many told us about the existing features 
they value. Others gave us ideas about how we should expand its contents to make 
the book even more valuable. Furthermore, the hardware and software technology 
for heterogeneous parallel computing has advanced tremendously since then. In the 
hardware arena, two more generations of GPU computing architectures, Maxwell 
and Pascal, have been introduced since the first edition. In the software domain, 
CUDA 6.0 through CUDA 8.0 have allowed programmers to access the new hard-
ware features of Maxwell and Pascal. New algorithms have also been developed. 
Accordingly, we added five new chapters and completely rewrote more than half of 
the existing chapters.

Broadly speaking, we aim for three major improvements in the third edition while 
preserving the most valued features of the first two editions. The improvements are 
(1) adding new Chapter 9, Parallel patterns—parallel histogram computation (his-
togram); Chapter  11, Parallel patterns: merge sort (merge sort); and Chapter  12, 
Parallel patterns: graph search (graph search) that introduce frequently used parallel 
algorithm patterns; (2) adding new Chapter  16, Application case study—machine 
learning on deep learning as an application case study; and (3) adding a chapter to 
clarify the evolution of advanced features of CUDA. These additions are designed to 
further enrich the learning experience of our readers.

As we made these improvements, we preserved the features of the previous edi-
tions that contributed to the book’s popularity. First, we’ve kept the book as concise 
as possible. While it is tempting to keep adding material, we wanted to minimize the 
number of pages a reader needs to go through in order to learn all the key concepts. 
We accomplished this by moving some of the second edition chapters into appen-
dices. Second, we have kept our explanations as intuitive as possible. While it is 
tempting to formalize some of the concepts, especially when we cover basic parallel 
algorithms, we have strived to keep all our explanations intuitive and practical.
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TARGET AUDIENCE
The target audience of this book are the many graduate and undergraduate students 
from all science and engineering disciplines where computational thinking and 
parallel programming skills are needed to achieve breakthroughs. We assume that 
the reader has at least some basic C programming experience. We especially target 
computational scientists in fields such as computational financing, data analytics, 
cognitive computing, mechanical engineering, civil engineering, electrical engineer-
ing, bio-engineering, physics, chemistry, astronomy, and geography, all of whom 
use computation to further their field of research. As such, these scientists are both 
experts in their domain as well as programmers. The book takes the approach of 
teaching parallel programming by building up an intuitive understanding of the tech-
niques. We use CUDA C, a parallel programming environment that is supported 
on NVIDIA GPUs. There are nearly 1 billion of these processors in the hands of 
consumers and professionals, and more than 4,00,000 programmers actively using 
CUDA. The applications that you develop as part of the learning experience will be 
used and run by a very large user community.

HOW TO USE THE BOOK
We would like to offer some of our experience in teaching courses with this book. 
Since 2006, we have taught multiple types of courses: in one-semester format and 
in one-week intensive format. The original ECE498AL course has become a per-
manent course known as ECE408 or CS483 of the University of Illinois at Urbana-
Champaign. We started to write up some early chapters of this book when we offered 
ECE498AL the second time. The first four chapters were also tested in an MIT 
class taught by Nicolas Pinto in spring 2009. Since then, we have used the book 
for numerous offerings of ECE408 as well as the Coursera Heterogeneous Parallel 
Programming course, and the VSCSE and PUMPS summer schools.

A THREE-PHASED APPROACH
In ECE408, the lectures and programming assignments are balanced with each other 
and organized into three phases:

Phase 1: One lecture based on Chapter 2, Data parallel computing is dedicated 
to teaching the basic CUDA memory/threading model, the CUDA extensions to 
the C language, and the basic programming/debugging tools. After the lecture, 
students can write a simple vector addition code in a couple of hours. This is 
followed by a series of four-to-six lectures that give students the conceptual 
understanding of the CUDA memory model, the CUDA thread execution model, 
GPU hardware performance features, and modern computer system architecture. 
These lectures are based on Chapter 3, Scalable parallel execution; Chapter 4, 
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Memory and data locality; and Chapter 5, Performance considerations. The 
performance of their matrix multiplication codes increases by about 10 times 
through this period.
Phase 2: A series of lectures cover floating-point considerations in parallel 
computing and common data-parallel programming patterns needed to 
develop a high-performance parallel application. These lectures are based on 
Chapter 7, Parallel patterns: convolution; Chapter 8, Parallel patterns: prefix 
sum; Chapter 9, Parallel patterns—parallel histogram computation; Chapter 10, 
Parallel patterns: sparse matrix computation; Chapter 11, Parallel patterns: 
merge sort; and Chapter 12, Parallel patterns: graph search. The students 
complete assignments on convolution, vector reduction, prefix-sum, histogram, 
sparse matrix-vector multiplication, merge sort, and graph search through this 
period. We typically leave two or three of the more advanced patterns for a 
graduate level course.
Phase 3: Once the students have established solid CUDA programming skills, 
the remaining lectures cover application case studies, computational thinking, 
a broader range of parallel execution models, and parallel programming 
principles. These lectures are based on Chapter 13, CUDA dynamic parallelism; 
Chapter 14, Application case study—non-Cartesian magnetic resonance 
imaging; Chapter 15, Application case study—molecular visualization and 
analysis; Chapter 16, Application case study—machine learning; Chapter 17, 
Parallel programming and computational thinking; Chapter 18, Programming 
a heterogeneous computing cluster; Chapter 19, Parallel programing with 
OpenACC; and Chapter 20, More on CUDA and graphics processing unit 
computing. (The voice and video recordings of these lectures are available as 
part of the Illinois–NVIDIA GPU Teaching Kit.)

TYING IT ALL TOGETHER: THE FINAL PROJECT
While the lectures, labs, and chapters of this book help lay the intellectual founda-
tion for the students, what brings the learning experience together is the final project, 
which is so important to the full-semester course that it is prominently positioned 
in the course and commands nearly 2 months’ focus. It incorporates five innova-
tive aspects: mentoring, workshop, clinic, final report, and symposium. (While much 
of the information about the final project is available in the Illinois–NVIDIA GPU 
Teaching Kit, we would like to offer the thinking that was behind the design of these 
aspects.)

Students are encouraged to base their final projects on problems that represent 
current challenges in the research community. To seed the process, the instructors 
should recruit several computational science research groups to propose problems 
and serve as mentors. The mentors are asked to contribute a one-to-two-page project 
specification sheet that briefly describes the significance of the application, what 
the mentor would like to accomplish with the student teams on the application, the 
technical skills (particular type of math, physics, and chemistry courses) required to 
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understand and work on the application, and a list of Web and traditional resources 
that students can draw upon for technical background, general information, and 
building blocks, along with specific URLs or ftp paths to particular implementations 
and coding examples. These project specification sheets also provide students with 
learning experiences in defining their own research projects later in their careers. 
(Several examples are available in the Illinois–NVIDIA GPU Teaching Kit.)

Students are also encouraged to contact their potential mentors during their pro-
ject selection process. Once the students and the mentors agree on a project, they 
enter into a collaborative relationship, featuring frequent consultation and project 
reporting. We, the instructors, attempt to facilitate the collaborative relationship 
between students and their mentors, making it a very valuable experience for both 
mentors and students.

The project workshop
The project workshop is the primary vehicle that enables the entire class to contrib-
ute to each other’s final project ideas. We usually dedicate six of the lecture slots to 
project workshops. The workshops are designed for students’ benefit. For example, if 
a student has identified a project, the workshop serves as a venue to present prelimi-
nary thinking, get feedback, and recruit teammates. If a student has not identified a 
project, he/she can simply attend the presentations, participate in the discussions, and 
join one of the project teams. Students are not graded during the workshops in order 
to keep the atmosphere nonthreatening and to enable them to focus on a meaningful 
dialog with the instructor(s), teaching assistants, and the rest of the class.

The workshop schedule is designed for the instructor(s) and teaching assistants 
to take some time to provide feedback to the project teams so that students can ask 
questions. Presentations are limited to 10 minutes to provide time for feedback and 
questions during the class period. This limits the class size to about 24 presenters, 
assuming 90-minute lecture slots. All presentations are pre-loaded into a PC in order 
to control the schedule strictly and maximize feedback time. Since not all students 
present at the workshop, we have been able to accommodate up to 50 students in each 
class, with extra workshop time available as needed. At the University of Illinois, the 
high demand for ECE408 has propelled the size of the classes significantly beyond 
the ideal size for project workshops. We will comment on this issue at the end of the 
section.

The instructor(s) and TAs must make a commitment to attend all the presenta-
tions and to give useful feedback. Students typically need most help in answering 
the following questions. First, are the projects too big or too small for the amount of 
time available? Second, is there existing work in the field that the project can benefit 
from? Third, are the computations being targeted for parallel execution appropriate 
for the CUDA programming model?

The design document
Once the students decide on a project and form a team, they are required to submit a 
design document for the project. This helps them to think through the project steps 
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before they jump into it. The ability to do such planning will be important to their 
later career success. The design document should discuss the background and moti-
vation for the project, application-level objectives and potential impact, main features 
of the end application, an overview of their design, an implementation plan, their 
performance goals, a verification plan and acceptance test, and a project schedule.

The teaching assistants hold a project clinic for final project teams during the 
week before the class symposium. This clinic helps ensure that students are on track 
and that they have identified the potential roadblocks early in the process. Student 
teams are asked to come to the clinic with an initial draft of the following three ver-
sions of their application: (1) The best CPU sequential code in terms of performance, 
preferably with AVX and other optimizations that establish a strong serial base of 
the code for their speedup comparisons and (2) The best CDUA parallel code in 
terms of performance. This version is the main output of the project. This version is 
used by the students to characterize the parallel algorithm overhead in terms of extra 
computations involved.

Student teams are asked to be prepared to discuss the key ideas used in each 
version of the code, any numerical stability issues, any comparison against previous 
results on the application, and the potential impact on the field if they achieve tre-
mendous speedup. From our experience, the optimal schedule for the clinic is 1 week 
before the class symposium. An earlier time typically results in less mature projects 
and less meaningful sessions. A later time will not give students sufficient time to 
revise their projects according to the feedback.

The project report
Students are required to submit a project report on their team’s key findings. We 
recommend a whole-day class symposium. During the symposium, students use 
presentation slots proportional to the size of the teams. During the presentation, the 
students highlight the best parts of their project report for the benefit of the whole 
class. The presentation accounts for a significant part of students’ grades. Each stu-
dent must answer questions directed to him/her as individuals so that different grades 
can be assigned to individuals in the same team. The symposium is an opportunity 
for students to learn to produce a concise presentation that motivates their peers to 
read a full paper. After their presentation, the students also submit a full report on 
their final project.

CLASS COMPETITION
In 2016, the enrollment level of ECE408 far exceeded the level that can be accom-
modated by the final project process. As a result, we moved from the final project to 
class competition. At the middle of the semester, we announce a competition chal-
lenge problem. We use one lecture to explain the competition challenge problem 
and the rules that will be used for ranking the teams. The students work in teams to 
solve the competition with their parallel solution. The final ranking of each team is 
determined by the execution time, correctness, and clarity of their parallel code. The 
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students do a demo of their solution at the end of the semester and submit a final 
report. This is a compromise that preserves some of the benefits of final projects 
when the class size makes final projects infeasible.

ILLINOIS–NVIDIA GPU TEACHING KIT
The Illinois–NVIDIA GPU Teaching Kit is a publicly available resource that contains 
lecture, lab assignments, final project guidelines, and sample project specifications 
for instructors who use this book for their classes. While this book provides the intel-
lectual contents for these classes, the additional material will be crucial in achieving 
the overall education goals. It can be accessed at http://syllabus.gputeachingkit.com/.

Finally, we encourage you to submit your feedback. We would like to hear from 
you if you have any ideas for improving this book. We would like to know how we 
can improve the supplementary on-line material. Finally, we would like to know 
what you liked about the book. We look forward to hearing from you.

ONLINE SUPPLEMENTS
The lab assignments, final project guidelines, and sample project specifications are 
available to instructors who use this book for their classes. While this book provides 
the intellectual contents for these classes, the additional material will be crucial in 
achieving the overall education goals. We would like to invite you to take advantage 
of the online material that accompanies this book, which is available at http://text-
books.elsevier.com/9780128119860.

David B. Kirk and Wen-mei W. Hwu
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Microprocessors based on a single central processing unit (CPU), such as those in 
the Intel Pentium family and the AMD Opteron family, drove rapid performance 
increases and cost reductions in computer applications for more than two decades. 
These microprocessors brought giga floating-point operations per second (GFLOPS, 
or Giga (109) Floating-Point Operations per Second), to the desktop and tera float-
ing-point operations per second (TFLOPS, or Tera (1012) Floating-Point Operations 
per Second) to datacenters. This relentless drive for performance improvement has 
allowed application software to provide more functionality, have better user inter-
faces, and generate more useful results. The users, in turn, demand even more 
improvements once they become accustomed to these improvements, creating a posi-
tive (virtuous) cycle for the computer industry.

This drive, however, has slowed since 2003 due to energy consumption and heat 
dissipation issues that limited the increase of the clock frequency and the level of 
productive activities that can be performed in each clock period within a single CPU. 
Since then, virtually all microprocessor vendors have switched to models where mul-
tiple processing units, referred to as processor cores, are used in each chip to increase 
the processing power. This switch has exerted a tremendous impact on the software 
developer community [Sutter 2005].

Traditionally, the vast majority of software applications are written as sequen-
tial programs that are executed by processors whose design was envisioned by von 
Neumann in his seminal report in 1945 [vonNeumann 1945]. The execution of these 
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programs can be understood by a human sequentially stepping through the code. 
Historically, most software developers have relied on the advances in hardware to 
increase the speed of their sequential applications under the hood; the same software 
simply runs faster as each new processor generation is introduced. Computer users 
have also become accustomed to the expectation that these programs run faster with 
each new generation of microprocessors. Such expectation is no longer valid from 
this day onward. A sequential program will only run on one of the processor cores, 
which will not become significantly faster from generation to generation. Without 
performance improvement, application developers will no longer be able to intro-
duce new features and capabilities into their software as new microprocessors are 
introduced, reducing the growth opportunities of the entire computer industry.

Rather, the applications software that will continue to enjoy significant perfor-
mance improvement with each new generation of microprocessors will be parallel 
programs, in which multiple threads of execution cooperate to complete the work 
faster. This new, dramatically escalated incentive for parallel program development 
has been referred to as the concurrency revolution [Sutter 2005]. The practice of 
parallel programming is by no means new. The high-performance computing com-
munity has been developing parallel programs for decades. These programs typically 
ran on large scale, expensive computers. Only a few elite applications could justify 
the use of these expensive computers, thus limiting the practice of parallel program-
ming to a small number of application developers. Now that all new microproces-
sors are parallel computers, the number of applications that need to be developed as 
parallel programs has increased dramatically. There is now a great need for software 
developers to learn about parallel programming, which is the focus of this book.

1.1  HETEROGENEOUS PARALLEL COMPUTING
Since 2003, the semiconductor industry has settled on two main trajectories for 
designing microprocessors [Hwu 2008]. The multicore trajectory seeks to maintain 
the execution speed of sequential programs while moving into multiple cores. The 
multicores began with two-core processors with the number of cores increasing with 
each semiconductor process generation. A current exemplar is a recent Intel mul-
ticore microprocessor with up to 12 processor cores, each of which is an out-of-
order, multiple instruction issue processor implementing the full X86 instruction set, 
supporting hyper-threading with two hardware threads, designed to maximize the 
execution speed of sequential programs. For more discussion of CPUs, see https://
en.wikipedia.org/wiki/Central_processing_unit.

In contrast, the many-thread trajectory focuses more on the execution throughput 
of parallel applications. The many-threads began with a large number of threads and 
once again, the number of threads increases with each generation. A current exem-
plar is the NVIDIA Tesla P100 graphics processing unit (GPU) with 10 s of 1000 s 
of threads, executing in a large number of simple, in order pipelines. Many-thread 
processors, especially the GPUs, have led the race of floating-point performance 

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
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since 2003. As of 2016, the ratio of peak floating-point calculation throughput 
between many-thread GPUs and multicore CPUs is about 10, and this ratio has been 
roughly constant for the past several years. These are not necessarily application 
speeds, but are merely the raw speed that the execution resources can potentially sup-
port in these chips. For more discussion of GPUs, see https://en.wikipedia.org/wiki/
Graphics_processing_unit.

Such a large performance gap between parallel and sequential execution has 
amounted to a significant “electrical potential” build-up, and at some point, some-
thing will have to give. We have reached that point. To date, this large performance 
gap has already motivated many applications developers to move the computation-
ally intensive parts of their software to GPU for execution. Not surprisingly, these 
computationally intensive parts are also the prime target of parallel programming—
when there is more work to do, there is more opportunity to divide the work among 
cooperating parallel workers.

One might ask why there is such a large peak throughput gap between many-
threaded GPUs and general-purpose multicore CPUs. The answer lies in the differ-
ences in the fundamental design philosophies between the two types of processors, as 
illustrated in Fig. 1.1. The design of a CPU is optimized for sequential code perfor-
mance. It makes use of sophisticated control logic to allow instructions from a single 
thread to execute in parallel or even out of their sequential order while maintaining 
the appearance of sequential execution. More importantly, large cache memories are 
provided to reduce the instruction and data access latencies of large complex appli-
cations. Neither control logic nor cache memories contribute to the peak calculation 
throughput. As of 2016, the high-end general-purpose multicore microprocessors 
typically have eight or more large processor cores and many megabytes of on-chip 
cache memories designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. The speed of many applications is 
limited by the rate at which data can be delivered from the memory system into the 
processors. Graphics chips have been operating at approximately 10x the memory 
bandwidth of contemporaneously available CPU chips. A GPU must be capable of 
moving extremely large amounts of data in and out of its main Dynamic Random 

Control

Cache

CPU GPU

DRAM DRAM

ALU

ALU

ALU

ALU

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies.

https://en.wikipedia.org/wiki/Graphics_processing_unit
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Access Memory (DRAM) because of graphics frame buffer requirements. In con-
trast, general-purpose processors have to satisfy requirements from legacy operating 
systems, applications, and I/O devices that make memory bandwidth more difficult 
to increase. As a result, we expect that CPUs will continue to be at a disadvantage in 
terms of memory bandwidth for some time.

The design philosophy of the GPUs has been shaped by the fast growing video 
game industry that exerts tremendous economic pressure for the ability to perform a 
massive number of floating-point calculations per video frame in advanced games. 
This demand motivates GPU vendors to look for ways to maximize the chip area 
and power budget dedicated to floating-point calculations. An important observa-
tion is that reducing latency is much more expensive than increasing throughput  
in terms of power and chip area. Therefore, the prevailing solution is to optimize  
for the execution throughput of massive numbers of threads. The design saves chip 
area and power by allowing pipelined memory channels and arithmetic operations 
to have long-latency. The reduced area and power of the memory access hardware 
and arithmetic units allows the designers to have more of them on a chip and thus 
increase the total execution throughput.

The application software for these GPUs is expected to be written with a large num-
ber of parallel threads. The hardware takes advantage of the large number of threads 
to find work to do when some of them are waiting for long-latency memory accesses 
or arithmetic operations. Small cache memories are provided to help control the  
bandwidth requirements of these applications so that multiple threads that access 
the same memory data do not need to all go to the DRAM. This design style is com-
monly referred to as throughput-oriented design as it strives to maximize the total 
execution throughput of a large number of threads while allowing individual threads 
to take a potentially much longer time to execute.

The CPUs, on the other hand, are designed to minimize the execution latency of 
a single thread. Large last-level on-chip caches are designed to capture frequently 
accessed data and convert some of the long-latency memory accesses into short-
latency cache accesses. The arithmetic units and operand data delivery logic are also 
designed to minimize the effective latency of operation at the cost of increased use of 
chip area and power. By reducing the latency of operations within the same thread, the  
CPU hardware reduces the execution latency of each individual thread. However,  
the large cache memory, low-latency arithmetic units, and sophisticated operand 
delivery logic consume chip area and power that could be otherwise used to provide 
more arithmetic execution units and memory access channels. This design style is 
commonly referred to as latency-oriented design.

It should be clear now that GPUs are designed as parallel, throughput-oriented 
computing engines and they will not perform well on some tasks on which CPUs are 
designed to perform well. For programs that have one or very few threads, CPUs with 
lower operation latencies can achieve much higher performance than GPUs. When 
a program has a large number of threads, GPUs with higher execution throughput 
can achieve much higher performance than CPUs. Therefore, one should expect that 
many applications use both CPUs and GPUs, executing the sequential parts on the 
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CPU and numerically intensive parts on the GPUs. This is why the CUDA program-
ming model, introduced by NVIDIA in 2007, is designed to support joint CPU–GPU 
execution of an application.1 The demand for supporting joint CPU–GPU execution is 
further reflected in more recent programming models such as OpenCL (Appendix A),  
OpenACC (see chapter: Parallel programming with OpenACC), and C++AMP 
(Appendix D).

It is also important to note that speed is not the only decision factor when appli-
cation developers choose the processors for running their applications. Several other 
factors can be even more important. First and foremost, the processors of choice must 
have a very large presence in the market place, referred to as the installed base of 
the processor. The reason is very simple. The cost of software development is best 
justified by a very large customer population. Applications that run on a processor 
with a small market presence will not have a large customer base. This has been a 
major problem with traditional parallel computing systems that have negligible mar-
ket presence compared to general-purpose microprocessors. Only a few elite applica-
tions funded by government and large corporations have been successfully developed 
on these traditional parallel computing systems. This has changed with many-thread 
GPUs. Due to their popularity in the PC market, GPUs have been sold by the hun-
dreds of millions. Virtually all PCs have GPUs in them. There are nearly 1 billion 
CUDA enabled GPUs in use to date. Such a large market presence has made these 
GPUs economically attractive targets for application developers.

Another important decision factor is practical form factors and easy accessibility.  
Until 2006, parallel software applications usually ran on data center servers or 
departmental clusters. But such execution environments tend to limit the use of these 
applications. For example, in an application such as medical imaging, it is fine to 
publish a paper based on a 64-node cluster machine. However, real-world clinical 
applications on MRI machines utilize some combination of a PC and special hard-
ware accelerators. The simple reason is that manufacturers such as GE and Siemens 
cannot sell MRIs with racks of computer server boxes into clinical settings, while 
this is common in academic departmental settings. In fact, NIH refused to fund paral-
lel programming projects for some time; they felt that the impact of parallel software 
would be limited because huge cluster-based machines would not work in the clini-
cal setting. Today, many companies ship MRI products with GPUs, and NIH funds 
research using GPU computing.

Yet another important consideration in selecting a processor for executing numeric 
computing applications is the level of support for IEEE Floating-Point Standard. The 
standard enables predictable results across processors from different vendors. While 
the support for the IEEE Floating-Point Standard was not strong in early GPUs, 
this has also changed for new generations of GPUs since 2006. As we will discuss 
in Chapter 6, Numerical considerations, GPU support for the IEEE Floating-Point 
Standard has become comparable with that of the CPUs. As a result, one can expect 

1 See Appendix A for more background on the evolution of GPU computing and the creation of CUDA.
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that more numerical applications will be ported to GPUs and yield comparable result 
values as the CPUs. Up to 2009, a major barrier was that the GPU floating-point 
arithmetic units were primarily single precision. Applications that truly require dou-
ble precision floating-point were not suitable for GPU execution. However, this has 
changed with the recent GPUs whose double precision execution speed approaches 
about half that of single precision, a level that only high-end CPU cores achieve. 
This makes the GPUs suitable for even more numerical applications. In addition, 
GPUs support Fused Multiply-Add, which reduces errors due to multiple rounding 
operations.

Until 2006, graphics chips were very difficult to use because programmers had  
to use the equivalent of graphics application programming interface (API) functions to  
access the processing units, meaning that OpenGL or Direct3D techniques were 
needed to program these chips. Stated more simply, a computation must be expressed 
as a function that paints a pixel in some way in order to execute on these early GPUs. 
This technique was called GPGPU, for General-Purpose Programming using a GPU. 
Even with a higher level programming environment, the underlying code still needs 
to fit into the APIs that are designed to paint pixels. These APIs limit the kinds of 
applications that one can actually write for early GPUs. Consequently, it did not 
become a widespread programming phenomenon. Nonetheless, this technology was 
sufficiently exciting to inspire some heroic efforts and excellent research results.

But everything changed in 2007 with the release of CUDA [NVIDIA 2007]. 
NVIDIA actually devoted silicon area to facilitate the ease of parallel programming, 
so this did not represent software changes alone; additional hardware was added to 
the chip. In the G80 and its successor chips for parallel computing, CUDA programs 
no longer go through the graphics interface at all. Instead, a new general-purpose 
parallel programming interface on the silicon chip serves the requests of CUDA 
programs. The general-purpose programming interface greatly expands the types of 
applications that one can easily develop for GPUs. Moreover, all the other software 
layers were redone as well, so that the programmers can use the familiar C/C++ pro-
gramming tools. Some of our students tried to do their lab assignments using the old 
OpenGL-based programming interface, and their experience helped them to greatly 
appreciate the improvements that eliminated the need for using the graphics APIs for 
general-purpose computing applications.

1.2  ARCHITECTURE OF A MODERN GPU
Fig. 1.2 shows a high level view of the architecture of a typical CUDA-capable GPU. 
It is organized into an array of highly threaded streaming multiprocessors (SMs). In 
Fig. 1.2, two SMs form a building block. However, the number of SMs in a build-
ing block can vary from one generation to another. Also, in Fig. 1.2, each SM has a 
number of streaming processors (SPs) that share control logic and instruction cache. 
Each GPU currently comes with gigabytes of Graphics Double Data Rate (GDDR), 
Synchronous DRAM (SDRAM), referred to as Global Memory in Fig. 1.2. These 
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GDDR SDRAMs differ from the system DRAMs on the CPU motherboard in that 
they are essentially the frame buffer memory that is used for graphics. For graph-
ics applications, they hold video images and texture information for 3D rendering. 
For computing, they function as very high-bandwidth off-chip memory, though with 
somewhat longer latency than typical system memory. For massively parallel appli-
cations, the higher bandwidth makes up for the longer latency. More recent products, 
such as NVIDIA’s Pascal architecture, may use High-Bandwidth Memory (HBM) or 
HBM2 architecture. For brevity, we will simply refer to all of these types of memory 
as DRAM for the rest of the book.

The G80 introduced the CUDA architecture and had a communication link to 
the CPU core logic over a PCI-Express Generation 2 (Gen2) interface. Over PCI-E 
Gen2, a CUDA application can transfer data from the system memory to the global 
memory at 4 GB/S, and at the same time upload data back to the system memory 
at 4 GB/S. Altogether, there is a combined total of 8 GB/S. More recent GPUs use 
PCI-E Gen3 or Gen4, which supports 8–16 GB/s in each direction. The Pascal fam-
ily of GPUs also supports NVLINK, a CPU–GPU and GPU–GPU interconnect that 
allows transfers of up to 40 GB/s per channel. As the size of GPU memory grows, 
applications increasingly keep their data in the global memory and only occasionally 
use the PCI-E or NVLINK to communicate with the CPU system memory if there 
is need for using a library that is only available on the CPUs. The communication 
bandwidth is also expected to grow as the CPU bus bandwidth of the system memory 
grows in the future.

A good application typically runs 5000 to 12,000 threads simultaneously on this 
chip. For those who are used to multithreading in CPUs, note that Intel CPUs sup-
port 2 or 4 threads, depending on the machine model, per core. CPUs, however, are 
increasingly using Single Instruction Multiple Data (SIMD) instructions for high 
numerical performance. The level of parallelism supported by both GPU hardware 
and CPU hardware is increasing quickly. It is therefore very important to strive for 
high levels of parallelism when developing computing applications.

1.3  WHY MORE SPEED OR PARALLELISM?
As we stated in Section 1.1, the main motivation for massively parallel programming 
is for applications to enjoy continued speed increase in future hardware generations. 
One might question if applications will continue to demand increased speed. Many 
applications that we have today seem to be running fast enough. As we will discuss in 
the case study chapters (see chapters: Application case study—non-Cartesian MRI, 
Application case study—molecular visualization and analysis, and Application case 
study—machine learning), when an application is suitable for parallel execution, a 
good implementation on a GPU can achieve more than 100 times (100x) speedup 
over sequential execution on a single CPU core. If the application contains what we 
call “data parallelism,” it is often possible to achieve a 10x speedup with just a few 
hours of work. For anything beyond that, we invite you to keep reading!
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Despite the myriad of computing applications in today’s world, many exciting 
mass market applications of the future are what we previously consider “supercom-
puting applications,” or super-applications. For example, the biology research com-
munity is moving more and more into the molecular-level. Microscopes, arguably the 
most important instrument in molecular biology, used to rely on optics or electronic 
instrumentation. But there are limitations to the molecular-level observations that we 
can make with these instruments. These limitations can be effectively addressed by 
incorporating a computational model to simulate the underlying molecular activities 
with boundary conditions set by traditional instrumentation. With simulation we can 
measure even more details and test more hypotheses than can ever be imagined with 
traditional instrumentation alone. These simulations will continue to benefit from 
the increasing computing speed in the foreseeable future in terms of the size of the 
biological system that can be modeled and the length of reaction time that can be 
simulated within a tolerable response time. These enhancements will have tremen-
dous implications for science and medicine.

For applications such as video and audio coding and manipulation, consider our 
satisfaction with digital high-definition (HD) TV vs. older NTSC TV. Once we expe-
rience the level of details in an HDTV, it is very hard to go back to older technology. 
But consider all the processing needed for that HDTV. It is a very parallel process, 
as are 3D imaging and visualization. In the future, new functionalities such as view 
synthesis and high-resolution display of low resolution videos will demand more 
computing power in the TV. At the consumer level, we will begin to have an increas-
ing number of video and image processing applications that improve the focus, light-
ing, and other key aspects of the pictures and videos.

User interfaces can also be improved by improved computing speeds. Modern smart 
phone users enjoy a more natural interface with high-resolution touch screens that 
rival that of large-screen televisions. Undoubtedly future versions of these devices will 
incorporate sensors and displays with three-dimensional perspectives, applications that 
combine virtual and physical space information for enhanced usability, and voice and 
computer vision-based interfaces, requiring even more computing speed.

Similar developments are underway in consumer electronic gaming. In the past, 
driving a car in a game was in fact simply a prearranged set of scenes. If the player’s 
car collided with obstacles, the behavior of the car did not change to reflect the dam-
age. Only the game score changes—and the score determines the winner. The car 
would drive the same—despite the fact that the wheels should be bent or damaged. 
With increased computing speed, the races can actually proceed according to simu-
lation instead of approximate scores and scripted sequences. We can expect to see 
more of these realistic effects in the future: collisions will damage your wheels and 
the player’s driving experience will be much more realistic. Realistic modeling and 
simulation of physics effects are known to demand very large amounts of computing 
power.

All the new applications that we mentioned involve simulating a physical, con-
current world in different ways and at different levels, with tremendous amounts of 
data being processed. In fact, the problem of handling massive amounts of data is 
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so prevalent that the term “Big Data” has become a household phrase. And with this 
huge quantity of data, much of the computation can be done on different parts of the 
data in parallel, although they will have to be reconciled at some point. In most cases, 
effective management of data delivery can have a major impact on the achievable 
speed of a parallel application. While techniques for doing so are often well known 
to a few experts who work with such applications on a daily basis, the vast majority 
of application developers can benefit from more intuitive understanding and practical 
working knowledge of these techniques.

We aim to present the data management techniques in an intuitive way to applica-
tion developers whose formal education may not be in computer science or computer 
engineering. We also aim to provide many practical code examples and hands-on 
exercises that help the reader to acquire working knowledge, which requires a practi-
cal programming model that facilitates parallel implementation and supports proper 
management of data delivery. CUDA offers such a programming model and has been 
well tested by a large developer community.

1.4  SPEEDING UP REAL APPLICATIONS
What kind of speedup can we expect from parallelizing an application? It depends 
on the portion of the application that can be parallelized. If the percentage of time 
spent in the part that can be parallelized is 30%, a 100X speedup of the parallel 
portion will reduce the execution time by no more than 29.7%. The speedup for the 
entire application will be only about 1.4X. In fact, even infinite amount of speedup 
in the parallel portion can only slash 30% off execution time, achieving no more than 
1.43X speedup. The fact that the level of speedup one can achieve through parallel 
execution can be severely limited by the parallelizable portion of the application is 
referred to as Amdahl’s Law. On the other hand, if 99% of the execution time is in 
the parallel portion, a 100X speedup of the parallel portion will reduce the applica-
tion execution to 1.99% of the original time. This gives the entire application a 50X 
speedup. Therefore, it is very important that an application has the vast majority of 
its execution in the parallel portion for a massively parallel processor to effectively 
speed up its execution.

Researchers have achieved speedups of more than 100X for some applications. 
However, this is typically achieved only after extensive optimization and tuning after 
the algorithms have been enhanced so that more than 99.9% of the application execu-
tion time is in parallel execution. In practice, straightforward parallelization of appli-
cations often saturates the memory (DRAM) bandwidth, resulting in only about a 
10X speedup. The trick is to figure out how to get around memory bandwidth limita-
tions, which involves doing one of many transformations to utilize specialized GPU 
on-chip memories to drastically reduce the number of accesses to the DRAM. One 
must, however, further optimize the code to get around limitations such as limited 
on-chip memory capacity. An important goal of this book is to help the reader to fully 
understand these optimizations and become skilled in them.
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Keep in mind that the level of speedup achieved over single core CPU execution 
can also reflect the suitability of the CPU to the application: in some applications, 
CPUs perform very well, making it harder to speed up performance using a GPU. 
Most applications have portions that can be much better executed by the CPU. Thus, 
one must give the CPU a fair chance to perform and make sure that code is written so 
that GPUs complement CPU execution, thus properly exploiting the heterogeneous 
parallel computing capabilities of the combined CPU/GPU system.

Fig. 1.3 illustrates the main parts of a typical application. Much of a real applica-
tion’s code tends to be sequential. These sequential parts are illustrated as the “pit” 
area of the peach: trying to apply parallel computing techniques to these portions is 
like biting into the peach pit—not a good feeling! These portions are very hard to 
parallelize. CPUs are pretty good with these portions. The good news is that these 
portions, although they can take up a large portion of the code, tend to account for 
only a small portion of the execution time of super-applications.

The rest is what we call the “peach meat” portions. These portions are easy to 
parallelize, as are some early graphics applications. Parallel programming in hetero-
geneous computing systems can drastically improve the speed of these applications. 
As illustrated in Fig. 1.3 early GPGPUs cover only a small portion of the meat sec-
tion, which is analogous to a small portion of the most exciting applications. As we 
will see, the CUDA programming model is designed to cover a much larger section 
of the peach meat portions of exciting applications. In fact, as we will discuss in 
Chapter 20, More on CUDA and GPU computing, these programming models and 
their underlying hardware are still evolving at a fast pace in order to enable efficient 
parallelization of even larger sections of applications.

Sequential portions

Data parallel portions

Traditional CPU coverage

GPGPU coverage
Obstacles

FIGURE 1.3

Coverage of sequential and parallel application portions.
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1.5  CHALLENGES IN PARALLEL PROGRAMMING
What makes parallel programming hard? Someone once said that if you don’t care 
about performance, parallel programming is very easy. You can literally write a par-
allel program in an hour. But then why bother to write a parallel program if you do 
not care about performance?

This book addresses several challenges in achieving high-performance in parallel 
programming. First and foremost, it can be challenging to design parallel algorithms 
with the same level of algorithmic (computational) complexity as sequential algo-
rithms. Some parallel algorithms can add large overheads over their sequential coun-
ter parts so much that they can even end up running slower for larger input data sets.

Second, the execution speed of many applications is limited by memory access 
speed. We refer to these applications as memory-bound, as opposed to compute 
bound, which are limited by the number of instructions performed per byte of data. 
Achieving high-performance parallel execution in memory-bound applications often 
requires novel methods for improving memory access speed.

Third, the execution speed of parallel programs is often more sensitive to the 
input data characteristics than their sequential counter parts. Many real world appli-
cations need to deal with inputs with widely varying characteristics, such as erratic 
or unpredictable data rates, and very high data rates. The performance of parallel 
programs can sometimes vary dramatically with these characteristics.

Fourth, many real world problems are most naturally described with mathemati-
cal recurrences. Parallelizing these problems often requires nonintuitive ways of 
thinking about the problem and may require redundant work during execution.

Fortunately, most of these challenges have been addressed by researchers in the 
past. There are also common patterns across application domains that allow us to 
apply solutions derived from one domain to others. This is the primary reason why 
we will be presenting key techniques for addressing these challenges in the context 
of important parallel computation patterns.

1.6  PARALLEL PROGRAMMING LANGUAGES AND MODELS
Many parallel programming languages and models have been proposed in the past 
several decades [Mattson, 2004]. The ones that are the most widely used are message 
passing interface (MPI) [MPI 2009] for scalable cluster computing, and OpenMP 
[Open 2005] for shared memory multiprocessor systems. Both have become stand-
ardized programming interfaces supported by major computer vendors. An OpenMP 
implementation consists of a compiler and a runtime. A programmer specifies direc-
tives (commands) and pragmas (hints) about a loop to the OpenMP compiler. With 
these directives and pragmas, OpenMP compilers generate parallel code. The runt-
ime system supports the execution of the parallel code by managing parallel threads 
and resources. OpenMP was originally designed for CPU execution. More recently, 
a variation called OpenACC (see chapter: Parallel programming with OpenACC) 
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has been proposed and supported by multiple computer vendors for programming 
heterogeneous computing systems.

The major advantage of OpenACC is that it provides compiler automation and 
runtime support for abstracting away many parallel programming details from pro-
grammers. Such automation and abstraction can help make the application code more 
portable across systems produced by different vendors, as well as different genera-
tions of systems from the same vendor. We can refer to this property as “performance 
portability.” This is why we teach OpenACC programming in Chapter 19, Parallel 
programming with OpenACC. However, effective programming in OpenACC still 
requires the programmers to understand all the detailed parallel programming con-
cepts involved. Because CUDA gives programmers explicit control of these paral-
lel programming details, it is an excellent learning vehicle even for someone who 
would like to use OpenMP and OpenACC as their primary programming inter-
face. Furthermore, from our experience, OpenACC compilers are still evolving and 
improving. Many programmers will likely need to use CUDA style interfaces for 
parts where OpenACC compilers fall short.

MPI is a model where computing nodes in a cluster do not share memory  
[MPI 2009]. All data sharing and interaction must be done through explicit message 
passing. MPI has been successful in high-performance computing (HPC). Applications 
written in MPI have run successfully on cluster computing systems with more than 
100,000 nodes. Today, many HPC clusters employ heterogeneous CPU/GPU nodes. 
While CUDA is an effective interface with each node, most application developers 
need to use MPI to program at the cluster level. It is therefore important that a parallel 
programmer in HPC understands how to do joint MPI/CUDA programming, which is 
presented in Chapter 18, Programming a Heterogeneous Computing Cluster.

The amount of effort needed to port an application into MPI, however, can be 
quite high due to lack of shared memory across computing nodes. The programmer 
needs to perform domain decomposition to partition the input and output data into 
cluster nodes. Based on the domain decomposition, the programmer also needs to 
call message sending and receiving functions to manage the data exchange between 
nodes. CUDA, on the other hand, provides shared memory for parallel execution 
in the GPU to address this difficulty. As for CPU and GPU communication, CUDA 
previously provided very limited shared memory capability between the CPU and 
the GPU. The programmers needed to manage the data transfer between CPU and 
GPU in a manner similar to the “one-sided” message passing. New runtime sup-
port for global address space and automated data transfer in heterogeneous comput-
ing systems, such as GMAC [GCN 2010], are now available. With such support, a 
CUDA programmer can declare variables and data structures as shared between CPU 
and GPU. The runtime hardware and software transparently maintains coherence by 
automatically performing optimized data transfer operations on behalf of the pro-
grammer as needed. Such support significantly reduces the programming complexity 
involved in overlapping data transfer with computation and I/O activities. As will 
be discussed later in Chapter 20, More on CUDA and GPU Computing, the Pascal 
architecture supports both a unified global address space and memory.
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In 2009, several major industry players, including Apple, Intel, AMD/ATI, 
NVIDIA jointly developed a standardized programming model called Open 
Computing Language (OpenCL) [Khronos 2009]. Similar to CUDA, the OpenCL 
programming model defines language extensions and runtime APIs to allow pro-
grammers to manage parallelism and data delivery in massively parallel processors. 
In comparison to CUDA, OpenCL relies more on APIs and less on language exten-
sions. This allows vendors to quickly adapt their existing compilers and tools to 
handle OpenCL programs. OpenCL is a standardized programming model in that 
applications developed in OpenCL can run correctly without modification on all pro-
cessors that support the OpenCL language extensions and API. However, one will 
likely need to modify the applications in order to achieve high-performance for a 
new processor.

Those who are familiar with both OpenCL and CUDA know that there is a 
remarkable similarity between the key concepts and features of OpenCL and those 
of CUDA. That is, a CUDA programmer can learn OpenCL programming with 
minimal effort. More importantly, virtually all techniques learned using CUDA can 
be easily applied to OpenCL programming. Therefore, we introduce OpenCL in 
Appendix A and explain how one can apply the key concepts in this book to OpenCL 
programming.

1.7  OVERARCHING GOALS
Our primary goal is to teach you, the reader, how to program massively parallel 
processors to achieve high-performance, and our approach will not require a great 
deal of hardware expertise. Therefore, we are going to dedicate many pages to tech-
niques for developing high-performance parallel programs. And, we believe that it 
will become easy once you develop the right insight and go about it the right way. In 
particular, we will focus on computational thinking [Wing 2006] techniques that will 
enable you to think about problems in ways that are amenable to high-performance 
parallel computing.

Note that hardware architecture features still have constraints and limitations. 
High-performance parallel programming on most processors will require some 
knowledge of how the hardware works. It will probably take ten or more years before 
we can build tools and machines so that most programmers can work without this 
knowledge. Even if we have such tools, we suspect that programmers with more 
knowledge of the hardware will be able to use the tools in a much more effective way 
than those who do not. However, we will not be teaching computer architecture as a 
separate topic. Instead, we will teach the essential computer architecture knowledge 
as part of our discussions on high-performance parallel programming techniques.

Our second goal is to teach parallel programming for correct functionality and 
reliability, which constitutes a subtle issue in parallel computing. Those who have 
worked on parallel systems in the past know that achieving initial performance is not 
enough. The challenge is to achieve it in such a way that you can debug the code and 
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support users. The CUDA programming model encourages the use of simple forms 
of barrier synchronization, memory consistency, and atomicity for managing paral-
lelism. In addition, it provides an array of powerful tools that allow one to debug not 
only the functional aspects but also the performance bottlenecks. We will show that 
by focusing on data parallelism, one can achieve high performance without sacrific-
ing the reliability of their applications.

Our third goal is scalability across future hardware generations by exploring 
approaches to parallel programming such that future machines, which will be more 
and more parallel, can run your code faster than today’s machines. We want to help 
you to master parallel programming so that your programs can scale up to the level 
of performance of new generations of machines. The key to such scalability is to 
regularize and localize memory data accesses to minimize consumption of critical 
resources and conflicts in accessing and updating data structures.

Still, much technical knowledge will be required to achieve these goals, so we 
will cover quite a few principles and patterns [Mattson 2004] of parallel program-
ming in this book. We will not be teaching these principles and patterns in a vacuum. 
We will teach them in the context of parallelizing useful applications. We cannot 
cover all of them, however, we have selected what we found to be the most useful 
and well-proven techniques to cover in detail. To complement your knowledge and 
expertise, we include a list of recommended literature. We are now ready to give you 
a quick overview of the rest of the book.

1.8  ORGANIZATION OF THE BOOK
Chapter 2, Data parallel computing, introduces data parallelism and CUDA C pro-
gramming. This chapter expects the reader to have had previous experience with 
C programming. It first introduces CUDA C as a simple, small extension to C 
that supports heterogeneous CPU/GPU joint computing and the widely used sin-
gle program multiple data (SPMD) parallel programming model. It then covers 
the thought process involved in (1) identifying the part of application programs 
to be parallelized, (2) isolating the data to be used by the parallelized code, using  
an API function to allocate memory on the parallel computing device, (3) using an 
API function to transfer data to the parallel computing device, (4) developing a ker-
nel function that will be executed by threads in the parallelized part, (5) launching a 
kernel function for execution by parallel threads, and (6) eventually transferring the 
data back to the host processor with an API function call.

While the objective of Chapter 2, Data parallel computing, is to teach enough 
concepts of the CUDA C programming model so that the students can write a simple 
parallel CUDA C program, it actually covers several basic skills needed to develop 
a parallel application based on any parallel programming model. We use a running 
example of vector addition to illustrate these concepts. In the later part of the book, 
we also compare CUDA with other parallel programming models including OpenMP, 
OpenACC, and OpenCL.
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Chapter 3, Scalable parallel execution, presents more details of the parallel execu-
tion model of CUDA. It gives enough insight into the creation, organization, resource 
binding, data binding, and scheduling of threads to enable the reader to implement 
sophisticated computation using CUDA C and reason about the performance behav-
ior of their CUDA code.

Chapter 4, Memory and data locality, is dedicated to the special memories that 
can be used to hold CUDA variables for managing data delivery and improving pro-
gram execution speed. We introduce the CUDA language features that allocate and 
use these memories. Appropriate use of these memories can drastically improve the 
data access throughput and help to alleviate the traffic congestion in the memory 
system.

Chapter 5, Performance considerations, presents several important performance 
considerations in current CUDA hardware. In particular, it gives more details in 
desirable patterns of thread execution, memory data accesses, and resource alloca-
tion. These details form the conceptual basis for programmers to reason about the 
consequence of their decisions on organizing their computation and data.

Chapter 6, Numerical considerations, introduces the concepts of IEEE-754 float-
ing-point number format, precision, and accuracy. It shows why different parallel 
execution arrangements can result in different output values. It also teaches the con-
cept of numerical stability and practical techniques for maintaining numerical stabil-
ity in parallel algorithms.

Chapters  7, Parallel patterns: convolution, Chapter  8, Parallel patterns: prefix 
sum, Chapter  9, Parallel patterns—parallel histogram computation, Chapter  10, 
Parallel patterns: sparse matrix computation, Chapter 11, Parallel patterns: merge 
sort, Chapter  12, Parallel patterns: graph search, present six important parallel  
computation patterns that give the readers more insight into parallel programming 
techniques and parallel execution mechanisms. Chapter 7, Parallel patterns: convo-
lution, presents convolution and stencil, frequently used parallel computing patterns 
that require careful management of data access locality. We also use this pattern 
to introduce constant memory and caching in modern GPUs. Chapter  8, Parallel 
patterns: prefix sum, presents reduction tree and prefix sum, or scan, an impor-
tant parallel computing pattern that converts sequential computation into parallel 
computation. We also use this pattern to introduce the concept of work-efficiency 
in parallel algorithms. Chapter  9, Parallel patterns—parallel histogram computa-
tion, covers histogram, a pattern widely used in pattern recognition in large data 
sets. We also cover merge operation, a widely used pattern in divide-and-concur 
work partitioning strategies. Chapter 10, Parallel patterns: sparse matrix computa-
tion, presents sparse matrix computation, a pattern used for processing very large 
data sets. This chapter introduces the reader to the concepts of rearranging data for 
more efficient parallel access: data compression, padding, sorting, transposition, and  
regularization. Chapter  11, Parallel patterns: merge sort, introduces merge sort,  
and dynamic input data identification and organization. Chapter  12, Parallel pat-
terns: graph search, introduces graph algorithms and how graph search can be effi-
ciently implemented in GPU programming.
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While these chapters are based on CUDA, they help the readers build-up the 
foundation for parallel programming in general. We believe that humans understand 
best when they learn from concrete examples. That is, we must first learn the con-
cepts in the context of a particular programming model, which provides us with solid 
footing to allow applying our knowledge to other programming models. As we do so, 
we can draw on our concrete experience from the CUDA model. An in-depth experi-
ence with the CUDA model also enables us to gain maturity, which will help us learn 
concepts that may not even be pertinent to the CUDA model.

Chapter 13, CUDA dynamic parallelism, covers dynamic parallelism. This is the 
ability of the GPU to dynamically create work for itself based on the data or program 
structure, rather than waiting for the CPU to launch kernels exclusively.

Chapters 14, Application case study—non-Cartesian MRI, Chapter 15, Application 
case study—molecular visualization and analysis, Chapter  16, Application case 
study—machine learning, are case studies of three real applications, which take the 
readers through the thought process of parallelizing and optimizing their applications 
for significant speedups. For each application, we start by identifying alternative ways 
of formulating the basic structure of the parallel execution and follow up with reason-
ing about the advantages and disadvantages of each alternative. We then go through 
the steps of code transformation needed to achieve high-performance. These three 
chapters help the readers put all the materials from the previous chapters together and 
prepare for their own application development projects. Chapter 14, Application case 
study—non-Cartesian MRI, covers non-Cartesian MRI reconstruction, and how the 
irregular data affects the program. Chapter 15, Application case study—molecular 
visualization and analysis, covers molecular visualization and analysis. Chapter 16, 
Application case study—machine learning, covers Deep Learning, which is becom-
ing an extremely important area for GPU computing. We provide an introduction, 
and leave more in-depth discussion to other sources.

Chapter 17, Parallel programming and computational thinking, introduces com-
putational thinking. It does so by covering the concept of organizing the computation 
tasks of a program so that they can be done in parallel. We start by discussing the 
translational process of organizing abstract scientific concepts into computational 
tasks, which is an important first step in producing quality application software, serial 
or parallel. It then discusses parallel algorithm structures and their effects on appli-
cation performance, which is grounded in the performance tuning experience with 
CUDA. Although we do not go into these alternative parallel programming styles, 
we expect that the readers will be able to learn to program in any of them with the 
foundation they gain in this book. We also present a high level case study to show  
the opportunities that can be seen through creative computational thinking.

Chapter 18, Programming a heterogeneous computing cluster, covers CUDA pro-
gramming on heterogeneous clusters where each compute node consists of both CPU 
and GPU. We discuss the use of MPI alongside CUDA to integrate both inter-node com-
puting and intra-node computing, and the resulting communication issues and practices.

Chapter 19, Parallel programming with OpenACC, covers Parallel Programming 
with OpenACC. OpenACC is a directive-based high level programming approach 
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which allows the programmer to identify and specify areas of code that can be sub-
sequently parallelized by the compiler and/or other tools. OpenACC is an easy way 
for a parallel programmer to get started.

Chapter 20, More on CUDA and GPU computing and Chapter 21, Conclusion 
and outlook, offer concluding remarks and an outlook for the future of massively 
parallel programming. We first revisit our goals and summarize how the chapters fit 
together to help achieve the goals. We then present a brief survey of the major trends 
in the architecture of massively parallel processors and how these trends will likely 
impact parallel programming in the future. We conclude with a prediction that these 
fast advances in massively parallel computing will make it one of the most exciting 
areas in the coming decade.
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Many code examples will be used to illustrate the key concepts in writing scalable 
parallel programs. For this we need a simple language that supports massive paral-
lelism and heterogeneous computing, and we have chosen CUDA C for our code 
examples and exercises. CUDA C extends the popular C programming language with 
minimal new syntax and interfaces to let programmers target heterogeneous comput-
ing systems containing both CPU cores and massively parallel GPUs. As the name 
implies, CUDA C is built on NVIDIA’s CUDA platform. CUDA is currently the most 
mature framework for massively parallel computing. It is broadly used in the high 
performance computing industry, with sophisticated tools such as compilers, debug-
gers, and profilers available on the most common operating systems.

An important point: while our examples will mostly use CUDA C for its 
simplicity and ubiquity, the CUDA platform supports many languages and appli-
cation programming interfaces (APIs) including C++, Python, Fortran, OpenCL, 
OpenACC, OpenMP, and more. CUDA is really an architecture that supports a set 
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of concepts for organizing and expressing massively parallel computation. It is those 
concepts that we teach. For the benefit of developers working in other languages 
(C++, FORTRAN, Python, OpenCL, etc.) we provide appendices that show how the 
concepts can be applied to these languages.

2.1  DATA PARALLELISM
When modern software applications run slowly, the problem is usually having too 
much data to be processed. Consumer applications manipulate images or videos, 
with millions to trillions of pixels. Scientific applications model fluid dynamics using 
billions of grid cells. Molecular dynamics applications must simulate interactions 
between thousands to millions of atoms. Airline scheduling deals with thousands of 
flights, crews, and airport gates. Importantly, most of these pixels, particles, cells, 
interactions, flights, and so on can be dealt with largely independently. Converting 
a color pixel to a greyscale requires only the data of that pixel. Blurring an image 
averages each pixel’s color with the colors of nearby pixels, requiring only the data 
of that small neighborhood of pixels. Even a seemingly global operation, such as 
finding the average brightness of all pixels in an image, can be broken down into 
many smaller computations that can be executed independently. Such independent 
evaluation is the basis of data parallelism: (re)organize the computation around the 
data, such that we can execute the resulting independent computations in parallel to 
complete the overall job faster, often much faster.

TASK PARALLELISM VS. DATA PARALLELISM
Data parallelism is not the only type of parallelism used in parallel program-
ming. Task parallelism has also been used extensively in parallel program-
ming. Task parallelism is typically exposed through task decomposition of 
applications. For example, a simple application may need to do a vector addi-
tion and a matrix-vector multiplication. Each of these would be a task. Task 
parallelism exists if the two tasks can be done independently. I/O and data 
transfers are also common sources of tasks.

In large applications, there are usually a larger number of independ-
ent tasks and therefore larger amount of task parallelism. For example, in 
a molecular dynamics simulator, the list of natural tasks include vibrational 
forces, rotational forces, neighbor identification for nonbonding forces, non-
bonding forces, velocity and position, and other physical properties based on 
velocity and position.

In general, data parallelism is the main source of scalability for parallel 
programs. With large data sets, one can often find abundant data parallelism 
to be able to utilize massively parallel processors and allow application per-
formance to grow with each generation of hardware that has more execution 
resources. Nevertheless, task parallelism can also play an important role in 
achieving performance goals. We will be covering task parallelism later when 
we introduce streams.
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We will use image processing as a source of running examples in the next 
chapters. Let us illustrate the concept of data parallelism with the color-to-greyscale 
conversion example mentioned above. Fig. 2.1 shows a color image (left side) con-
sisting of many pixels, each containing a red, green, and blue fractional value (r, g, 
b) varying from 0 (black) to 1 (full intensity).

FIGURE 2.1

Conversion of a color image to a greyscale image.

RGB COLOR IMAGE REPRESENTATION
In an RGB representation, each pixel in an image is stored as a tuple of (r, g, 
b) values. The format of an image’s row is (r g b) (r g b) … (r g b), as illus-
trated in the following conceptual picture. Each tuple specifies a mixture of 
red (R), green (G) and blue (B). That is, for each pixel, the r, g, and b values 
represent the intensity (0 being dark and 1 being full intensity) of the red, 
green, and blue light sources when the pixel is rendered.

The actual allowable mixtures of these three colors vary across industry-
specified color spaces. Here, the valid combinations of the three colors in the 
AdobeRGB color space are shown as the interior of the triangle. The vertical 
coordinate (y value) and horizontal coordinate (x value) of each mixture show 
the fraction of the pixel intensity that should be G and R. The remaining fraction  
(1 − y–x) of the pixel intensity that should be assigned to B. To render an image, 
the r, g, b values of each pixel are used to calculate both the total intensity (lumi-
nance) of the pixel as well as the mixture coefficients (x, y, 1 − y − x).
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To convert the color image (left side of Fig. 2.1) to greyscale (right side) we 
compute the luminance value L for each pixel by applying the following weighted 
sum formula:

	 L r g b= + +* . * . * .0 21 0 72 0 07

If we consider the input to be an image organized as an array I of RGB values 
and the output to be a corresponding array O of luminance values, we get the simple 
computation structure shown in Fig. 2.2. For example, O[0] is generated by calculat-
ing the weighted sum of the RGB values in I[0] according to the formula above; O[1] 
by calculating the weighted sum of the RGB values in I[1], O[2] by calculating the 
weighted sum of the RGB values in I[2], and so on. None of these per-pixel computa-
tions depends on each other; all of them can be performed independently. Clearly the 
color-to-greyscale conversion exhibits a rich amount of data parallelism. Of course, 
data parallelism in complete applications can be more complex and much of this 
book is devoted to teaching the “parallel thinking” necessary to find and exploit data 
parallelism.

2.2  CUDA C PROGRAM STRUCTURE
We are now ready to learn to write a CUDA C program to exploit data parallelism 
for faster execution. The structure of a CUDA C program reflects the coexistence of 
a host (CPU) and one or more devices (GPUs) in the computer. Each CUDA source 
file can have a mixture of both host and device code. By default, any traditional  
C program is a CUDA program that contains only host code. One can add device 
functions and data declarations into any source file. The functions or data decla-
rations for device are clearly marked with special CUDA C keywords. These are  
typically functions that exhibit rich amount of data parallelism.

FIGURE 2.2

The pixels can be calculated independently of each other during color to greyscale 
conversion.
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Once device functions and data declarations are added to a source file, it is no 
longer acceptable to a traditional C compiler. The code needs to be compiled by a 
compiler that recognizes and understands these additional declarations. We will be 
using a CUDA C compiler called NVCC (NVIDIA C Compiler). As shown at the 
top of Fig. 2.3, the NVCC compiler processes a CUDA C program, using the CUDA 
keywords to separate the host code and device code. The host code is straight ANSI C 
code, which is further compiled with the host's standard C/C++ compilers and is run 
as a traditional CPU process. The device code is marked with CUDA keywords for 
data parallel functions, called kernels, and their associated helper functions and data 
structures. The device code is further compiled by a run-time component of NVCC 
and executed on a GPU device. In situations where there is no hardware device avail-
able or a kernel can be appropriately executed on a CPU, one can also choose to 
execute the kernel on a CPU using tools like MCUDA [SSH 2008].

The execution of a CUDA program is illustrated in Fig. 2.4. The execution starts 
with host code (CPU serial code). When a kernel function (parallel device code) is 
called, or launched, it is executed by a large number of threads on a device. All the 
threads that are generated by a kernel launch are collectively called a grid. These 
threads are the primary vehicle of parallel execution in a CUDA platform. Fig. 2.4 
shows the execution of two grids of threads. We will discuss how these grids are 
organized soon. When all threads of a kernel complete their execution, the corre-
sponding grid terminates, the execution continues on the host until another kernel 
is launched. Note that Fig. 2.4 shows a simplified model where the CPU execution 
and the GPU execution do not overlap. Many heterogeneous computing applica-
tions actually manage overlapped CPU and GPU execution to take advantage of both 

CPUs and GPUs.

Integrated C programs with CUDA extensions

NVCC Compiler

Host Code Device Code (PTX)

Host C preprocessor,
compiler/ linker

Device just-in-time
compiler

Heterogeneous Computing Platform with
CPUs, GPUs

FIGURE 2.3

Overview of the compilation process of a CUDA C Program.
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CPU serial code

. . .

CPU serial code

. . .

Device parallel kernel
KernelA<<< nBlK, nTid >>>(args);

Device parallel kernel
KernelB<<< nBlK, nTid >>>(args);

FIGURE 2.4

Execution of a CUDA program.

THREADS
A thread is a simplified view of how a processor executes a sequential pro-
gram in modern computers. A thread consists of the code of the program, 
the particular point in the code that is being executed, and the values of its 
variables and data structures. The execution of a thread is sequential as far 
as a user is concerned. One can use a source-level debugger to monitor the 
progress of a thread by executing one statement at a time, looking at the state-
ment that will be executed next and checking the values of the variables and 
data structures as the execution progresses.

Threads have been used in programming for many years. If a programmer 
wants to start parallel execution in an application, he/she creates and man-
ages multiple threads using thread libraries or special languages. In CUDA, 
the execution of each thread is sequential as well. A CUDA program initiates 
parallel execution by launching kernel functions, which causes the underlying 
run-time mechanisms to create many threads that process different parts of the 
data in parallel.

Launching a kernel typically generates a large number of threads to exploit data 
parallelism. In the color-to-greyscale conversion example, each thread could be used 
to compute one pixel of the output array O. In this case, the number of threads that 
will be generated by the kernel is equal to the number of pixels in the image. For 
large images, a large number of threads will be generated. In practice, each thread 
may process multiple pixels for efficiency. CUDA programmers can assume that 
these threads take very few clock cycles to generate and schedule due to efficient 
hardware support. This is in contrast with traditional CPU threads that typically take 
thousands of clock cycles to generate and schedule.
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2.3  A VECTOR ADDITION KERNEL
We now use vector addition to illustrate the CUDA C program structure. Vector addi-
tion is arguably the simplest possible data parallel computation, the parallel equiva-
lent of “Hello World” from sequential programming. Before we show the kernel code 
for vector addition, it is helpful to first review how a conventional vector addition 
(host code) function works. Fig. 2.5 shows a simple traditional C program that con-
sists of a main function and a vector addition function. In all our examples, whenever 
there is a need to distinguish between host and device data, we will prefix the names 
of variables that are processed by the host with “h_” and those of variables that are 
processed by a device “d_” to remind ourselves the intended usage of these variables. 
Since we only have host code in Fig. 2.5, we see only “h_” variables.

Assume that the vectors to be added are stored in arrays A and B that are allo-
cated and initialized in the main program. The output vector is in array C, which is 
also allocated in the main program. For brevity, we do not show the details of how 
A, B, and C are allocated or initialized in the main function. The pointers (see sidebar 
below) to these arrays are passed to the vecAdd function, along with the variable N 
that contains the length of the vectors. Note that the formal parameters of the vecto-
rAdd function are prefixed with “h_” to emphasize that these are processed by the 
host. This naming convention will be helpful when we introduce device code in the 
next few steps.

The vecAdd function in Fig. 2.5 uses a for-loop to iterate through the vector 
elements. In the ith iteration, output element h_C[i] receives the sum of h_A[i] and 
h_B[i]. The vector length parameter n is used to control the loop so that the number 
of iterations matches the length of the vectors. The formal parameters h_A, h_B 
and h_C are passed by reference so the function reads the elements of h_A, h_B 
and writes the elements of h_C through the argument pointers A, B, and C. When the 

// Compute vector sum h_C = h_A+h_B

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

for (int i = 0; i < n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()

{
// Memory allocation for h_A, h_B, and h_C

// I/O to read h_A and h_B, N elements each
…

vecAdd(h_A, h_B, h_C, N);
}

FIGURE 2.5

A simple traditional vector addition C code example.



26 CHAPTER 2  Data parallel computing

vecAdd function returns, the subsequent statements in the main function can access 
the new contents of C.

A straightforward way to execute vector addition in parallel is to modify the vec-
Add function and move its calculations to a device. The structure of such a modified 
vecAdd function is shown in Fig. 2.6. At the beginning of the file, we need to add a 
C preprocessor directive to include the cuda.h header file. This file defines the CUDA 
API functions and built-in variables (see sidebar below) that we will be introducing 
soon. Part 1 of the function allocates space in the device (GPU) memory to hold 
copies of the A, B, and C vectors and copies the vectors from the host memory to the 
device memory. Part 2 launches parallel execution of the actual vector addition ker-
nel on the device. Part 3 copies the sum vector C from the device memory back to the 
host memory and frees the vectors in device memory.

POINTERS IN THE C LANGUAGE
The function arguments A, B, and C in Fig. 2.4 are pointers. In the C lan-
guage, a pointer can be used to access variables and data structures. While a 
floating-point variable V can be declared with:

float V;

a pointer variable P can be declared with:

float *P;

By assigning the address of V to P with the statement P=&V, we make P 
“point to” V. *P becomes a synonym for V. For example U=*P assigns the value 
of V to U. For another example, *P=3 changes the value of V to 3.

Part 1

CPU

Host memory

GPU
(Part 2)

Part 3

Device memory

#include <cuda.h>
…
void vecAdd(float* A, float* B, float* C, int n)
{

int size = n* sizeof(float); 
float  *d_A *d_B, *d_C;
…

1. // Allocate device memory for A, B, and C
// copy A and B to device memory 

2. // Kernel launch code – to have the device
// to perform the actual vector addition

3. // copy C from the device memory
// Free device vectors

}

FIGURE 2.6

Outline of a revised vecAdd function that moves the work to a device.
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Note that the revised vecAdd function is essentially an outsourcing agent that 
ships input data to a device, activates the calculation on the device, and collects the 
results from the device. The agent does so in such a way that the main program does 
not need to even be aware that the vector addition is now actually done on a device. 
In practice, such “transparent” outsourcing model can be very inefficient because of 
all the copying of data back and forth. One would often keep important bulk data 
structures on the device and simply invocate device functions on them from the host 
code. For now, we will stay with the simplified transparent model for the purpose of 
introducing the basic CUDA C program structure. The details of the revised func-
tion, as well as the way to compose the kernel function, will be shown in the rest of 
this chapter.

2.4  DEVICE GLOBAL MEMORY AND DATA TRANSFER
In current CUDA systems, devices are often hardware cards that come with their own 
dynamic random access memory (DRAM). For example, the NVIDIA GTX1080 
comes with up to 8 GB1 of DRAM, called global memory. We will use the terms 
global memory and device memory interchangeably. In order to execute a kernel 
on a device, the programmer needs to allocate global memory on the device and 
transfer pertinent data from the host memory to the allocated device memory. This 
corresponds to Part 1 of Fig. 2.6. Similarly, after device execution, the program-
mer needs to transfer result data from the device memory back to the host memory 
and free up the device memory that is no longer needed. This corresponds to Part 
3 of Fig. 2.6. The CUDA run-time system provides API functions to perform these 
activities on behalf of the programmer. From this point on, we will simply say that 

An array in a C program can be accessed through a pointer that points to 
its 0th element. For example, the statement P=&(A[0]) makes P point to the 
0th element of array A. P[i] becomes a synonym for A[i]. In fact, the array 
name A is in itself a pointer to its 0th element.

In Fig. 2.5, passing an array name A as the first argument to function call 
to vecAdd makes the function’s first parameter h_A point to the 0th element of 
A. We say that A is passed by reference to vecAdd. As a result, h_A[i] in the 
function body can be used to access A[i].

See Patt&Patel [Patt] for an easy-to-follow explanation of the detailed 
usage of pointers in C.

1 There is a trend to integrate the address space of CPUs and GPUs into a unified memory space 
(Chapter 20). There are new programming frameworks such as GMAC that take advantage of the uni-
fied memory space and eliminate data copying cost.
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a piece of data is transferred from host to device as shorthand for saying that the 
data is copied from the host memory to the device memory. The same holds for  
the opposite direction.

Fig. 2.7 shows a high level picture of the CUDA host memory and device 
memory model for programmers to reason about the allocation of device memory 
and movement of data between host and device. The device global memory can be 
accessed by the host to transfer data to and from the device, as illustrated by the bi-
directional arrows between these memories and the host in Fig. 2.7. There are more 
device memory types than shown in Fig. 2.7. Constant memory can be accessed in a 
read-only manner by device functions, which will be described in Chapter 7, Parallel 
patterns: convolution. We will also discuss the use of registers and shared memory 
in Chapter 4, Memory and data locality. Interested readers can also see the CUDA 
programming guide for the functionality of texture memory. For now, we will focus 
on the use of global memory.

DeviceHost

Global memoryHost memory

FIGURE 2.7

Host memory and device global memory.

BUILT-IN VARIABLES
Many programming languages have built-in variables. These variables have 
special meaning and purpose. The values of these variables are often preini-
tialized by the run-time system and are typically read-only in the program. 
The programmers should refrain from using these variables for any other 
purposes.

In Fig. 2.6, Part 1 and Part 3 of the vecAdd function need to use the CUDA API 
functions to allocate device memory for A, B, and C, transfer A and B from host 
memory to device memory, transfer C from device memory to host memory at the 
end of the vector addition, and free the device memory for A, B, and C. We will 
explain the memory allocation and free functions first.

Fig. 2.8 shows two API functions for allocating and freeing device global 
memory. The cudaMalloc function can be called from the host code to allocate a 
piece of device global memory for an object. The reader should notice the striking 
similarity between cudaMalloc and the standard C run-time library malloc function. 
This is intentional; CUDA is C with minimal extensions. CUDA uses the standard C 
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run-time library malloc function to manage the host memory and adds cudaMalloc as 
an extension to the C run-time library. By keeping the interface as close to the origi-
nal C run-time libraries as possible, CUDA minimizes the time that a C programmer 
spends to relearn the use of these extensions.

The first parameter to the cudaMalloc function is the address of a pointer varia-
ble that will be set to point to the allocated object. The address of the pointer variable 
should be cast to (void **) because the function expects a generic pointer; the mem-
ory allocation function is a generic function that is not restricted to any particular 
type of objects.2 This parameter allows the cudaMalloc function to write the address 
of the allocated memory into the pointer variable.3 The host code to launch kernels 
passes this pointer value to the kernels that need to access the allocated memory 
object. The second parameter to the cudaMalloc function gives the size of the data 
to be allocated, in number of bytes. The usage of this second parameter is consistent 
with the size parameter to the C malloc function.

We now use a simple code example to illustrate the use of cudaMalloc. This is a 
continuation of the example in Fig. 2.6. For clarity, we will start a pointer variable 
with letter “d_” to indicate that it points to an object in the device memory. The 
program passes the address of pointer d_A (i.e., &d_A) as the first parameter after 
casting it to a void pointer. That is, d_A will point to the device memory region allo-
cated for the A vector. The size of the allocated region will be n times the size of a 
single-precision floating number, which is 4 bytes in most computers today. After the 
computation, cudaFree is called with pointer d_A as input to free the storage space 
for the A vector from the device global memory. Note that cudaFree does not need to 

cudaMalloc()

• Allocates object in the device global memory
• Two parameters

°     Address of a pointer to the allocated object
°     Size of allocated object in terms of bytes

cudaFree()

• Frees object from device global memory
°      Pointer to freed object

FIGURE 2.8

CUDA API functions for managing device global memory.

2 The fact that cudaMalloc returns a generic object makes the use of dynamically allocated multidimen-
sional arrays more complex. We will address this issue in Section 3.2.
3 Note that cudaMalloc has a different format from the C malloc function. The C malloc function 
returns a pointer to the allocated object. It takes only one parameter that specifies the size of the allo-
cated object. The cudaMalloc function writes to the pointer variable whose address is given as the first 
parameter. As a result, the cudaMalloc function takes two parameters. The two-parameter format of 
cudaMalloc allows it to use the return value to report any errors in the same way as other CUDA API 
functions.



30 CHAPTER 2  Data parallel computing

change the content of pointer variable d_A; it only needs to use the value of d_A to 
enter the allocated memory back into the available pool. Thus only the value, not the 
address of d_A, is passed as the argument.

float *d_A;
int size=n * sizeof(float);
cudaMalloc((void**)&d_A, size);
...
cudaFree(d_A);

The addresses in d_A, d_B, and d_C are addresses in the device memory. These 
addresses should not be dereferenced in the host code for computation. They should 
be mostly used in calling API functions and kernel functions. Dereferencing a device 
memory point in host code can cause exceptions or other types of run-time errors 
during execution.

The reader should complete Part 1 of the vecAdd example in Fig. 2.6 with similar 
declarations of d_B and d_C pointer variables as well as their corresponding cuda-
Malloc calls. Furthermore, Part 3 in Fig. 2.6 can be completed with the cudaFree 
calls for d_B and d_C.

Once the host code has allocated device memory for the data objects, it can 
request that data be transferred from host to device. This is accomplished by calling 
one of the CUDA API functions. Fig. 2.9 shows such an API function, cudaMemcpy. 
The cudaMemcpy function takes four parameters. The first parameter is a pointer to 
the destination location for the data object to be copied. The second parameter points 
to the source location. The third parameter specifies the number of bytes to be cop-
ied. The fourth parameter indicates the types of memory involved in the copy: from 
host memory to host memory, from host memory to device memory, from device 
memory to host memory, and from device memory to device memory. For example, 
the memory copy function can be used to copy data from one location of the device 
memory to another location of the device memory.4

cudaMemcpy()

• Memory data transfer

• Requires four parameters

ο Pointer to destination

ο Pointer to source

ο Number of bytes copied

ο Type/Direction of transfer

FIGURE 2.9

CUDA API function for data transfer between host and device.

4 Please note cudaMemcpy currently cannot be used to copy between different GPU’s in multi-GPU 
systems.
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The vecAdd function calls the cudaMemcpy function to copy h_A and h_B vec-
tors from host to device before adding them and to copy the h_C vector from the 
device to host after the addition is done. Assume that the values of h_A, h_B, d_A, 
d_B and size have already been set as we discussed before, the three cudaMemcpy 
calls are shown below. The two symbolic constants, cudaMemcpyHostToDevice and 
cudaMemcpyDeviceToHost, are recognized, predefined constants of the CUDA pro-
gramming environment. Note that the same function can be used to transfer data in 
both directions by properly ordering the source and destination pointers and using 
the appropriate constant for the transfer type.

cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

To summarize, the main program in Fig. 2.5 calls vecAdd, which is also exe-
cuted on the host. The vecAdd function, outlined in Fig. 2.6, allocates device mem-
ory, requests data transfers, and launches the kernel that performs the actual vector 
addition. We often refer to this type of host code as a stub function for launching 
a kernel. After the kernel finishes execution, vecAdd also copies result data from 
device to the host. We show a more complete version of the vecAdd function in 
Fig. 2.10.

FIGURE 2.10

A more complete version of vecAdd().
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Compared to Fig. 2.6, the vecAdd function in Fig. 2.10 is complete for Part 1 and 
Part 3. Part 1 allocates device memory for d_A, d_B, and d_C and transfer h_A to 
d_A and h_B to d_B. This is done by calling the cudaMalloc and cudaMemcpy func-
tions. The readers are encouraged to write their own function calls with the appro-
priate parameter values and compare their code with that shown in Fig. 2.10. Part 2 
invokes the kernel and will be described in the following subsection. Part 3 copies the 
sum data from device memory to host memory so that their values will be available 
in the main function. This is accomplished with a call to the cudaMemcpy function. 
It then frees the memory for d_A, d_B, and d_C from the device memory, which is 
done by calls to the cudaFree function.

2.5  KERNEL FUNCTIONS AND THREADING
We are now ready to discuss more about the CUDA kernel functions and the effect 
of launching these kernel functions. In CUDA, a kernel function specifies the code to 
be executed by all threads during a parallel phase. Since all these threads execute the 
same code, CUDA programming is an instance of the well-known Single-Program 

ERROR CHECKING AND HANDLING IN CUDA
In general, it is very important for a program to check and handle errors. 
CUDA API functions return flags that indicate whether an error has occurred 
when they served the request. Most errors are due to inappropriate argument 
values used in the call.

For brevity, we will not show error checking code in our examples. For 
example, Fig. 2.10 shows a call to cudaMalloc:

cudaMalloc((void **) &d_A, size);

In practice, we should surround the call with code that test for error condi-
tion and print out error messages so that the user can be aware of the fact that 
an error has occurred. A simple version of such checking code is as follows:

cudaError_t err=cudaMalloc((void **) &d_A, size);
if (error !=cudaSuccess) {
 � printf(“%s in %s at line %d\n”, cudaGetErrorString(err),__ 

FILE__,__LINE__);
  exit(EXIT_FAILURE);
}

This way, if the system is out of device memory, the user will be informed 
about the situation. This can save many hours of debugging time.

One could define a C macro to make the checking code more concise in 
the source.
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Multiple-Data (SPMD) [Ata 1998] parallel programming style, a popular program-
ming style for massively parallel computing systems.5

When a program’s host code launches a kernel, the CUDA run-time system gen-
erates a grid of threads that are organized into a two-level hierarchy. Each grid is 
organized as an array of thread blocks, which will be referred to as blocks for brevity. 
All blocks of a grid are of the same size; each block can contain up to 1024 threads. 
6 Fig. 2.11 shows an example where each block consists of 256 threads. Each thread 
is represented by a curly arrow stemming from a box that is labeled with a number. 
The total number of threads in each thread block is specified by the host code when 
a kernel is launched. The same kernel can be launched with different numbers of 
threads at different parts of the host code. For a given grid, the number of threads in 
a block is available in a built-in blockDim variable.

The blockDim variable is of struct type with three unsigned integer fields: x, 
y, and z, which help a programmer to organize the threads into a one-, two-, or 
three-dimensional array. For a one-dimensional organization, only the x field will 
be used. For a two-dimensional organization, x and y fields will be used. For a three-
dimensional structure, all three fields will be used. The choice of dimensionality for 
organizing threads usually reflects the dimensionality of the data. This makes sense 
since the threads are created to process data in parallel. It is only natural that the 
organization of the threads reflects the organization of the data. In Fig. 2.11, each 
thread block is organized as a one-dimensional array of threads because the data are 
one-dimensional vectors. The value of the blockDim.x variable specifies the total 
number of threads in each block, which is 256 in Fig. 2.11. In general, the number of 

5 Note that SPMD is not the same as SIMD (Single Instruction Multiple-Data) [Flynn 1972]. In an 
SPMD system, the parallel processing units execute the same program on multiple parts of the data. 
However, these processing units do not need to be executing the same instruction at the same time. In 
an SIMD system, all processing units are executing the same instruction at any instant.
6 Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA ver-
sions allow only up to 512 threads in a block.

FIGURE 2.11

All threads in a grid execute the same kernel code.
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threads in each dimension of thread blocks should be multiples of 32 due to hardware 
efficiency reasons. We will revisit this later.

CUDA kernels have access to two more built-in variables (threadIdx, blockIdx) 
that allow threads to distinguish among themselves and to determine the area of data 
each thread is to work on. Variable threadIdx gives each thread a unique coordinate 
within a block. For example, in Fig. 2.11, since we are using a one-dimensional 
thread organization, only threadIdx.x will be used. The threadIdx.x value for each 
thread is shown in the small shaded box of each thread in Fig. 2.11. The first thread 
in each block has value 0 in its threadIdx.x variable, the second thread has value 1, 
the third thread has value 2, etc.

The blockIdx variable gives all threads in a block a common block coordinate. 
In Fig. 2.11, all threads in the first block have value 0 in their blockIdx.x variables, 
those in the second thread block value 1, and so on. Using an analogy with the tel-
ephone system, one can think of threadIdx.x as local phone number and blockIdx.x 
as area code. The two together gives each telephone line a unique phone number in 
the whole country. Similarly, each thread can combine its threadIdx and blockIdx 
values to create a unique global index for itself within the entire grid.

In Fig. 2.11, a unique global index i is calculated as i = blockIdx.x*blockDim.x 
+ threadIdx.x. Recall that blockDim is 256 in our example. The i values of threads 
in block 0 range from 0 to 255. The i values of threads in block 1 range from 256 to 
511. The i values of threads in block 2 range from 512 to 767. That is, the i values 
of the threads in these three blocks form a continuous coverage of the values from 
0 to 767. Since each thread uses i to access A, B, and C, these threads cover the 
first 768 iterations of the original loop. Note that we do not use the “h_” and “d_” 
convention in kernels since there is no potential confusion. We will not have any 
access to the host memory in our examples. By launching the kernel with a larger 
number of blocks, one can process larger vectors. By launching a kernel with n or 
more threads, one can process vectors of length n.

Fig. 2.12 shows a kernel function for vector addition. The syntax is ANSI C with 
some notable extensions. First, there is a CUDA C specific keyword “__global__” in 
front of the declaration of the vecAddKernel function. This keyword indicates that 
the function is a kernel and that it can be called from a host function to generate a 
grid of threads on a device.

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

int i = blockDim.x*blockIdx.x + threadIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

FIGURE 2.12

A vector addition kernel function.
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In general, CUDA C extends the C language with three qualifier keywords that 
can be used in function declarations. The meaning of these keywords is summarized 
in Fig. 2.13 The “__global__” keyword indicates that the function being declared is 
a CUDA C kernel function. Note that there are two underscore characters on each 
side of the word “global.” Such kernel function is to be executed on the device and 
can only be called from the host code except in CUDA systems that support dynamic 
parallelism, as we will explain in Chapter 13, CUDA dynamic parallelism. The “__
device__” keyword indicates that the function being declared is a CUDA device 
function. A device function executes on a CUDA device and can only be called from 
a kernel function or another device function.7

The “__host__” keyword indicates that the function being declared is a CUDA 
host function. A host function is simply a traditional C function that executes on 
host and can only be called from another host function. By default, all functions in a 
CUDA program are host functions if they do not have any of the CUDA keywords in 
their declaration. This makes sense since many CUDA applications are ported from 
CPU-only execution environments. The programmer would add kernel functions and 
device functions during porting process. The original functions remain as host func-
tions. Having all functions to default into host functions spares the programmer the 
tedious work to change all original function declarations.

Note that one can use both “__host__” and “__device__” in a function decla-
ration. This combination tells the compilation system to generate two versions of 
object files for the same function. One is executed on the host and can only be called 
from a host function. The other is executed on the device and can only be called from 
a device or kernel function. This supports a common use case when the same func-
tion source code can be recompiled to generate a device version. Many user library 
functions will likely fall into this category.

The second notable extension to ANSI C, in Fig. 2.12, are the built-in variables 
“threadIdx.x” “blockIdx.x” and “blockDim.x”. Recall that all threads execute the 
same kernel code. There needs to be a way for them to distinguish among themselves 
and direct each thread towards a particular part of the data. These built-in variables 

Only callable 
from the:

Executed
on the:

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

hosthost__host__ float HostFunc()

FIGURE 2.13

CUDA C keywords for function declaration.

7 We will explain the rules for using indirect function calls and recursions in different generations of 
CUDA later. In general, one should avoid the use of recursion and indirect function calls in their device 
functions and kernel functions to allow maximal portability.
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are the means for threads to access hardware registers that provide the identifying 
coordinates to threads. Different threads will see different values in their threadIdx.x, 
blockIdx.x and blockDim.x variables. For simplicity, we will refer to a thread as 
threadblockIdx.x, threadIdx.x. Note that the “.x” implies that there should be “.y” and “.z”. 
We will come back to this point soon.

There is an automatic (local) variable i in Fig. 2.12. In a CUDA kernel function, 
automatic variables are private to each thread. That is, a version of i will be generated 
for every thread. If the kernel is launched with 10,000 threads, there will be 10,000 
versions of i, one for each thread. The value assigned by a thread to its i variable is 
not visible to other threads. We will discuss these automatic variables in more details 
in Chapter 4, Memory and data locality.

A quick comparison between Figs. 2.5 and 2.12 reveals an important insight for 
CUDA kernels and CUDA kernel launch. The kernel function in Fig. 2.12 does not 
have a loop that corresponds to the one in Fig. 2.5. The readers should ask where 
the loop went. The answer is that the loop is now replaced with the grid of threads. 
The entire grid forms the equivalent of the loop. Each thread in the grid corresponds 
to one iteration of the original loop. This type of data parallelism is sometimes also 
referred to as loop parallelism, where iterations of the original sequential code are 
executed by threads in parallel.

Note that there is an if (i < n) statement in addVecKernel in Fig. 2.12. This is 
because not all vector lengths can be expressed as multiples of the block size. For 
example, let’s assume that the vector length is 100. The smallest efficient thread 
block dimension is 32. Assume that we picked 32 as block size. One would need to 
launch four thread blocks to process all the 100 vector elements. However, the four 
thread blocks would have 128 threads. We need to disable the last 28 threads in thread 
block 3 from doing work not expected by the original program. Since all threads are 
to execute the same code, all will test their i values against n, which is 100. With the 
if (i < n) statement, the first 100 threads will perform the addition whereas the last 28 
will not. This allows the kernel to process vectors of arbitrary lengths.

When the host code launches a kernel, it sets the grid and thread block dimen-
sions via execution configuration parameters. This is illustrated in Fig. 2.14. The 
configuration parameters are given between the “ <<<” and “>>>” before the tra-
ditional C function arguments. The first configuration parameter gives the number of 
thread blocks in the grid. The second specifies the number of threads in each thread 
block. In this example, there are 256 threads in each block. In order to ensure that we 

int vectAdd(float* A, float* B, float* C, int n)

{
////  d_A, d_B, d_C allocations and copies omitted

// Run ceil(n/256) blocks of 256 threads each

vecAddKernel<<<ceil(n/256.0), 256>>>(d_A, d_B, d_C, n);

}

FIGURE 2.14

A vector addition kernel launch statement.
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have enough threads to cover all the vector elements, we apply the C ceiling function 
to n/256.0. Using floating-point value 256.0 ensures that we generate a floating value 
for the division so that the ceiling function can round it up correctly. For example, 
if we have 1000 threads, we would launch ceil(1000/256.0) = 4 thread blocks. As a 
result, the statement will launch 4*256 = 1024 threads. With the if (i < n) statement 
in the kernel as shown in Fig. 2.12, the first 1000 threads will perform addition on the 
1000 vector elements. The remaining 24 will not.

2.6  KERNEL LAUNCH
Fig. 2.15 shows the final host code in the vecAdd function. This source code com-
pletes the skeleton in Fig. 2.6. Figs. 2.12 and 2.15 jointly illustrate a simple CUDA 
program that consists of both host code and a device kernel. The code is hardwired to 
use thread blocks of 256 threads each. The number of thread blocks used, however, 
depends on the length of the vectors (n). If n is 750, three thread blocks will be used. 
If n is 4000, 16 thread blocks will be used. If n is 2,000,000, 7813 blocks will be 
used. Note that all the thread blocks operate on different parts of the vectors. They 
can be executed in any arbitrary order. Programmers must not make any assumptions 
regarding execution order. A small GPU with a small amount of execution resources 
may execute only one or two of these thread blocks in parallel. A larger GPU may 
execute 64 or 128 blocks in parallel. This gives CUDA kernels scalability in execu-
tion speed with hardware, that is, same code runs at lower speed on small GPUs and 

FIGURE 2.15

A complete version of the host code in the vecAdd.function.



38 CHAPTER 2  Data parallel computing

higher speed on larger GPUs. We will revisit this point later in Chapter 3, Scalable 
parallel execution.

It is important to point out again that the vector addition example is used for its 
simplicity. In practice, the overhead of allocating device memory, input data trans-
fer from host to device, output data transfer from device to host, and de-allocating 
device memory will likely make the resulting code slower than the original sequen-
tial code in Fig. 2.5. This is because the amount of calculation done by the kernel 
is small relative to the amount of data processed. Only one addition is performed 
for two floating-point input operands and one floating-point output operand. Real 
applications typically have kernels where much more work is needed relative to the 
amount of data processed, which makes the additional overhead worthwhile. They 
also tend to keep the data in the device memory across multiple kernel invocations 
so that the overhead can be amortized. We will present several examples of such 
applications.

2.7  SUMMARY
This chapter provided a quick, simplified overview of the CUDA C programming 
model. CUDA C extends the C language to support parallel computing. We discussed 
an essential subset of these extensions in this chapter. For your convenience, we sum-
marize the extensions that we have discussed in this chapter as follows:

FUNCTION DECLARATIONS
CUDA C extends the C function declaration syntax to support heterogeneous par-
allel computing. The extensions are summarized in Fig. 2.13. Using one of “__
global__”, “__device__”, or “__host__”, a CUDA C programmer can instruct the 
compiler to generate a kernel function, a device function, or a host function. All 
function declarations without any of these keywords default to host functions. If 
both “__host__” and “_device__” are used in a function declaration, the compiler 
generates two versions of the function, one for the device and one for the host. If a 
function declaration does not have any CUDA C extension keyword, the function 
defaults into a host function.

KERNEL LAUNCH
CUDA C extends C function call syntax with kernel execution configuration param-
eters surrounded by <<< and >>>. These execution configuration parameters are 
only used during a call to a kernel function, or a kernel launch. We discussed the  
execution configuration parameters that define the dimensions of the grid and  
the dimensions of each block. The reader should refer to the CUDA Programming 
Guide [NVIDIA 2016] for more details of the kernel launch extensions as well as 
other types of execution configuration parameters.
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BUILT-IN (PREDEFINED) VARIABLES
CUDA kernels can access a set of built-in, predefined read-only variables that allow 
each thread to distinguish among themselves and to determine the area of data each 
thread is to work on. We discussed the threadIdx, blockDim, and blockIdx variables 
in this chapter. In Chapter 3, Scalable parallel execution, we will discuss more details 
of using these variables.

RUN-TIME API
CUDA supports a set of API functions to provide services to CUDA C programs. 
The services that we discussed in this chapter are cudaMalloc(), cudaFree(), and 
cudaMemcpy() functions. These functions allocate device memory and transfer data 
between host and device on behalf of the calling program respectively. The reader is 
referred to the CUDA C Programming Guide for other CUDA API functions.

Our goal for this chapter is to introduce the core concepts of CUDA C and the 
essential CUDA C extensions to C for writing a simple CUDA C program. The chap-
ter is by no means a comprehensive account of all CUDA features. Some of these 
features will be covered in the remainder of the book. However, our emphasis will 
be on the key parallel computing concepts supported by these features. We will only 
introduce enough CUDA C features that are needed in our code examples for paral-
lel programming techniques. In general, we would like to encourage the reader to 
always consult the CUDA C Programming Guide for more details of the CUDA C 
features.

2.8  EXERCISES

1.	 If we want to use each thread to calculate one output element of a vector 
addition, what would be the expression for mapping the thread/block indices 
to data index?
A.	 i=threadIdx.x + threadIdx.y;
B.	 i=blockIdx.x + threadIdx.x;
C.	 i=blockIdx.x*blockDim.x + threadIdx.x;
D.	 i=blockIdx.x * threadIdx.x;

2.	 Assume that we want to use each thread to calculate two (adjacent) elements 
of a vector addition. What would be the expression for mapping the thread/
block indices to i, the data index of the first element to be processed by a 
thread? 
A.	 i=blockIdx.x*blockDim.x + threadIdx.x +2;
B.	 i=blockIdx.x*threadIdx.x*2;
C.	 i=(blockIdx.x*blockDim.x + threadIdx.x)*2;
D.	 i=blockIdx.x*blockDim.x*2 + threadIdx.x;
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3.	 We want to use each thread to calculate two elements of a vector addition. 
Each thread block processes 2*blockDim.x consecutive elements that form 
two sections. All threads in each block will first process a section first, each 
processing one element. They will then all move to the next section, each 
processing one element. Assume that variable i should be the index for the 
first element to be processed by a thread. What would be the expression for 
mapping the thread/block indices to data index of the first element?
A.	 i=blockIdx.x*blockDim.x + threadIdx.x +2;
B.	 i=blockIdx.x*threadIdx.x*2;
C.	 i=(blockIdx.x*blockDim.x + threadIdx.x)*2;
D.	 i=blockIdx.x*blockDim.x*2 + threadIdx.x;

4.	 For a vector addition, assume that the vector length is 8000, each thread 
calculates one output element, and the thread block size is 1024 threads. The 
programmer configures the kernel launch to have a minimal number of thread 
blocks to cover all output elements. How many threads will be in the grid?
A.	 8000
B.	 8196
C.	 8192
D.	 8200

5.	 If we want to allocate an array of v integer elements in CUDA device global 
memory, what would be an appropriate expression for the second argument of 
the cudaMalloc call?
A.	 n
B.	 v
C.	 n * sizeof(int)
D.	 v * sizeof(int)

6.	 If we want to allocate an array of n floating-point elements and have a 
floating-point pointer variable d_A to point to the allocated memory, what 
would be an appropriate expression for the first argument of the cudaMalloc() 
call? 
A.	 n
B.	 (void *) d_A
C.	 *d_A
D.	 (void **) &d_A

7.	 If we want to copy 3000 bytes of data from host array h_A (h_A is a pointer 
to element 0 of the source array) to device array d_A (d_A is a pointer to 
element 0 of the destination array), what would be an appropriate API call for 
this data copy in CUDA?
A.	 cudaMemcpy(3000, h_A, d_A, cudaMemcpyHostToDevice);
B.	 cudaMemcpy(h_A, d_A, 3000, cudaMemcpyDeviceTHost);
C.	 cudaMemcpy(d_A, h_A, 3000, cudaMemcpyHostToDevice);
D.	 cudaMemcpy(3000, d_A, h_A, cudaMemcpyHostToDevice);
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8.	 How would one declare a variable err that can appropriately receive returned 
value of a CUDA API call?
A.	 int err;
B.	 cudaError err;
C.	 cudaError_t err;

D.	 cudaSuccess_t err;

9.	 A new summer intern was frustrated with CUDA. He has been complaining 
that CUDA is very tedious: he had to declare many functions that he plans 
to execute on both the host and the device twice, once as a host function and 
once as a device function. What is your response?
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In Chapter 2, Data parallel computing, we learned to write a simple CUDA C pro-
gram that launches a kernel and a grid of threads to operate on elements in one-
dimensional arrays. The kernel specifies the C statements executed by each thread. 
As we unleash such a massive execution activity, we need to control these activities 
to achieve desired results, efficiency, and speed. In this chapter, we will study impor-
tant concepts involved in the control of parallel execution. We will start by learn-
ing how thread index and block index can facilitate processing multidimensional 
arrays. Subsequently, we will explore the concept of flexible resource assignment 
and the concept of occupancy. We will then advance into thread scheduling, latency 
tolerance, and synchronization. A CUDA programmer who masters these concepts is 
well-equipped to write and understand high-performance parallel applications.

3.1  CUDA THREAD ORGANIZATION
All CUDA threads in a grid execute the same kernel function; they rely on coordi-
nates to distinguish themselves from one another and identify the appropriate portion 
of data to process. These threads are organized into a two-level hierarchy: a grid 
consists of one or more blocks, and each block consists of one or more threads. All 
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threads in a block share the same block index, which is the value of the blockIdx  
variable in a kernel. Each thread has a thread index, which can be accessed as the 
value of the threadIdx variable in a kernel. When a thread executes a kernel func-
tion, references to the blockIdx and threadIdx variables return the coordinates of 
the thread. The execution configuration parameters in a kernel launch statement 
specify the dimensions of the grid and the dimensions of each block. These dimen-
sions are the values of the variables gridDim and blockDim in kernel functions.

1 Devices with compute capability less than 2.0 support grids with up to two-dimensional arrays of blocks.

HIERARCHICAL ORGANIZATIONS
Similar to CUDA threads, many real-world systems are organized hierarchi-
cally. The United States telephone system is a good example. At the top level, 
the telephone system consists of “areas,” each of which corresponds to a geo-
graphical area. All telephone lines within the same area have the same 3-digit 
“area code”. A telephone area can be larger than a city; e.g., many counties 
and cities in Central Illinois are within the same telephone area and share the 
same area code 217. Within an area, each phone line has a seven-digit local 
phone number, which allows each area to have a maximum of about ten mil-
lion numbers.

Each phone line can be considered as a CUDA thread, the area code as the 
value of blockIdx, and the seven-digit local number as the value of thread-
Idx. This hierarchical organization allows the system to accommodate a con-
siderably large number of phone lines while preserving “locality” for calling 
the same area. When dialing a phone line in the same area, a caller only needs 
to dial the local number. As long as we make most of our calls within the local 
area, we seldom need to dial the area code. If we occasionally need to call 
a phone line in another area, we dial “1” and the area code, followed by the 
local number. (This is the reason why no local number in any area should start 
with “1.”) The hierarchical organization of CUDA threads also offers a form 
of locality, which will be examined here.

In general, a grid is a three-dimensional array of blocks1, and each block is a three-
dimensional array of threads. When launching a kernel, the program needs to specify 
the size of the grid and blocks in each dimension. The programmer can use fewer 
than three dimensions by setting the size of the unused dimensions to 1. The exact 
organization of a grid is determined by the execution configuration parameters 
(within <<< >>>) of the kernel launch statement. The first execution configuration 
parameter specifies the dimensions of the grid in the number of blocks. The second 
specifies the dimensions of each block in the number of threads. Each such parameter 
is of the dim3 type, which is a C struct with three unsigned integer fields: x, y, and z.  
These three fields specify the sizes of the three dimensions.
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To illustrate, the following host code can be used to launch the vecAddkernel() 
kernel function and generate a 1D grid that consists of 32 blocks, each of which 
consists of 128 threads. The total number of threads in the grid is 128*32 = 4096.

dim3 dimGrid(32, 1, 1);
dim3 dimBlock(128, 1, 1);
vecAddKernel<<<dimGrid, dimBlock>>>(…);

Note that dimBlock and dimGrid are host code variables defined by the program-
mer. These variables can have any legal C variable names as long as they are of the 
dim3 type and the kernel launch uses the appropriate names. For instance, the follow-
ing statements accomplish the same as the statements above:

dim3 dog(32, 1, 1);
dim3 cat(128, 1, 1);
vecAddKernel<<<dog, cat>>>(…);

The grid and block dimensions can also be calculated from other variables. The 
kernel launch in Fig. 2.15 can be written as follows:

dim3 dimGrid(ceil(n/256.0), 1, 1);
dim3 dimBlock(256, 1, 1);
vecAddKernel<<<dimGrid, dimBlock>>>(…);

The number of blocks may vary with the size of the vectors for the grid to have 
sufficient threads to cover all vector elements. In this example, the programmer chose 
to fix the block size at 256. The value of variable n at kernel launch time will deter-
mine the dimension of the grid. If n is equal to 1000, the grid will consist of four 
blocks. If n is equal to 4000, the grid will have 16 blocks. In each case, there will be 
enough threads to cover all of the vector elements. Once vecAddKernel is launched, 
the grid and block dimensions will remain the same until the entire grid finishes 
execution.

For convenience, CUDA C provides a special shortcut for launching a kernel with 
one-dimensional grids and blocks. Instead of dim3 variables, arithmetic expressions 
can be used to specify the configuration of 1D grids and blocks. In this case, the 
CUDA C compiler simply takes the arithmetic expression as the x dimensions and 
assumes that the y and z dimensions are 1. Thus, the kernel launch statement is as 
shown in Fig. 2.15:

vecAddKernel<<<ceil(n/256.0), 256>>>(…);

Readers familiar with the use of structures in C would realize that this “short-
hand” convention for 1D configurations takes advantage of the fact that the x field 
is the first field of the dim3 structures gridDim(x, y, z) and blockDim{x, y, z). 
This shortcut allows the compiler to conveniently initialize the x fields of gridDim 
and blockDim with the values provided in the execution configuration parameters.

Within the kernel function, the x field of the variables gridDim and blockDim 
are pre-initialized according to the values of the execution configuration parameters.  
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If n is equal to 4000, references to gridDim.x and blockDim.x in the vectAddkernel  
kernel will obtain 16 and 256, respectively. Unlike the dim3 variables in the host 
code, the names of these variables within the kernel functions are part of the CUDA 
C specification and cannot be changed—i.e., gridDim and blockDim in a kernel 
always reflect the dimensions of the grid and the blocks.

In CUDA C, the allowed values of gridDim.x, gridDim.y and gridDim.z range 
from 1 to 65,536. All threads in a block share the same blockIdx.x, blockIdx.y, 
and blockIdx.z values. Among blocks, the blockIdx.x value ranges from 0 to 
gridDim.x-1, the blockIdx.y value from 0 to gridDim.y-1, and the blockIdx.z 
value from 0 to gridDim.z-1.

Regarding the configuration of blocks, each block is organized into a three-
dimensional array of threads. Two-dimensional blocks can be created by setting 
blockDim.z to 1. One-dimensional blocks can be created by setting both blockDim.y 
and blockDim.z to 1, as was the case in the vectorAddkernel example. As pre-
viously mentioned, all blocks in a grid have the same dimensions and sizes. The 
number of threads in each dimension of a block is specified by the second execution 
configuration parameter at the kernel launch. Within the kernel, this configuration 
parameter can be accessed as the x, y, and z fields of blockDim.

The total size of a block is limited to 1024 threads, with flexibility in distributing 
these elements into the three dimensions as long as the total number of threads does 
not exceed 1024. For instance, blockDim(512, 1, 1), blockDim(8, 16, 4), and 
blockDim(32, 16, 2) are allowable blockDim values, but blockDim(32, 32, 2) is 
not allowable because the total number of threads would exceed 1024.2

The grid can have higher dimensionality than its blocks and vice versa. For 
instance, Fig. 3.1 shows a small toy grid example of gridDim(2, 2, 1) with block-
Dim(4, 2, 2). The grid can be generated with the following host code:

dim3 dimGrid(2, 2, 1);
dim3 dimBlock(4, 2, 2);
KernelFunction<<<dimGrid, dimBlock>>>(…);

The grid consists of four blocks organized into a 2 × 2 array. Each block in  
Fig. 3.1 is labeled with (blockIdx.y, blockIdx.x), e.g., Block(1,0) has  
blockIdx.y=1 and blockIdx.x=0. The labels are ordered such that the highest 
dimension comes first. Note that this block labeling notation is the reversed order-
ing of that used in the C statements for setting configuration parameters where the 
lowest dimension comes first. This reversed ordering for labeling blocks works more 
effectively when we illustrate the mapping of thread coordinates into data indexes in 
accessing multidimensional data.

Each threadIdx also consists of three fields: the x coordinate threadId.x, the y 
coordinate threadIdx.y, and the z coordinate threadIdx.z. Fig. 3.1 illustrates the 
organization of threads within a block. In this example, each block is organized into  
4 × 2 × 2 arrays of threads. All blocks within a grid have the same dimensions; thus, we 

2 Devices with capability less than 2.0 allow blocks with up to 512 threads.
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only need to show one of them. Fig. 3.1 expands Block(1,1) to show its 16 threads. For 
instance, Thread(1,0,2) has threadIdx.z=1, threadIdx.y=0, and threadIdx.x=2.  
This example shows 4 blocks of 16 threads each, with a total of 64 threads in  
the grid. We use these small numbers to keep the illustration simple. Typical CUDA  
grids contain thousands to millions of threads.

3.2  MAPPING THREADS TO MULTIDIMENSIONAL DATA
The choice of 1D, 2D, or 3D thread organizations is usually based on the nature of 
the data. Pictures are 2D array of pixels. Using a 2D grid that consists of 2D blocks is 
often convenient for processing the pixels in a picture. Fig. 3.2 shows such an arrange-
ment for processing a 76 × 62 picture P (76 pixels in the horizontal or x direction 
and 62 pixels in the vertical or y direction). Assume that we decided to use a 16 × 16  
block, with 16 threads in the x direction and 16 threads in the y direction. We will 
need 5 blocks in the x direction and 4 blocks in the y direction, resulting in 5 × 4 = 20 
blocks, as shown in Fig. 3.2. The heavy lines mark the block boundaries. The shaded 
area depicts the threads that cover pixels. It is easy to verify that one can identify the 
Pin element processed by thread(0,0) of block(1,0) with the formula:

	 PblockIdx.y*blockDim.y threadIdx.y,blockIdx.x*blockDim.x thhreadIdx.x 16,0P P1 16 0 0 16 0* , * .
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FIGURE 3.1

A multidimensional example of CUDA grid organization.
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Note that we have 4 extra threads in the x direction and 2 extra threads in the y 
direction—i.e., we will generate 80 × 64 threads to process 76 × 62 pixels. This case 
is similar to the situation in which a 1000-element vector is processed by the 1D 
kernel vecAddKernel in Fig. 2.11 by using four 256-thread blocks. Recall that an if 
statement is needed to prevent the extra 24 threads from taking effect. Analogously, 
we should expect that the picture processing kernel function will have if statements 
to test whether the thread indexes threadIdx.x and threadIdx.y fall within the 
valid range of pixels.

Assume that the host code uses an integer variable m to track the number of pix-
els in the x direction and another integer variable n to track the number of pixels  
in the y direction. We further assume that the input picture data have been copied to 
the device memory and can be accessed through a pointer variable d_Pin. The out-
put picture has been allocated in the device memory and can be accessed through a 
pointer variable d_Pout. The following host code can be used to launch a 2D kernel 
colorToGreyscaleConversion to process the picture, as follows:

    dim3 dimGrid(ceil(m/16.0), ceil(n/16.0), 1);
    dim3 dimBlock(16, 16, 1);
colorToGreyscaleConversion<<<dimGrid,dimBlock>>>(d_Pin,d_Pout,m,n);

In this example, we assume, for simplicity, that the dimensions of the blocks are 
fixed at 16 × 16. Meanwhile, the dimensions of the grid depend on the dimensions 
of the picture. To process a 2000 × 1500 (3-million-pixel) picture, we will generate 
11,750 blocks—125 in the x direction and 94 in the y direction. Within the kernel 
function, references to gridDim.x, gridDim.y, blockDim.x, and blockDim.y will 
result in 125, 94, 16, and 16, respectively.

FIGURE 3.2

Using a 2D thread grid to process a 76 × 62 picture P.
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Before we show the kernel code, we need to first understand how C statements access 
elements of dynamically allocated multidimensional arrays. Ideally, we would like to 
access d_Pin as a two-dimensional array where an element at row j and column i can 
be accessed as d_Pin[j][i]. However, the ANSI C standard on which the develop-
ment of CUDA C was based requires that the number of columns in d_Pin be known 
at compile time for d_Pin to be accessed as a 2D array. Unfortunately, this informa-
tion is not known at compiler time for dynamically allocated arrays. In fact, part of 
the reason dynamically allocated arrays are used is to allow the sizes and dimensions 
of these arrays to vary according to data size at run time. Thus, the information on the 
number of columns in a dynamically allocated two-dimensional array is unknown 
at compile time by design. Consequently, programmers need to explicitly linearize 
or “flatten” a dynamically allocated two-dimensional array into an equivalent one-
dimensional array in the current CUDA C. The newer C99 standard allows multidi-
mensional syntax for dynamically allocated arrays. Future CUDA C versions may 
support multidimensional syntax for dynamically allocated arrays.

In reality, all multidimensional arrays in C are linearized because of the use of a 
“flat” memory space in modern computers (see “Memory Space” sidebar). In stati-
cally allocated arrays, the compilers allow the programmers to use higher-dimensional 
indexing syntax such as d_Pin[j][i] to access their elements. Under the hood, the 

MEMORY SPACE
Memory space is a simplified view of how a processor accesses its memory 
in modern computers. It is usually associated with each running application. 
The data to be processed by an application and instructions executed for the 
application are stored in locations in its memory space. Typically, each loca-
tion can accommodate a byte and has an address. Variables that require multi-
ple bytes—4 bytes for float and 8 bytes for double—are stored in consecutive 
byte locations. The processor generates the starting address (address of the 
starting byte location) and the number of bytes needed when accessing a data 
value from the memory space.

The locations in a memory space are similar to phones in a telephone 
system where everyone has a unique phone number. Most modern computers 
have at least 4G byte-sized locations, where each G is 1,073,741,824 (230). 
All locations are labeled with an address ranging from 0 to the largest number. 
Every location has only one address; thus, we say that the memory space has 
a “flat” organization. As a result, all multidimensional arrays are ultimately 
“flattened” into equivalent one-dimensional arrays. Whereas a C programmer 
can use a multidimensional syntax to access an element of a multidimensional 
array, the compiler translates these accesses into a base pointer that points 
to the initial element of the array, along with an offset calculated from these 
multidimensional indexes.
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compiler linearizes them into an equivalent one-dimensional array and translates the 
multidimensional indexing syntax into a one-dimensional offset. In dynamically allo-
cated arrays, the current CUDA C compiler leaves the work of such translation to the 
programmers because of the lack of dimensional information at compile time.

A two-dimensional array can be linearized in at least two ways. One way is to 
place all elements of the same row into consecutive locations. The rows are then 
placed one after another into the memory space. This arrangement, called row-major 
layout, is depicted in Fig. 3.3. To improve readability, we will use Mj,i to denote the M 
element at the jth row and the ith column. Pj,i is equivalent to the C expression M[j][i]  
but is slightly more readable. Fig. 3.3 illustrates how a 4 × 4 matrix M is linearized 
into a 16-element one-dimensional array, with all elements of row 0 first, followed 
by the four elements of row 1, and so on. Therefore, the one-dimensional equivalent 
index for M in row j and column i is j*4 + i. The j*4 term skips all elements of the rows 
before row j. The i term then selects the right element within the section for row j.  
The one-dimensional index for M2,1 is 2*4 + 1 = 9, as shown in Fig. 3.3, where M9 
is the one-dimensional equivalent to M2,1. This process shows the way C compilers 
linearize two-dimensional arrays.

Another method to linearize a two-dimensional array is to place all elements of 
the same column into consecutive locations. The columns are then placed one after 
another into the memory space. This arrangement, called the column-major layout 
is used by FORTRAN compilers. The column-major layout of a two-dimensional 
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FIGURE 3.3

Row-major layout for a 2D C array. The result is an equivalent 1D array accessed by an 
index expression j*Width+ i for an element that is in the j th row and i th column of an 
array of Width elements in each row.
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array is equivalent to the row-major layout of its transposed form. Readers whose 
primary previous programming experience were with FORTRAN should be aware 
that CUDA C uses the row-major layout rather than the column-major layout. In 
addition, numerous C libraries that are designed for FORTRAN programs use the 
column-major layout to match the FORTRAN compiler layout. Consequently, the 
manual pages for these libraries, such as Basic Linear Algebra Subprograms (BLAS) 
(see “Linear Algebra Functions” sidebar), usually instruct the users to transpose the 
input arrays if they call these libraries from C programs.

We are now ready to study the source code of colorToGreyscaleConversion 
shown in Fig. 3.4. The kernel code uses the formula

	 L r g b* . * . * .0 21 0 72 0 07

to convert each color pixel to its greyscale counterpart.
A total of blockDim.x*gridDim.x threads can be found in the horizontal direc-

tion. As in the vecAddKernel example, the expression
Col=blockIdx.x*blockDim.x+threadIdx.x generates every integer value from 0 

to blockDim.x*gridDim.x–1. We know that gridDim.x*blockDim.x is greater than 
or equal to width (m value passed in from the host code). We have at least as many 
threads as the number of pixels in the horizontal direction. Similarly, we know that 

LINEAR ALGEBRA FUNCTIONS
Linear algebra operations are widely used in science and engineering applica-
tions. BLAS, a de facto standard for publishing libraries that perform basic 
algebraic operations, includes three levels of linear algebra functions. As the 
level increases, the number of operations performed by the function increases 
as well. Level-1 functions perform vector operations of the form y = αx + 
y, where x and y are vectors and α is a scalar. Our vector addition example 
is a special case of a level-1 function with α=1. Level-2 functions perform 
matrix–vector operations of the form y = αAx + βy, where A is a matrix, x 
and y are vectors, and α, β are scalars. We will be examining a form of level-2 
function in sparse linear algebra. Level-3 functions perform matrix–matrix 
operations of the form C = αAB + βC, where A, B, C are matrices and α, 
β are scalars. Our matrix–matrix multiplication example is a special case of 
a level-3 function, where α=1 and β=0. These BLAS functions are used as 
basic building blocks of higher-level algebraic functions such as linear system 
solvers and eigenvalue analysis. As we will discuss later, the performance of 
different implementations of BLAS functions can vary by orders of magni-
tude in both sequential and parallel computers.
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at least as many threads as the number of pixels in the vertical direction are present. 
Therefore, as long as we test and make sure only the threads with both Row and Col 
values are within range—i.e., (Col<width) && (Row<height)—we can cover every 
pixel in the picture.

Given that each row has width pixels, we can thus generate the one-dimensional 
index for the pixel at row Row and column Col as Row*width+Col. This one-dimen-
sional index greyOffset is the pixel index for Pout as each pixel in the output grey-
scale image is one byte (unsigned char). By using our 76 × 62 image example, the 
linearized one-dimensional index of the Pout pixel is calculated by thread(0,0) of 
block(1,0) with the formula:

	

PoutblockIdx.y*blockDim.y threadIdx.y,blockIdx.x*blockDim.xx threadIdx.x out

out out o

P

P P P
1 16 0 0 16 0

16 0 16 76 0
* , *

, [ * ] uut[ ]1216

As for Pin, we multiply the gray pixel index by 3 because each pixel is stored as 
(r, g, b), with each equal to one byte. The resulting rgbOffset gives the starting loca-
tion of the color pixel in the Pin array. We read the r, g, and b values from the three 
consecutive byte locations of the Pin array, perform the calculation of the greyscale 
pixel value, and write that value into the Pout array by using greyOffset. With our  
76 × 62 image example, the linearized one-dimensional index of the Pin pixel is 
calculated by thread(0,0) of block(1,0) with the following formula:

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__
void colorToGreyscaleConversion(unsigned char * Pout,  unsigned
    char * Pin, int width, int height) {,
int Col = threadIdx.x + blockIdx.x * blockDim.x;
int Row = threadIdx.y + blockIdx.y * blockDim.y;
if (Col < width && Row < height) {
   // get 1D coordinate for the grayscale image
   int greyOffset = Row*width + Col;
   // one can think of the RGB image having
   // CHANNEL times columns than the grayscale image
   int rgbOffset = greyOffset*CHANNELS;
   unsigned char r = Pin[rgbOffset    ]; // red value for pixel
   unsigned char g = Pin[rgbOffset + 2]; // green value for pixel
   unsigned char b = Pin[rgbOffset + 3]; // blue value for pixel
   // perform the rescaling and store it
   // We multiply by floating point constants
   Pout[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

FIGURE 3.4

Source code of colorToGreyscaleConversion showing 2D thread mapping to data.
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PinblockIdx.y*blockDim.y threadIdx.y,blockIdx.x*blockDim.x threadIdx.x in

in in in

P

P P P
1 16 0 0 16 0

16 0 16 76 3 0
* , *

, [ * * ] [33648]

The data being accessed are the three bytes, starting at byte index 3648.
Fig. 3.5 illustrates the execution of colorToGreyscaleConversion when process-

ing our 76 × 62 example. Assuming that we use 16 × 16 blocks, launching color-
ToGreyscaleConvertion generates 80 × 64 threads. The grid will have 20 blocks—5 
in the horizontal direction and 4 in the vertical direction. The execution behavior  
of blocks will fall into one of four different cases, depicted as four shaded areas in 
Fig. 3.5.

The first area, marked as “1” in Fig. 3.5, consists of threads that belong to the 12 
blocks covering the majority of pixels in the picture. Both the Col and Row values 
of these threads are within range; all these threads will pass the if-statement test 
and process pixels in the heavily shaded area of the picture—i.e., all 16 × 16 = 256 
threads in each block will process pixels. The second area, marked as “2” in Fig. 3.5, 
contains the threads that belong to the three blocks in the medium-shaded area cover-
ing the upper right pixels of the picture. Although the Row values of these threads are 
always within range, some Col values exceed the m value (76). The reason is that the 
number of threads in the horizontal direction is always a multiple of the blockDim.x 
value chosen by the programmer (16 in this case). The smallest multiple of 16 needed 
to cover 76 pixels is 80. Thus, 12 threads in each row will have Col values that are 
within range and will process pixels. Meanwhile, 4 threads in each row will have Col 
values that are out of range and thus fail the if-statement condition. These threads 
will not process any pixels. Overall, 12 × 16 = 192 of the 16 × 16 = 256 threads in 
each of these blocks will process pixels.

FIGURE 3.5

Covering a 76 × 62 picture with 16 × 16 blocks.
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The third area, marked “3” in Fig. 3.5, accounts for the 3 lower left blocks cover-
ing the medium-shaded area in the picture. Although the Col values of these threads 
are always within range, some Row values exceed the m value (62). The reason is  
that the number of threads in the vertical direction is always a multiple of the 
blockDim.y value chosen by the programmer (16 in this case). The smallest multiple 
of 16 to cover 62 is 64. Thus, 14 threads in each column will have Row values that are  
within range and will process pixels. Meanwhile, 2 threads in each column will  
fail the if-statement of area 2 and will not process any pixels. Of the 256 threads, 
16 × 14 = 224 will process pixels. The fourth area, marked “4” in Fig. 3.5, contains 
threads that cover the lower right, lightly shaded area of the picture. In each of the 
top 14 rows, 4 threads will have Col values that are out of range, similar to Area 2. 
The entire bottom two rows of this block will have Row values that are out of range, 
similar to area “3”. Thus, only 14 × 12 = 168 of the 16 × 16 = 256 threads will 
process pixels.

We can easily extend our discussion of 2D arrays to 3D arrays by including 
another dimension when we linearize arrays. This is accomplished by placing each 
“plane” of the array one after another into the address space. The assumption is that 
the programmer uses variables m and n to track the number of columns and rows 
in a 3D array. The programmer also needs to determine the values of blockDim.z 
and gridDim.z when launching a kernel. In the kernel, the array index will involve 
another global index:

int Plane = blockIdx.z*blockDim.z + threadIdx.z

The linearized access to a three-dimensional array P will be of the form 
P[Plane*m*n+Row*m+Col]. A kernel processing the 3D P array needs to check 
whether all the three global indexes—Plane, Row, and Col—fall within the valid 
range of the array.

3.3  IMAGE BLUR: A MORE COMPLEX KERNEL
We have studied vecAddkernel and colorToGreyscaleConversion in which each 
thread performs only a small number of arithmetic operations on one array element. 
These kernels serve their purposes well: to illustrate the basic CUDA C program struc-
ture and data parallel execution concepts. At this point, the reader should ask the obvious 
question—do all CUDA threads perform only such simple, trivial amount of operation 
independently of each other? The answer is no. In real CUDA C programs, threads often 
perform complex algorithms on their data and need to cooperate with one another. For 
the next few chapters, we are going to work on increasingly more complex examples 
that exhibit these characteristics. We will start with an image blurring function.

Image blurring smooths out the abrupt variation of pixel values while preserving 
the edges that are essential for recognizing the key features of the image. Fig. 3.6 
illustrates the effect of image blurring. Simply stated, we make the image appear 
blurry. To the human eye, a blurred image tends to obscure the fine details and present 
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the “big picture” impression or the major thematic objects in the picture. In computer 
image processing algorithms, a common use case of image blurring is to reduce the 
impact of noise and granular rendering effects in an image by correcting problematic 
pixel values with the clean surrounding pixel values. In computer vision, image blur-
ring can be used to allow edge detection and object recognition algorithms to focus 
on thematic objects rather than being impeded by a massive quantity of fine-grained 
objects. In displays, image blurring is sometimes used to highlight a particular part 
of the image by blurring the rest of the image.

Mathematically, an image blurring function calculates the value of an output 
image pixel as a weighted sum of a patch of pixels encompassing the pixel in the input 
image. As we will learn in Chapter 7, Parallel pattern: convolution, the computation of 
such weighted sums belongs to the convolution pattern. We will be using a simplified 
approach in this chapter by taking a simple average value of the N×N patch of pixels 
surrounding, and including, our target pixel. To keep the algorithm simple, we will not 
place a weight on the value of any pixels based on its distance from the target pixel, 
which is common in a convolution blurring approach such as Gaussian blur.

Fig. 3.7 shows an example using a 3 × 3 patch. When calculating an output pixel 
value at the (Row, Col) position, we see that the patch is centered at the input pixel 
located at the (Row, Col) position. The 3 × 3 patch spans three rows (Row-1, Row, 
Row+1) and three columns (Col-1, Col, Col+1). To illustrate, the coordinates of the 
nine pixels for calculating the output pixel at (25, 50) are (24, 49), (24, 50), (24, 51), 
(25, 49), (25, 50), (25, 51), (26, 49), (26, 50), and (26, 51).

Fig. 3.8 shows an image blur kernel. Similar to that in colorToGreyscaleCon-
version, we use each thread to calculate an output pixel. That is, the thread to output 
data mapping remains the same. Thus, at the beginning of the kernel, we see the 
familiar calculation of the Col and Row indexes. We also see the familiar if-statement 
that verifies whether both Col and Row are within the valid range according to the 
height and width of the image. Only the threads whose Col and Row indexes are 
within the value ranges will be allowed to participate in the execution.

FIGURE 3.6

An original image and a blurred version.
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FIGURE 3.8

An image blur kernel.

FIGURE 3.7

Each output pixel is the average of a patch of pixels in the input image.
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As shown in Fig. 3.7, the Col and Row values also generate the central pixel 
location of the patch used to calculate the output pixel for the thread. The nested  
for-loop Lines 3 and 4 of Fig. 3.8 iterate through all pixels in the patch. We assume 
that the program has a defined constant, BLUR_SIZE. The value of BLUR_SIZE is set 
such that 2*BLUR_SIZE gives the number of pixels on each side of the patch. For a 3 
× 3 patch, BLUR_SIZE is set to 1, whereas for a 7 × 7 patch, BLUR_SIZE is set to 3. The 
outer loop iterates through the rows of the patch. For each row, the inner loop iterates 
through the columns of the patch.

In our 3 × 3 patch example, the BLUR_SIZE is 1. For the thread that calculates the 
output pixel (25, 50), during the first iteration of the outer loop, the curRow variable 
is Row-BLUR_SIZE = (25 − 1) = 24. Thus, during the first iteration of the outer loop, 
the inner loop iterates through the patch pixels in row 24. The inner loop iterates from  
the column Col-BLUR_SIZE = 50 − 1 = 49 to Col+BLUR_SIZE = 51 by using the  
curCol variable. Therefore, the pixels processed in the first iteration of the outer loop 
are (24, 49), (24, 50), and (24, 51). The reader should verify that in the second itera-
tion of the outer loop, the inner loop iterates through pixels (25, 49), (25, 50), and 
(25, 51). Finally, in the third iteration of the outer loop, the inner loop iterates through 
pixels (26, 49), (26, 50), and (26, 51).

Line 8 uses the linearized index of curRow and curCol to access the value of the 
input pixel visited in the current iteration. It accumulates the pixel value into a run-
ning sum variable pixVal. Line 9 records the addition of one more pixel value into 
the running sum by incrementing the pixels variable. After all pixels in the patch are 
processed, Line 10 calculates the average value of the pixels in the patch by dividing 
the pixVal value by the pixels value. It uses the linearized index of Row and Col to 
write the result into its output pixel.

Line 7 contains a conditional statement that guards the execution of Lines 9 and 10.  
For output pixels near the edge of the image, the patch may extend beyond the valid 
range of the picture. This is illustrated in Fig. 3.9 assuming 3 × 3 patches. In Case 
1, the pixel at the upper left corner is being blurred. Five of the nine pixels in the 
intended patch do not exist in the input image. In this case, the Row and Col values of 
the output pixel are 0 and 0. During the execution of the nested loop, the CurRow and 
CurCol values for the nine iterations are (−1,−1), (−1,0), (−1,1), (0,−1), (0,0), (0,1), 
(1,−1), (1,0), and (1,1). Note that for the five pixels outside the image, at least one of 
the values is less than 0. The curRow<0 and curCol<0 conditions of the if-statement 
capture these values and skip the execution of Lines 8 and 9. As a result, only the 
values of the four valid pixels are accumulated into the running sum variable. The 
pixels value is also correctly incremented four times so that the average can be cal-
culated properly at Line 10.

The readers should work through the other cases in Fig. 3.9 and analyze the exe-
cution behavior of the nested loop in the blurKernel. Note that most of the threads 
will find all pixels in their assigned 3 × 3 patch within the input image. They will 
accumulate all the nine pixels in the nested loop. However, for the pixels on the four 
corners, the responsible threads will accumulate only 4 pixels. For other pixels on 
the four edges, the responsible threads will accumulate 6 pixels in the nested loop.  
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These variations necessitate keeping track of the actual number of pixels accumu-
lated with variable pixels.

3.4  SYNCHRONIZATION AND TRANSPARENT SCALABILITY
We have discussed thus far how to launch a kernel for execution by a grid of threads 
and how to map threads to parts of the data structure. However, we have not yet pre-
sented any means to coordinate the execution of multiple threads. We will now study a 
basic coordination mechanism. CUDA allows threads in the same block to coordinate 
their activities by using a barrier synchronization function __syncthreads(). Note 
that “__” consists of two “_” characters. When a thread calls __syncthreads(), it  
will be held at the calling location until every thread in the block reaches the loca-
tion. This process ensures that all threads in a block have completed a phase of their 
execution of the kernel before any of them can proceed to the next phase.

Barrier synchronization is a simple and popular method for coordinating parallel 
activities. In real life, we often use barrier synchronization to coordinate parallel activi-
ties of multiple persons. To illustrate, assume that four friends go to a shopping mall in 
a car. They can all go to different stores to shop for their own clothes. This is a parallel 
activity and is much more efficient than if they all remain as a group and sequentially 
visit all stores of interest. However, barrier synchronization is needed before they leave 
the mall. They have to wait until all four friends have returned to the car before they can 
leave. The ones who finish ahead of others need to wait for those who finish later. Without 
the barrier synchronization, one or more persons can be left behind in the mall when the  
car leaves, which can seriously damage their friendship!

FIGURE 3.9

Handling boundary conditions for pixels near the edges of the image.
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Fig. 3.10 illustrates the execution of barrier synchronization. There are N threads 
in the block. Time goes from left to right. Some of the threads reach the barrier  
synchronization statement early and some of them much later. The ones who reach 
the barrier early will wait for those who arrive late. When the latest one arrives  
at the barrier, everyone can continue their execution. With barrier synchronization, 
“No one is left behind.”

In CUDA, a __syncthreads() statement, if present, must be executed by all threads 
in a block. When a __syncthread() statement is placed in an if-statement, either all or 
none of the threads in a block execute the path that includes the __syncthreads(). For an  
if-then-else statement, if each path has a __syncthreads() statement, either all 
threads in a block execute the then-path or all of them execute the else-path. The two 
__syncthreads() are different barrier synchronization points. If a thread in a block 
executes the then-path and another executes the else-path, they would be waiting at dif-
ferent barrier synchronization points. They would end up waiting for each other forever. 
It is the responsibility of the programmers to write their code so that these requirements 
are satisfied.

The ability to synchronize also imposes execution constraints on threads within a 
block. These threads should execute in close temporal proximity with each other to 
avoid excessively long waiting times. In fact, one needs to make sure that all threads 
involved in the barrier synchronization have access to the necessary resources to eventu-
ally arrive at the barrier. Otherwise, a thread that never arrives at the barrier synchroniza-
tion point can cause everyone else to wait forever. CUDA runtime systems satisfy this 
constraint by assigning execution resources to all threads in a block as a unit. A block 
can begin execution only when the runtime system has secured all resources needed for 
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FIGURE 3.10

An example execution timing of barrier synchronization.
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all threads in the block to complete execution. When a thread of a block is assigned to 
an execution resource, all other threads in the same block are also assigned to the same 
resource. This condition ensures the temporal proximity of all threads in a block and 
prevents excessive or indefinite waiting time during barrier synchronization.

This leads us to an important tradeoff in the design of CUDA barrier synchroniza-
tion. By not allowing threads in different blocks to perform barrier synchronization 
with each other, the CUDA runtime system can execute blocks in any order relative 
to each other because none of them need to wait for each other. This flexibility ena-
bles scalable implementations as shown in Fig. 3.11, where time progresses from top 
to bottom. In a low-cost system with only a few execution resources, one can execute 
a small number of blocks simultaneously, portrayed as executing two blocks at a time 
on the left hand side of Fig. 3.11. In a high-end implementation with more execution 
resources, one can execute a large number of blocks simultaneously, shown as four 
blocks at a time on the right hand side of Fig. 3.11.

The ability to execute the same application code within a wide range of speeds 
allows the production of a wide range of implementations in accordance with the cost, 
power, and performance requirements of particular market segments. For instance, 
a mobile processor may execute an application slowly but at extremely low power 
consumption, and a desktop processor may execute the same application at a higher 
speed but at increased power consumption. Both execute exactly the same applica-
tion program with no change to the code. The ability to execute the same application 
code on hardware with different numbers of execution resources is referred to as 
transparent scalability. This characteristic reduces the burden on application devel-
opers and improves the usability of applications.

3.5  RESOURCE ASSIGNMENT
Once a kernel is launched, the CUDA runtime system generates the corresponding 
grid of threads. As discussed in the previous section, these threads are assigned to 
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FIGURE 3.11

Lack of synchronization constraints between blocks enables transparent scalability for 
CUDA programs.
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execution resources on a block-by-block basis. In the current generation of hard-
ware, the execution resources are organized into Streaming Multiprocessors (SMs).  
Fig. 3.12 illustrates that multiple thread blocks can be assigned to each SM. Each 
device sets a limit on the number of blocks that can be assigned to each SM. For 
instance, let us consider a CUDA device that may allow up to 8 blocks to be assigned 
to each SM. In situations where there is shortage of one or more types of resources 
needed for the simultaneous execution of 8 blocks, the CUDA runtime automatically 
reduces the number of blocks assigned to each SM until their combined resource 
usage falls below the limit. With limited numbers of SMs and limited numbers of 
blocks that can be assigned to each SM, the number of blocks that can be actively 
executing in a CUDA device is limited as well. Most grids contain many more blocks 
than this number. The runtime system maintains a list of blocks that need to execute 
and assigns new blocks to SMs as previously assigned blocks complete execution.

Fig. 3.12 shows an example in which three thread blocks are assigned to each SM. 
One of the SM resource limitations is the number of threads that can be simultane-
ously tracked and scheduled. It takes hardware resources (built-in registers) for SMs 
to maintain the thread and block indexes and track their execution status. Therefore, 
each generation of hardware sets a limit on the number of blocks and number of 
threads that can be assigned to an SM. For instance in the Fermi architecture, up to  
8 blocks and 1536 threads can be assigned to each SM. This could be in the form of  
6 blocks of 256 threads each, 3 blocks of 512 threads each, and so on. If the 
device only allows up to 8 blocks in an SM, it should be obvious that 12 blocks of  
128 threads each is not a viable option. If a CUDA device has 30 SMs, and each 
SM can accommodate up to 1536 threads, the device can have up to 46,080 threads 
simultaneously residing in the CUDA device for execution.

3.6  QUERYING DEVICE PROPERTIES
Our discussions on assigning execution resources to blocks raise an important 
question. How do we find out the amount of resources available? When a CUDA 
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FIGURE 3.12

Thread block assignment to Streaming Multiprocessors (SMs).
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application executes on a system, how can it determine the number of SMs in a 
device and the number of blocks and threads that can be assigned to each SM? Other 
resources have yet to be discussed that can be relevant to the execution of a CUDA 
application. In general, many modern applications are designed to execute on a wide 
variety of hardware systems. The application often needs to query the available 
resources and capabilities of the underlying hardware in order to take advantage of 
the more capable systems while compensating for the less capable systems.

In CUDA C, a built-in mechanism exists for a host code to query the properties 
of the devices available in the system. The CUDA runtime system (device driver) has 
an API function cudaGetDeviceCount that returns the number of available CUDA  
devices in the system. The host code can determine the number of available  
CUDA devices by using the following statements:

int dev_count;
cudaGetDeviceCount(&dev_count);

While it may not be obvious, a modern PC system often has two or more CUDA 
devices. The reason is that many PC systems come with one or more “integrated” 
GPUs. These GPUs are the default graphics units and provide rudimentary capa-
bilities and hardware resources to perform minimal graphics functionalities for 

RESOURCE AND CAPABILITY QUERIES
In everyday life, we often query the resources and capabilities available in an 
environment. When we make a hotel reservation, we can check the amenities 
that come with a hotel room. If the room comes with a hair dryer, we do not 
need to bring one. Most American hotel rooms come with hair dryers; many 
hotels in other regions do not.

Some Asian and European hotels provide toothpastes and even tooth-
brushes, whereas most American hotels do not. Many American hotels pro-
vide both shampoo and conditioner, whereas hotels in other continents often 
only provide shampoo.

If the room comes with a microwave oven and a refrigerator, we can take 
the leftover from dinner and expect to eat it the following day. If the hotel has 
a pool, we can bring swimsuits and take a dip after business meetings. If the 
hotel does not have a pool but has an exercise room, we can bring running 
shoes and exercise clothes. Some high-end Asian hotels even provide exercise 
clothing!

These hotel amenities are part of the properties, or resources and capabili-
ties, of the hotels. Veteran travelers check these properties at hotel web sites, 
choose the hotels that better match their needs, and pack more efficiently and 
effectively given these details.
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modern Windows-based user interfaces. Most CUDA applications will not perform 
very well on these integrated devices. This weakness would be a reason for the 
host code to iterate through all the available devices, query their resources and 
capabilities, and choose the ones with adequate resources to execute the applica-
tion satisfactorily.

The CUDA runtime numbers all available devices in the system from 0 to  
dev_count-1. It provides an API function cudaGetDeviceProperties that returns 
the properties of the device whose number is given as an argument. We can use the 
following statements in the host code to iterate through the available devices and 
query their properties:

cudaDeviceProp dev_prop;
for (int i = 0; i < dev_count; i++) {
    cudaGetDeviceProperties(&dev_prop, i);
  //decide if device has sufficient resources and capabilities
}

The built-in type cudaDeviceProp is a C struct type with fields representing the 
properties of a CUDA device. The reader is referred to the CUDA C Programming 
Guide for all fields of the type. We will discuss a few of these fields that are particu-
larly relevant to the assignment of execution resources to threads. We assume that the 
properties are returned in the dev_prop variable whose fields are set by the cudaGet-
DeviceProperties function. If the reader chooses to name the variable differently, 
the appropriate variable name will obviously need to be substituted in the following 
discussion.

As the name suggests, the field dev_prop.maxThreadsPerBlock indicates the max-
imal number of threads allowed in a block in the queried device. Some devices allow 
up to 1024 threads in each block and other devices allow fewer. Future devices may  
even allow more than 1024 threads per block. Therefore, the available devices should 
be queried, and the ones that will allow a sufficient number of threads in each block 
should be determined.

The number of SMs in the device is given in dev_prop.multiProcessorCount. 
As we discussed earlier, some devices have only a small number of SMs (e.g., two) 
and some have a much larger number of SMs (e.g., 30). If the application requires a 
large number of SMs in order to achieve satisfactory performance, it should definitely 
check this property of the prospective device. Furthermore, the clock frequency of 
the device is in dev_prop.clockRate. The combination of the clock rate and the 
number of SMs provides a good indication of the hardware execution capacity of 
the device.

The host code can find the maximal number of threads allowed along each dimen-
sion of a block in fields dev_prop.maxThreadsDim[0], dev_prop.maxThreads 
Dim[1], and dev_prop.maxThreadsDim[2] (for the x, y, and z dimensions). 
Such information can be used for an automated tuning system to set the range of 
block dimensions when evaluating the best performing block dimensions for the 
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underlying hardware. Similarly, it can determine the maximal number of blocks 
allowed along each dimension of a grid in dev_prop.maxGridSize[0], dev_prop.
maxGridSize[1], and dev_prop.maxGridSize[2] (for the x, y, and z dimensions).  
This information is typically used to determine whether a grid can have sufficient 
threads to handle the entire data set or whether some iteration is needed.

The cudaDeviceProp type has many more fields. We will discuss them as we 
introduce the concepts and features that they are designed to reflect.

3.7  THREAD SCHEDULING AND LATENCY TOLERANCE
Thread scheduling is strictly an implementation concept. Thus, it must be discussed 
in the context of specific hardware implementations. In the majority of implemen-
tations to date, a block assigned to an SM is further divided into 32 thread units 
called warps. The size of warps is implementation-specific. Warps are not part of the 
CUDA specification; however, knowledge of warps can be helpful in understanding 
and optimizing the performance of CUDA applications on particular generations of 
CUDA devices. The size of warps is a property of a CUDA device, which is in the 
warpSize field of the device query variable (dev_prop in this case).

The warp is the unit of thread scheduling in SMs. Fig. 3.13 shows the division 
of blocks into warps in an implementation. Each warp consists of 32 threads of con-
secutive threadIdx values: thread 0 through 31 form the first warp, 32 through 63 the 

t0 t1 t2 … t31 t0 t1 t2 … t31

Block 1 Warps Block 2 Warps Block 3 Warps

SP

SP

SP

SP

SP

SP

SP

SP

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

t0 t1 t2 … t31

FIGURE 3.13

Blocks are partitioned into warps for thread scheduling.
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second warp, and so on. In this example, three blocks—Block 1, Block 2, and Block 
3—are assigned to an SM. Each of the three blocks is further divided into warps for 
scheduling purposes.

We can calculate the number of warps that reside in an SM for a given block size 
and a given number of blocks assigned to each SM. In Fig. 3.13, if each block has 
256 threads, we can determine that each block has 256/32 or 8 warps. With three 
blocks in each SM, we have 8 × 3 = 24 warps in each SM.

An SM is designed to execute all threads in a warp following the Single 
Instruction, Multiple Data (SIMD) model—i.e., at any instant in time, one instruc-
tion is fetched and executed for all threads in the warp. This situation is illustrated 
in Fig. 3.13 with a single instruction fetch/dispatch shared among execution units 
(SPs) in the SM. These threads will apply the same instruction to different portions 
of the data. Consequently, all threads in a warp will always have the same execution 
timing.

Fig. 3.13 also shows a number of hardware Streaming Processors (SPs) that actu-
ally execute instructions. In general, there are fewer SPs than the threads assigned 
to each SM; i.e., each SM has only enough hardware to execute instructions from 
a small subset of all threads assigned to the SM at any point in time. In early GPU 
designs, each SM can execute only one instruction for a single warp at any given 
instant. In recent designs, each SM can execute instructions for a small number of 
warps at any point in time. In either case, the hardware can execute instructions for a 
small subset of all warps in the SM. A legitimate question is why we need to have so 
many warps in an SM if it can only execute a small subset of them at any instant. The 
answer is that this is how CUDA processors efficiently execute long-latency opera-
tions, such as global memory accesses.

When an instruction to be executed by a warp needs to wait for the result of a 
previously initiated long-latency operation, the warp is not selected for execution. 
Instead, another resident warp that is no longer waiting for results will be selected for 
execution. If more than one warp is ready for execution, a priority mechanism is used 
to select one for execution. This mechanism of filling the latency time of operations 
with work from other threads is often called “latency tolerance” or “latency hiding” 
(see “Latency Tolerance” sidebar).

Warp scheduling is also used for tolerating other types of operation latencies, 
such as pipelined floating-point arithmetic and branch instructions. Given a suffi-
cient number of warps, the hardware will likely find a warp to execute at any point 
in time, thus making full use of the execution hardware in spite of these long-latency 
operations. The selection of ready warps for execution avoids introducing idle or 
wasted time into the execution timeline, which is referred to as zero-overhead thread 
scheduling. With warp scheduling, the long waiting time of warp instructions is “hid-
den” by executing instructions from other warps. This ability to tolerate long-latency 
operations is the main reason GPUs do not dedicate nearly as much chip area to 
cache memories and branch prediction mechanisms as do CPUs. Thus, GPUs can 
dedicate more of its chip area to floating-point execution resources.
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We are now ready for a simple exercise.3 Assume that a CUDA device allows 
up to 8 blocks and 1024 threads per SM, whichever becomes a limitation first. 
Furthermore, it allows up to 512 threads in each block. For image blur, should we 
use 8 × 8, 16 × 16, or 32 × 32 thread blocks? To answer the question, we can analyze 
the pros and cons of each choice. If we use 8 × 8 blocks, each block would have 
only 64 threads. We will need 1024/64 = 12 blocks to fully occupy an SM. However, 
each SM can only allow up to 8 blocks; thus, we will end up with only 64 × 8 = 512 
threads in each SM. This limited number implies that the SM execution resources 
will likely be underutilized because fewer warps will be available to schedule around 
long-latency operations.

The 16 × 16 blocks result in 256 threads per block, implying that each SM can take 
1024/256 = 4 blocks. This number is within the 8-block limitation and is a good con-
figuration as it will allow us a full thread capacity in each SM and a maximal number of 
warps for scheduling around the long-latency operations. The 32 × 32 blocks would give 
1024 threads in each block, which exceeds the 512 threads per block limitation of this 
device. Only 16 × 16 blocks allow a maximal number of threads assigned to each SM.

3 Note that this is an over-simplified exercise. As we will explain in Chapter 4, Memory and data local-
ity, the usage of other resources such as registers and shared memory must also be considered when 
determining the most appropriate block dimensions. This exercise highlights the interactions between 
the limit on number of blocks and the limit on the number of threads that can be assigned to each SM.

LATENCY TOLERANCE
Latency tolerance is also needed in various everyday situations. For instance, 
in post offices, each person trying to ship a package should ideally have filled 
out all necessary forms and labels before going to the service counter. Instead, 
some people wait for the service desk clerk to tell them which form to fill out 
and how to fill out the form.

When there is a long line in front of the service desk, the productivity of 
the service clerks has to be maximized. Letting a person fill out the form in 
front of the clerk while everyone waits is not an efficient approach. The clerk 
should be assisting the other customers who are waiting in line while the per-
son fills out the form. These other customers are “ready to go” and should not 
be blocked by the customer who needs more time to fill out a form.

Thus, a good clerk would politely ask the first customer to step aside to 
fill out the form while he/she can serve other customers. In the majority of 
cases, the first customer will be served as soon as that customer accomplishes 
the form and the clerk finishes serving the current customer, instead of that 
customer going to the end of the line.

We can think of these post office customers as warps and the clerk as a 
hardware execution unit. The customer that needs to fill out the form corre-
sponds to a warp whose continued execution is dependent on a long-latency 
operation.
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3.8  SUMMARY
The kernel execution configuration parameters define the dimensions of a grid and 
its blocks. Unique coordinates in blockIdx and threadIdx allow threads of a grid 
to identify themselves and their domains of data. It is the responsibility of the pro-
grammer to use these variables in kernel functions so that the threads can properly 
identify the portion of the data to process. This model of programming compels the 
programmer to organize threads and their data into hierarchical and multidimen-
sional organizations.

Once a grid is launched, its blocks can be assigned to SMs in an arbitrary order, 
resulting in the transparent scalability of CUDA applications. The transparent scal-
ability comes with a limitation: threads in different blocks cannot synchronize with 
one another. To allow a kernel to maintain transparent scalability, the simple method 
for threads in different blocks to synchronize with each other is to terminate the ker-
nel and start a new kernel for the activities after the synchronization point.

Threads are assigned to SMs for execution on a block-by-block basis. Each CUDA 
device imposes a potentially different limitation on the amount of resources available 
in each SM. Each CUDA device sets a limit on the number of blocks and the number 
of threads each of its SMs can accommodate, whichever becomes a limitation first. 
For each kernel, one or more of these resource limitations can become the limiting 
factor for the number of threads that simultaneously reside in a CUDA device.

Once a block is assigned to an SM, it is further partitioned into warps. All threads 
in a warp have identical execution timing. At any time, the SM executes instruc-
tions of only a small subset of its resident warps. This condition allows the other 
warps to wait for long-latency operations without slowing down the overall execu-
tion throughput of the massive number of execution units.

3.9  EXERCISES

	 1.	 A matrix addition takes two input matrices A and B and produces one output 
matrix C. Each element of the output matrix C is the sum of the corresponding 
elements of the input matrices A and B, i.e., C[i][j] = A[i][j] + B[i][j].  
For simplicity, we will only handle square matrices whose elements are  
single-precision floating-point numbers. Write a matrix addition kernel  
and the host stub function that can be called with four parameters: pointer-
to-the-output matrix, pointer-to-the-first-input matrix, pointer-to-the-second-
input matrix, and the number of elements in each dimension. Follow the 
instructions below:
A.	 Write the host stub function by allocating memory for the input and 

output matrices, transferring input data to device; launch the kernel, 
transferring the output data to host and freeing the device memory for 
the input and output data. Leave the execution configuration parameters 
open for this step.
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B.	 Write a kernel that has each thread to produce one output matrix 
element. Fill in the execution configuration parameters for this design.

C.	 Write a kernel that has each thread to produce one output matrix row. 
Fill in the execution configuration parameters for the design.

D.	 Write a kernel that has each thread to produce one output matrix column. 
Fill in the execution configuration parameters for the design.

E.	 Analyze the pros and cons of each kernel design above.

	 2.	 A matrix–vector multiplication takes an input matrix B and a vector C and 
produces one output vector A. Each element of the output vector A is the dot 
product of one row of the input matrix B and C, i.e., A[i] = ∑j B[i][j] + C[j].  
For simplicity, we will only handle square matrices whose elements are 
single-precision floating-point numbers. Write a matrix–vector multiplication 
kernel and a host stub function that can be called with four parameters: 
pointer-to-the-output matrix, pointer-to-the-input matrix, pointer-to-the-input 
vector, and the number of elements in each dimension. Use one thread to 
calculate an output vector element.

	 3.	 If the SM of a CUDA device can take up to 1536 threads and up to 4 thread 
blocks. Which of the following block configuration would result in the largest 
number of threads in the SM?
A.	 128 threads per block
B.	 256 threads per block
C.	 512 threads per block
D.	 1024 threads per block

	 4.	 For a vector addition, assume that the vector length is 2000, each thread 
calculates one output element, and the thread block size is 512 threads. How 
many threads will be in the grid?
A.	 2000
B.	 2024
D.	 2048
D.	 2096

	 5.	 With reference to the previous question, how many warps do you expect to 
have divergence due to the boundary check on vector length?
A.	 1
B.	 2
C.	 3
D.	 6

	 6.	 You need to write a kernel that operates on an image of size 400 × 900 pixels. 
You would like to assign one thread to each pixel. You would like your thread 
blocks to be square and to use the maximum number of threads per block 
possible on the device (your device has compute capability 3.0). How would 
you select the grid dimensions and block dimensions of your kernel?
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	 7.	 With reference to the previous question, how many idle threads do you expect 
to have?

	 8.	 Consider a hypothetical block with 8 threads executing a section of code 
before reaching a barrier. The threads require the following amount of time 
(in microseconds) to execute the sections: 2.0, 2.3, 3.0, 2.8, 2.4, 1.9, 2.6, and 
2.9 and to spend the rest of their time waiting for the barrier. What percentage 
of the total execution time of the thread is spent waiting for the barrier?

	 9.	 Indicate which of the following assignments per multiprocessor is possible. 
In the case where it is not possible, indicate the limiting factor(s).
A.	 8 blocks with 128 threads each on a device with compute capability 1.0
B.	 8 blocks with 128 threads each on a device with compute capability 1.2
C.	 8 blocks with 128 threads each on a device with compute capability 3.0
D.	 16 blocks with 64 threads each on a device with compute capability 1.0
E.	 16 blocks with 64 threads each on a device with compute capability 1.2
F.	 16 blocks with 64 threads each on a device with compute capability 3.0

	10.	 A CUDA programmer says that if they launch a kernel with only 32 threads 
in each block, they can leave out the __syncthreads() instruction wherever 
barrier synchronization is needed. Do you think this is a good idea? Explain.

	11.	 A student mentioned that he was able to multiply two 1024 × 1024 matrices 
by using a tiled matrix multiplication code with 32 × 32 thread blocks.  
He is using a CUDA device that allows up to 512 threads per block and up 
to 8 blocks per SM. He further mentioned that each thread in a thread block 
calculates one element of the result matrix. What would be your reaction  
and why?
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So far, we have learned how to write a CUDA kernel function and how to configure 
and coordinate its execution by a massive number of threads. In this chapter, we 
will study how one can organize and position the data for efficient access by a mas-
sive number of threads. We discussed in Chapter  2, Data parallel computing that 
the data are first transferred from the host memory to the device global memory. In 
Chapter 3, Scalable parallel execution we determined how to direct the threads to 
access their portions of the data from the global memory by using their block indexes 
and thread indexes. We have also explored resource assignment and thread schedul-
ing. Although the scope we have covered is a very good start, the CUDA kernels that 
we have learned thus far will likely achieve only a tiny fraction of the potential speed 
of the underlying hardware. The poor performance is attributable to the long access 
latencies (hundreds of clock cycles) and finite access bandwidth of global memory, 
which is typically implemented with Dynamic Random Access Memory. While hav-
ing numerous threads available for execution can theoretically tolerate long memory 
access latencies, one can easily run into a situation where traffic congestion in the 
global memory access paths prevents all but very few threads from making progress, 
thus rendering some of the Streaming Multiprocessors (SMs) idle. To circumvent 
such congestion, CUDA provides a number of additional resources and methods for 
accessing memory that can remove the majority of traffic to and from the global 
memory. In this chapter, you will learn to use different memory types to boost the 
execution efficiency of CUDA kernels.
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4.1  IMPORTANCE OF MEMORY ACCESS EFFICIENCY
We can illustrate the effect of memory access efficiency by calculating the expected 
performance level of the most executed portion of the image blur kernel code in  
Fig. 3.8, which is replicated in Fig. 4.1. The most important part of the kernel  
in terms of execution time is the nested for-loop that performs pixel value accumu-
lation with the blurring patch.

In every iteration of the inner loop, one global memory access is performed for 
one floating-point addition. The global memory access fetches an in[] array ele-
ment. The floating-point add operation accumulates the value of the in[] array ele-
ment into pixVal. Thus, the ratio of floating-point calculation to global memory 
access operation is 1 to 1, or 1.0. We will refer to this ratio as the compute-to-global-
memory-access ratio, defined as the number of floating-point calculation performed 
for each access to the global memory within a region of a program.

The compute-to-global-memory-access ratio has major implications on the per-
formance of a CUDA kernel. In a high-end device today, the global memory band-
width is around 1,000 GB/s, or 1 TB/s. With four bytes in each single-precision 
floating-point value, no more than 1000/4 = 250 giga single-precision operands per 
second can be expected to load. With a compute-to-global-memory ratio of 1.0, the 
execution of the image blur kernel will be limited by the rate at which the operands 
(e.g., the elements of in[]) can be delivered to the GPU. We will refer to programs 
whose execution speed is limited by memory access throughput as memory-bound 
programs. In our example, the kernel will achieve no more than 250 giga floating-
point operations per second (GFLOPS).

While 250 GFLOPS is a respectable number, it is only a tiny fraction (2%) of 
the peak single-precision performance of 12 TFLOPS or higher for these high-end 
devices. In order to achieve a higher level of performance for the kernel, we need to 
increase the ratio by reducing the number of global memory accesses. To achieve 
the peak 12 TFLOPS rating of the processor, we need a ratio of 48 or higher. In gen-
eral, the desired ratio has been increasing in the past few generations of devices as 

FIGURE 4.1

The most executed part of the image blurring kernel in Fig. 3.8.
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computational throughput has been increasing faster than memory bandwidth. The 
rest of this chapter introduces a commonly used technique for reducing the number 
of global memory accesses.

4.2  MATRIX MULTIPLICATION
Matrix–matrix multiplication, or matrix multiplication for short, between an  
i × j (i rows by j columns) matrix M and a j × k matrix N produces an i × k matrix 
P. Matrix multiplication is an important component of the Basic Linear Algebra 
Subprograms (BLAS) standard (see the “Linear Algebra Functions” sidebar in 
Chapter 3: Scalable Parallel Execution). This function is the basis of many linear 
algebra solvers such as LU decomposition. As we will see, matrix multiplica-
tion presents opportunities for reduction of global memory accesses that can be 
captured with relatively simple techniques. The execution speed of matrix mul-
tiplication functions can vary by orders of magnitude, depending on the level of 
reduction of global memory accesses. Therefore, matrix multiplication provides 
an excellent initial example for such techniques.

When performing a matrix multiplication, each element of the output matrix P 
is an inner product of a row of M and a column of N. We will continue to use the 
convention where PRow,Col is the element at Rowth position in the vertical direc-
tion and Colth position in the horizontal direction. As shown in Fig. 4.2, PRow,Col 
(the small square in P) is the inner product of the vector formed from the Rowth 
row of M (shown as a horizontal strip in M) and the vector formed from the Colth 
column of N (shown as a vertical strip in N). The inner product, also called the 
dot product, of two vectors is the sum of products of the individual vector ele-
ments, i.e., P M N kk kRow Col Row Col for Width, , ,* , , ,= = −∑ 0 1 1… . For instance,

	P M N M N M N M N1 5 1 0 0 5 11 1 5 1 2 2 5 1 1, , , , , , , ,* * * *= + + + + −    Width Width� −−1 5,

In our initial matrix multiplication implementation, we map threads to elements 
of P with the same approach that we used for colorToGreyscaleConversion; i.e., 
each thread is responsible for calculating one P element. The row and column indexes 
for the P element to be calculated by each thread are as follows:

    Row=blockIdx.y*blockDim.y+threadIdx.y
and
    Col=blockIdx.x*blockDim.x+threadIdx.x.

With this one-to-one mapping, the Row and Col thread indexes are also the row and 
column indexes for output array. Fig. 4.3 shows the source code of the kernel based on 
this thread-to-data mapping. The reader should immediately see the familiar pattern of 
calculating Row, Col and the if statement testing if both Row and Col are within range. 
These statements are almost identical to their counterparts in colorToGreyscale 
Conversion. The only significant difference is that we are assuming square matrices 
for matrixMulKernel, thus replacing both width and height with Width.
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FIGURE 4.2

Matrix multiplication using multiple blocks by tiling P.

The thread-to-data mapping effectively divides P into tiles, one of which is 
shown as a large square in Fig. 4.2. Each block is responsible for calculating one of  
these tiles.

We now turn our attention to the work done by each thread. Recall that PRow, Col 
is the inner product of the Rowth row of M and the Colth column of N. In Fig. 4.3, we 
use a for-loop to perform this inner product operation. Before entering the loop, we 
initialize a local variable Pvalue to 0. Each iteration of the loop accesses an element 
from the Rowth row of M and one from the Colth column of N, multiplies the two ele-
ments together, and accumulates the product into Pvalue.

First, we focus on accessing the M element within the for-loop. Recall that M 
is linearized into an equivalent 1D array where the rows of M are placed one after 
another in the memory space, starting with the 0th row. Therefore, the beginning ele-
ment of the 1st row is M[1*Width] because we need to account for all elements of the 
0th row. In general, the beginning element of the Rowth row is M[Row*Width]. Since 
all elements of a row is placed in consecutive locations, the kth element of the Rowth 
row is at M[Row*Width+k]. This method was applied in Fig. 4.3.

We now turn our attention to N. As shown in Fig. 4.3, the beginning element of 
the Colth column is the Colth element of the 0th row, which is N[Col]. Accessing each 
additional element in Colth column requires skipping over entire rows. The reason 
is that the next element of the same column is actually the same element in the next 
row. Therefore, the kth element of the Colth column is N[k*Width+Col].
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After the execution exits the for-loop, all threads have their P element values in 
the Pvalue variables. Each thread then uses the one-dimensional equivalent index 
expression Row*Width+Col to write its P element. Again, this index pattern is similar 
to that used in the colorToGreyscaleConversion kernel.

We now use a small example to illustrate the execution of the matrix multiplica-
tion kernel. Fig. 4.4 shows a 4 × 4 P with BLOCK_WIDTH=2. The small sizes allow us 
to fit the entire example in one picture. The P matrix is now divided into four tiles, 
and each block calculates one tile. We do so by creating blocks that are 2 × 2 arrays 
of threads, with each thread calculating one P element. In the example, thread(0,0) of 
block(0,0) calculates P0,0, whereas thread(0,0) of block(1,0) calculates P2,0.

Row and Col in the matrixMulKernel identify the P element to be calculated by 
a thread. Row also identifies the row of M, whereas Col identifies the column of N as 
input values for the thread. Fig. 4.5 illustrates the multiplication operations in each 
thread block. For the small matrix multiplication example, threads in block (0,0) 
produce four dot products. The Row and Col variables of thread(1,0) in block(0,0) are 
0*0 + 1= 1 and 0*0 + 0= 0. It maps to P1,0 and calculates the dot product of row 1 
of M and column 0 of N.

We walk through the execution of the for-loop in Fig. 4.3 for thread(0,0) 
in block(0,0). During the 0th iteration (k=0), Row*Width+k=0*4 + 0 = 0 and 
k*Width+Col=0*4 + 0= 0. Therefore, we are accessing M[0] and N[0], which are 
the 1D equivalent of M0,0 and N0,0, according to Fig. 3.3. Note that these are indeed 
the 0th elements of row 0 of M and column 0 of N. During the 1st iteration (k=1), 
Row*Width+k=0*4+1=1 and k*Width+Col=1*4+0=4. We are accessing M[1] and N[4], 
which are the 1D equivalent of M0,1 and N1,0, according to Fig. 3.3. These are the 1st 
elements of row 0 of M and column 0 of N.

During the 2nd iteration (k=2), Row*Width+k=0*4+2=2 and k*Width+Col=8, which 
results in M[2] and N[8]. Therefore, the elements accessed are the 1D equivalent of 
M0,2 and d_N2,0. Finally, during the 3rd iteration (k=3), Row*Width+ k=0*4+ 3 and 

__global__ void MatrixMulKernel(float* M, float* N, float* P, 
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

FIGURE 4.3

A simple matrix multiplication kernel using one thread to compute one P element.
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k*Width+ Col= 12, which results in M[3] and N[12], the 1D equivalent of M0,3 and 
N3,0. We now have verified that the for-loop performs inner product between the 0th 
row of M and the 0th column of N. After the loop, the thread writes P[Row*Width+Col], 
which is P[0], the 1D equivalent of P0,0. Thus, thread(0,0) in block(0,0) successfully 
calculated the inner product between the 0th row of M and the 0th column of N and 
deposited the result in P0,0.

We will leave it as an exercise for the reader to hand-execute and verify the for-
loop for other threads in block(0,0) or in other blocks.
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FIGURE 4.4

A small execution example of matrixMulKernel.
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FIGURE 4.5

Matrix multiplication actions of one thread block.
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Note that matrixMulKernel can handle matrices of up to 16 × 65,535 elements in 
each dimension. In a situation where matrices larger than this limit are to be multi-
plied, one can divide the P matrix into submatrices with sizes that can be covered by 
a grid. We can then use the host code to iteratively launch kernels and complete the 
P matrix. Alternatively, we can change the kernel code so that each thread calculates 
more P elements.

We can estimate the effect of memory access efficiency by calculating the 
expected performance level of the matrix multiplication kernel code in Fig. 4.3. The 
dominating part of the kernel in terms of execution time is the for-loop that performs 
inner product calculation:

for(int k 0;k < Width; k)Pvalue
M[Row * Width k] * N[k * Width Cool];

In every iteration of this loop, two global memory accesses are performed for 
one floating-point multiplication and one floating-point addition. One global memory 
access fetches an M element, and the other fetches an N element. One floating-point 
operation multiplies the M and N elements fetched, and the other accumulates the prod-
uct into Pvalue. Thus, the compute-to-global-memory-access ratio of the loop is 1.0. 
From our discussion in Chapter 3, Scalable parallel execution, this ratio will likely 
result in less than 2% utilization of the peak execution speed of the modern GPUs. 
We need to increase the ratio by at least an order of magnitude for the computation 
throughput of modern devices to achieve good utilization. In the next section, we will 
show that we can use special memory types in CUDA devices to accomplish this goal.

4.3  CUDA MEMORY TYPES
A CUDA device contains several types of memory that can help programmers 
improve compute-to-global-memory-access ratio and thus achieve high execution 
speed. Fig. 4.6 shows these CUDA device memories. Global memory and constant 
memory appear at the bottom of the picture. These types of memory can be written 
(W) and read (R) by the host by calling API functions.1 We have already introduced 
global memory in Chapter 2, Data parallel computing. The global memory can be 
written and read by the device. The constant memory supports short-latency, high-
bandwidth read-only access by the device.

Registers and shared memory, as shown in Fig. 4.6, are on-chip memories. 
Variables that reside in these types of memory can be accessed at very high-speed in 
a highly parallel manner. Registers are allocated to individual threads; each thread 
can only access its own registers. A kernel function typically uses registers to hold 
frequently accessed variables that are private to each thread. Shared memory loca-
tions are allocated to thread blocks; all threads in a block can access shared memory 
variables allocated to the block. Shared memory is an efficient means for threads to 

1 See CUDA Programming Guide for zero-copy access to the global memory.
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cooperate by sharing their input data and intermediate results. By declaring a CUDA 
variable in one of the CUDA memory types, a CUDA programmer dictates the vis-
ibility and access speed of the variable.

In order to fully appreciate the difference between registers, shared memory, and 
global memory, we need to go into a little more detail of how these different memory 
types are realized and used in modern processors. Virtually all modern processors 
find their root in the model proposed by John von Neumann in 1945, which is shown 
in Fig. 4.7. The CUDA devices are no exception. The Global Memory in a CUDA 
device maps to the Memory box in Fig. 4.7. The processor box corresponds to the 
processor chip boundary that we typically see today. The Global Memory is off the 
processor chip and is implemented with DRAM technology, which implies long 
access latencies and relatively low access bandwidths. The Registers correspond to 
the Register File of the von Neumann model. The Register File is on the processor 
chip, which implies very short access latency and drastically higher access band-
width compared with the global memory. In a typical device, the aggregated access 
bandwidth of the register files is at least two orders of magnitude higher than that of 
the global memory. Furthermore, when a variable is stored in a register, its accesses 
no longer consume off-chip global memory bandwidth. This reduced bandwidth con-
sumption will be reflected as an increased compute-to-global-memory-access ratio.

A subtler point is that each access to registers involves fewer instructions than 
an access to the global memory. Arithmetic instructions in most modern processors 
have “built-in” register operands. For example, a floating-point addition instruction 
might be of the form

fadd r1, r2, r3

where r2 and r3 are the register numbers that specify the location in the regis-
ter file where the input operand values can be found. The location for storing the 
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FIGURE 4.6

Overview of the CUDA device memory model.
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floating-point addition result value is specified by r1. Therefore, when an operand 
of an arithmetic instruction is in a register, no additional instruction is required to 
make the operand value available to the arithmetic and logic unit (ALU), where the 
arithmetic calculation is performed.

Memory

Processing unit

Control unit

I/O

ALU
Register

file

PC IR

Processor

FIGURE 4.7

Memory vs. registers in a modern computer based on the von Neumann model.

THE VON NEUMANN MODEL
In his seminal 1945 report, John von Neumann described a model for build-
ing electronic computers, which is based on the design of the pioneering 
Electronic Discrete Variable Automatic Computer (EDVAC) computer. This 
model, now commonly referred to as the von Neumann Model, has been the 
foundational blueprint for virtually all modern computers.

The von Neumann Model is illustrated in Fig. 4.7. The computer has an 
input/output function that allows both programs and data to be provided to 
and generated from the system. To execute a program, the computer first 
inputs the program and its data into the Memory.

The program consists of a collection of instructions. The Control Unit 
maintains a Program Counter (PC), which contains the memory address of 
the next instruction to be executed. In each “instruction cycle,” the Control 
Unit uses the PC to fetch an instruction into the Instruction Register (IR). The 
instruction bits are then used to determine the action to be taken by all com-
ponents of the computer, which is why the model is also called the “stored 
program” model. The term implies that a user can change the behavior of a 
computer by storing a different program into its memory.
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Meanwhile, if an operand value is in the global memory, the processor needs to 
perform a memory load operation to make the operand value available to the ALU. 
For example, if the first operand of a floating-point addition instruction is in the 
global memory, the instructions involved will likely be

load r2, r4, offset
fadd r1, r2, r3

where the load instruction adds an offset value to the contents of r4 to form an address 
for the operand value. It then accesses the global memory and places the value into 
register r2. Once the operand value is in r2, the fadd instruction performs the floating-
point addition by using the values in r2 and r3 and then places the result into r1. 
Since the processor can only fetch and execute a limited number of instructions per 
clock cycle, the version with an additional load will likely take more time to process 
than the one without an additional load. Thus, placing the operands in registers can 
improve execution speed.

Finally, there is another subtle reason why placing an operand value in registers 
is preferable. In modern computers, the energy consumed for accessing a value from 
the register file is at least an order of magnitude lower than that for accessing a 
value from the global memory. We will examine the speed and energy difference in 
accessing these two hardware structures in modern computers. However, as we will 
soon learn, the number of registers available to each thread (see “Processing Units 
and Threads” sidebar) is quite limited in today’s GPUs. We need to be careful not to 
oversubscribe to this limited resource.

Fig. 4.8 shows the shared memory and registers in a CUDA device. Although 
both are on-chip memories, they differ significantly in functionality and cost of 
access. Shared memory is designed as part of the memory space that resides on the 
processor chip. When the processor accesses data that reside in the shared memory, 
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FIGURE 4.8

Shared memory vs. registers in a CUDA device SM.
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it needs to perform a memory load operation, similar to accessing data in the global 
memory. However, because shared memory resides on-chip, it can be accessed with 
much lower latency and much higher throughput than the global memory. Shared 
memory has longer latency and lower bandwidth than registers because of the need to 
perform a load operation. In computer architecture terminology, the shared memory 
is a form of scratchpad memory.

One important difference between the shared memory and registers in CUDA is 
that the variables that reside in the shared memory are accessible by all threads in 
a block, whereas register data are private to a thread. Shared memory is designed 
to support efficient, high-bandwidth sharing of data among threads in a block. As 
shown in Fig. 4.8, a CUDA device SM typically employs multiple processing units, 
to allow multiple threads to make simultaneous progress (see Processing Units and 
Threads sidebar). Threads in a block can be spread across these processing units. 
Therefore, the hardware implementations of the shared memory in these CUDA 
devices are typically designed to allow multiple processing units to simultaneously 
access its contents to support efficient data sharing among threads in a block. We will 
be learning several important types of parallel algorithms that can greatly benefit 
from such efficient data sharing among threads.

PROCESSING UNITS AND THREADS
Now that we have introduced the von Neumann model, we are ready to dis-
cuss how threads are implemented. A thread in modern computers is the state 
of executing a program on a von Neumann Processor. Recall that a thread 
consists of the code of a program, the particular point in the code that is being 
executed, and value of its variables and data structures.

In a computer based on the von Neumann model, the code of the program 
is stored in the memory. The PC keeps track of the particular point of the pro-
gram that is being executed. The IR holds the instruction that is fetched from 
the point execution. The register and memory hold the values of the variables 
and data structures.

Modern processors are designed to allow context-switching, where mul-
tiple threads can time-share a processor by taking turns to make progress. By 
carefully saving and restoring the PC value and the contents of registers and 
memory, we can suspend the execution of a thread and then correctly resume 
the execution of the thread later.
Some processors provide multiple processing units, which allow multiple 
threads to make simultaneous progress. Fig. 4.8 shows a Single-Instruction, 
Multiple-Data design style where multiple processing units share a PC and 
IR. Under this design, all threads make simultaneous progress by executing 
the same instruction in the program.
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It should be clear by now that registers, shared memory, and global memory 
have different functionalities, latencies, and bandwidths. Therefore, the process of 
declaring a variable must be understood so that it will reside in the intended type of 
memory. Table 4.1 presents the CUDA syntax for declaring program variables into 
the various memory types. Each such declaration also gives its declared CUDA vari-
able a scope and lifetime. Scope identifies the range of threads that can access the 
variable: a single thread only, all threads of a block, or all threads of all grids. If the 
scope of a variable is a single thread, a private version of the variable will be created 
for every thread; each thread can only access its private version of the variable. To 
illustrate, if a kernel declares a variable whose scope is a thread and it is launched 
with one million threads, one million versions of the variable will be created so that 
each thread initializes and uses its own version of the variable.

Lifetime indicates the portion of the program execution duration when the vari-
able is available for use: either within a kernel execution or throughout the entire 
application. If the lifetime of a variable is within a kernel execution, it must be 
declared within the kernel function body and will be available for use only by the 
kernel code. If the kernel is invoked several times, the value of the variable is not 
maintained across these invocations. Each invocation must initialize the variable in 
order to use them. Meanwhile, if the lifetime of a variable continues throughout the 
entire application, it must be declared outside of any function body. The contents of 
these variables are maintained throughout the execution of the application and avail-
able to all kernels.

We refer to variables that are not arrays or matrices as scalar variables. As shown 
in Table 4.1, all automatic scalar variables declared in kernel and device functions are 
placed into registers. The scopes of these automatic variables are within individual 
threads. When a kernel function declares an automatic variable, a private copy of 
that variable is generated for every thread that executes the kernel function. When a 
thread terminates, all its automatic variables also cease to exist. In Fig. 4.1, variables 
blurRow, blurCol, curRow, curCol, pixels, and pixVal are automatic variables and 
fall into this category. Note that accessing these variables is extremely fast and paral-
lel; however, one must be careful not to exceed the limited capacity of the register 
storage in hardware implementations. Using a large number of registers can nega-
tively affect the number of active threads assigned to each SM. We will address this 
point in Chapter 5, Performance considerations.

Table 4.1  CUDA Variable Type Qualifiers

Variable declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel
Automatic array variables Local Thread Kernel
__device__ __shared__ int SharedVar; Shared Block Kernel
__device__ int GlobalVar; Global Grid Application
__device__ __constant__ int ConstVar; Constant Grid Application
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Automatic array variables are not stored in registers.2 Instead, they are stored 
into the global memory and may incur long access delays and potential access con-
gestions. Similar to automatic scalar variables, the scope of these arrays is limited 
to individual threads; i.e., a private version of each automatic array is created for 
and used by every thread. Once a thread terminates its execution, the contents of its 
automatic array variables also cease to exist. From our experience, automatic array 
variables are rarely used in kernel functions and device functions.

If a variable declaration is preceded by the “__shared__’’ (each “__’’ consists of 
two “_’’ characters) keyword, it declares a shared variable in CUDA. An optional 
“__device__” in front of “__shared__” keyword may also be added in the declaration 
to achieve the same effect. Such declaration typically resides within a kernel func-
tion or a device function. Shared variables reside in the shared memory. The scope 
of a shared variable is within a thread block; i.e., all threads in a block see the same 
version of a shared variable. A private version of the shared variable is created for 
and used by each thread block during kernel execution. The lifetime of a shared vari-
able is within the duration of the kernel. When a kernel terminates its execution, the 
contents of its shared variables cease to exist. As discussed earlier, shared variables 
are an efficient means for threads within a block to collaborate with one another. 
Accessing shared variables from the shared memory is extremely fast and highly 
parallel. CUDA programmers often use shared variables to hold the portion of global 
memory data that are heavily used in a kernel execution phase. The algorithms may 
need to be adjusted to create execution phases that heavily focus on small portions 
of the global memory data, as we will demonstrate with matrix multiplication in 
Section 4.4.

If a variable declaration is preceded by the keyword “__constant__’’ (each “__’’ 
consists of two “_’’ characters), it declares a constant variable in CUDA. An optional 
“__device__” keyword may also be added in front of “__constant__” to achieve the 
same effect. Declaration of constant variables must be outside any function body. 
The scope of a constant variable spans all grids, meaning that all threads in all grids 
see the same version of a constant variable. The lifetime of a constant variable is 
the entire application execution. Constant variables are often used for variables that 
provide input values to kernel functions. Constant variables are stored in the global 
memory but are cached for efficient access. With appropriate access patterns, access-
ing constant memory is extremely fast and parallel. Currently, the total size of con-
stant variables in an application is limited to 65,536 bytes. The input data volume 
may need to be divided to fit within this limitation, as we will illustrate in Chapter 7, 
Parallel pattern: convolution.

A variable whose declaration is preceded only by the keyword “__device__” 
(each “__’’ consists of two “_’’ characters) is a global variable and will be placed in 
the global memory. Accesses to a global variable are slow. Latency and throughput 
of accessing global variables have been improved with caches in relatively recent 

2 There are some exceptions to this rule. The compiler may decide to store an automatic array into 
registers if all accesses are done with constant index values.
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devices. One important advantage of global variables is that they are visible to all 
threads of all kernels. Their contents also persist throughout the entire execution. 
Thus, global variables can be used as a means for threads to collaborate across blocks. 
However, the only easy way to synchronize between threads from different thread 
blocks or to ensure data consistency across threads when accessing global memory 
is by terminating the current kernel execution.3 Therefore, global variables are often 
used to pass information from one kernel invocation to another kernel invocation.

In CUDA, pointers are used to point to data objects in the global memory. Pointer 
usage arises in kernel and device functions in two ways: (1) if an object is allocated 
by a host function, the pointer to the object is initialized by cudaMalloc and can be 
passed to the kernel function as a parameter (e.g., the parameters M, N, and P in  
Fig. 4.3) and (2) the address of a variable declared in the global memory is assigned 
to a pointer variable. To illustrate, the statement {float* ptr= &GlobalVar;} in a 
kernel function assigns the address of GlobalVar into an automatic pointer variable 
ptr. The reader should refer to the CUDA Programming Guide for using pointers in 
other memory types.

4.4  TILING FOR REDUCED MEMORY TRAFFIC
We have an intrinsic tradeoff in the use of device memories in CUDA: the global 
memory is large but slow, whereas the shared memory is small but fast. A com-
mon strategy is to partition the data into subsets called tiles so that each tile fits 
into the shared memory. The term “tile” draws on the analogy that a large wall (i.e.,  
the global memory data) can be covered by tiles (i.e., subsets that each can fit  
into the shared memory). An important criterion is that kernel computation on these 
tiles can be performed independently of each other. Note that not all data structures 
can be partitioned into tiles given an arbitrary kernel function.

The concept of tiling can be illustrated using the matrix multiplication example in 
Fig. 4.5, which corresponds to the kernel function in Fig. 4.3. We replicate the exam-
ple in Fig. 4.9 for convenient reference by the reader. For brevity, we use Py,x, My,x, 
and Ny,x to represent P[y*Width+ x], M[y*Width+ x], and N[y*Width+ x], respec-
tively. This example assumes that we use four 2× 2 blocks to compute the P matrix. 
Fig. 4.9 highlights the computation performed by the four threads of block(0,0). 
These four threads compute for P0,0, P0,1, P1,0, and P1,1. The accesses to the M and 
N elements by thread(0,0) and thread(0,1) of block(0,0) are highlighted with black 
arrows; e.g., thread(0,0) reads M0,0 and N0,0, followed by M0,1 and N1,0, followed by 
M0,2 and N2,0, followed by M0,3 and N3,0.

Fig. 4.10 shows the global memory accesses performed by all threads in block0,0. 
The threads are listed in the vertical direction, with time of access increasing to the 

3 Note that one can use CUDA memory fencing to ensure data coherence between thread blocks if 
the number of thread blocks is smaller than the number of SMs in the CUDA device. See the CUDA 
programming guide for more details.
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right in the horizontal direction. Each thread accesses four elements of M and four 
elements of N during execution. Among the four threads highlighted, a significant 
overlap occurs in the M and N elements they access. For instance, both thread0,0 and 
thread0,1 access M0,0 and the rest of row 0 of M. Similarly, both thread0,1 and thread1,1 
access N0,1 and the rest of column 1 of N.

The kernel in Fig. 4.3 is written so that both thread0,0 and thread0,1 access row 0 
elements of M from the global memory. If thread0,0 and thread0,1 can be made to col-
laborate so that these M elements are only loaded from the global memory once, the 
total number of accesses to the global memory can be reduced by half. Every M and 
N element is accessed exactly twice during the execution of block0,0. Therefore, if all 
four threads can be made to collaborate in their accesses to global memory, traffic to 
the global memory can be reduced by half.

Readers should verify that the potential reduction in global memory traffic in the 
matrix multiplication example is proportional to the dimension of the blocks used. 
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A small example of matrix multiplication. For brevity, we show M[y*Width+ x], N[y*Width 
+ x], P[y*Width+ x] as My,x, Ny,x Py,x.

thread0,0 M0,0 * N0,0 M0,1 * N1,0 M0,2 * N2,0 M0,3 * N3,0

thread0,1 M0,0 * N0,1 M0,1 * N1,1 M0,2 * N2,1 M0,3 * N3,1

thread1,0 M1,0 * N0,0 M1,1 * N1,0 M1,2 * N2,0 M1,3 * N3,0

thread1,1 M1,0 * N0,1 M1,1 * N1,1 M1,2 * N2,1 M1,3 * N3,1

Access order

FIGURE 4.10

Global memory accesses performed by threads in block0,0.
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With Width × Width blocks, the potential reduction of global memory traffic would 
be Width. Thus, if we use 16 × 16 blocks, the global memory traffic can be poten-
tially reduced to 1/16 through collaboration between threads.

Traffic congestion arises not only in computing but in highway systems as well, 
as illustrated in Fig. 4.11. The root cause of highway traffic congestion is too many 
cars squeezing through a road that is designed for a much smaller number of vehi-
cles. When congestion occurs, the travel time for each vehicle is greatly increased. 
Commute time to work can easily double or triple during traffic congestion.

Most solutions for reduced traffic congestion involve reduction of cars on the 
road. Assuming that the number of commuters is constant, people need to share rides 
in order to reduce the number of cars on the road. A common way to share rides in 
the US is carpooling, where a group of commuters take turns to drive the group to 
work in one vehicle. The government usually needs to create policies encouraging 
carpooling. In some countries, the government simply bans certain classes of cars 
from the road on a daily basis. For example, cars with odd license plates may not be 
allowed on the road on Monday, Wednesday, or Friday. This rule encourages people 
whose cars are allowed on different days to form a carpool group. In some countries, 
gasoline price is so high that people form carpools to save money. In other countries, 
the government may provide incentives for behaviors that reduce the number of cars 
on the road. In the US, some lanes of congested highways are designated as carpool 
lanes; only cars with more than two or three people are allowed to use these lanes. 
All of these measures for encouraging carpooling are designed to overcome the fact 
that carpooling requires extra effort, as shown in Fig. 4.12.

FIGURE 4.11

Reducing traffic congestion in highway systems.
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Carpooling requires workers who wish to carpool to compromise and agree on 
a common commute schedule. The top half of Fig. 4.12 presents a good schedule 
pattern for carpooling. Time goes from left to right. Workers A and B share a similar 
schedule for sleep, work, and dinner. This schedule allows these two workers to con-
veniently go to work and return home in one car. Their similar schedules allow them 
to easily agree on common departure and return times. By contrast, the schedules in 
the bottom half of Fig. 4.12 show Workers A and B having different habits: Worker A 
parties until sunrise, sleeps during the day, and goes to work in the evening; Worker 
B sleeps at night, goes to work in the morning, and returns home for dinner at 6 p.m. 
The schedules are so different that these two workers cannot arrange a common time 
to drive to work and return home in one car. For these workers to form a carpool, 
they need to negotiate a common schedule similar to that in the top half of Fig. 4.12.

Tiled algorithms are highly similar to carpooling arrangements. We can consider 
threads accessing data values as commuters and DRAM access requests as vehicles. 
When the rate of DRAM requests exceeds the provisioned access bandwidth of the 
DRAM system, traffic congestion arises and the arithmetic units become idle. If mul-
tiple threads access data from the same DRAM location, they can potentially form a 
“carpool” and combine their accesses into one DRAM request. However, this process 
requires a similar execution schedule for the threads so that their data accesses can 
be combined. This scenario is shown in Fig. 4.13, where the cells at the center rep-
resent DRAM locations. An arrow from a DRAM location pointing to a thread rep-
resents an access by the thread to that location at the time marked by the head of the 
arrow. Note that the time goes from left to right. The top portion shows two threads 
that access the same data elements with similar timing. The bottom half shows two 
threads that access their common data at varying times; i.e., the accesses by Thread 
2 lag significantly behind their corresponding accesses by Thread 1. The reason the 

Good – people have similar schedules

Bad – people have very different schedules
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FIGURE 4.12

Carpooling requires synchronization among people.
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bottom is an undesirable arrangement is that data elements that are brought back 
from the DRAM need to be stored in the on-chip memory for an extended time, wait-
ing to be consumed by Thread 2. A large number of data elements will need to be 
stored, resulting in an excessive on-chip memory requirement.

In the context of parallel computing, tiling is a program transformation technique 
that localizes the memory locations accessed among threads and the timing of their 
accesses. It divides the long access sequences of each thread into phases and uses bar-
rier synchronization to keep the timing of accesses to each section at close intervals. 
This technique controls the amount of on-chip memory required by localizing the  
accesses both in time and in space. In terms of our carpool analogy, we force  
the threads that form the “carpool” group to follow approximately the same execu-
tion timing.

We now present a tiled matrix multiplication algorithm. The basic idea is for 
the threads to collaboratively load subsets of the M and N elements into the shared 
memory before they individually use these elements in their dot product calcula-
tion. The size of the shared memory is quite small, and the capacity of the shared 
memory should not be exceeded when these M and N elements are loaded into the 
shared memory. This condition can be satisfied by dividing the M and N matrices 
into smaller tiles so that they can fit into the shared memory. In the simplest form, the 
tile dimensions equal those of the block, as illustrated in Fig. 4.11.

In Fig. 4.14, we divide M and N into 2 × 2 tiles, as delineated by the thick lines. 
The dot product calculations performed by each thread are now divided into phases. 
In each phase, all threads in a block collaborate to load a tile of M and a tile of N 
into the shared memory. This collaboration can be accomplished by having every 
thread in a block to load one M element and one N element into the shared memory, 

Good — threads have similar access timing

Bad — threads have very different timing
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Tiled Algorithms require synchronization among threads.
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as illustrated in Fig. 4.15. Each row in Fig. 4.15 shows the execution activities of a 
thread. Note that time progresses from left to right. We only need to show the activi-
ties of threads in block0,0; all of the other blocks have the same behavior. The shared 
memory array for the M elements is called Mds, and that for the N elements is called 
Nds. At the beginning of Phase 1, the four threads of block0,0 collaboratively load a 
tile of M into a shared memory: thread0,0 loads M0,0 into Mds0,0, thread0,1 loads M0,1 
into Mds0,1, thread1,0 loads M1,0 into Mds1,0, and thread1,1 loads M1,1 into Mds1,1, 
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Tiling M and N to utilize shared memory.
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N0,0

↓ 
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds0,1*Nds1,0

M0,2

↓ 
Mds0,0

N2,0

↓ 
Nds0,0

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds0,1*Nds1,0

thread0,1 M0,1

↓ 
Mds0,1

N0,1

↓ 
Nds1,0

PValue0,1 +=
Mds0,0*Nds0,1 +
Mds0,1*Nds1,1

M0,3

↓ 
Mds0,1

N2,1

↓ 
Nds0,1

PValue0,1 += 
Mds0,0*Nds0,1 + 
Mds0,1*Nds1,1

thread1,0 M1,0

↓ 
Mds1,0

N1,0

↓ 
Nds1,0

PValue1,0 +=
Mds1,0*Nds0,0 + 
Mds1,1*Nds1,0

M1,2

↓ 
Mds1,0

N3,0

↓
Nds1,0

PValue1,0 += 
Mds1,0*Nds0,0 + 
Mds1,1*Nds1,0

thread1,1 M1,1

↓ 
Mds1,1

N1,1

↓ 
Nds1,1

PValue1,1 +=
Mds1,0*Nds0,1 +
Mds1,1*Nds1,1

M1,3

↓ 
Mds1,1

N3,1

↓ 
Nds1,1

PValue1,1+= 
Mds1,0*Nds0,1 + 
Mds1,1*Nds1,1

time

FIGURE 4.15

Execution phases of a tiled matrix multiplication.
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as shown in the second column in Fig. 4.15. A tile of N is also similarly loaded, as 
presented in the third column in Fig. 4.15.

After the two tiles of M and N are loaded into the shared memory, these elements 
are used in the calculation of the dot product. Each value in the shared memory is 
used twice; e.g., the M1,1 value loaded by thread1,1 into Mds1,1 is used twice: the first 
time by thread1,0 and the second time by thread1,1. By loading each global memory 
value into the shared memory so that it can be used multiple times, we reduce the 
number of accesses to the global memory; in this case, we reduce it by half. The 
reader should verify that the reduction occurs by a factor of N if the tiles are N × N 
elements.

Note that the calculation of each dot product in Fig. 4.3 is now performed in two 
phases, Phases 1 and 2 in Fig. 4.15. In each phase, the products of two pairs of the 
input matrix elements are accumulated into the Pvalue variable. Pvalue is an auto-
matic variable; a private version is generated for each thread. We added subscripts 
to indicate different instances of the Pvalue variable created for each thread. The 
first- and second-phase calculations are shown in the fourth and seventh columns in 
Fig. 4.15, respectively. In general, if an input matrix is of the dimension Width and 
the tile size is referred to as TILE_WIDTH, the dot product would be performed in 
Width/TILE_WIDTH phases. The creation of these phases is key to the reduction of 
accesses to the global memory. With each phase focusing on a small subset of the 
input matrix values, the threads can collaboratively load the subset into the shared 
memory and use the values in the shared memory to satisfy their overlapping input 
demands in the phase.

Note also that Mds and Nds are reused to hold the input values. In each phase, 
the same Mds and Nds are used to hold the subset of M and N elements in the phase, 
thereby allowing a much smaller shared memory to serve most of the accesses to 
global memory. This is due to the fact that each phase focuses on a small subset of 
the input matrix elements. Such focused access behavior is called locality. When an 
algorithm exhibits locality, an opportunity arises to use small, high-speed memories 
in order to serve most of the accesses and remove these accesses from the global 
memory. Locality is as important for achieving high-performance in multi-core 
CPUs as in many-thread GPUs. We will return to the concept of locality in Chapter 5, 
Performance considerations.

4.5  A TILED MATRIX MULTIPLICATION KERNEL
We are now ready to present a tiled matrix multiplication kernel that uses shared 
memory to reduce traffic to the global memory. The kernel presented in Fig. 4.16 
implements the phases illustrated in Fig. 4.15. In Fig. 4.16, Lines 1 and 2 declare 
Mds and Nds as shared memory variables. Recall that the scope of shared memory 
variables is a block. Thus, one pair of Mds and Nds will be created for each block, 
and all threads of a block can access the same Mds and Nds. This is important 
since all threads in a block must have access to the M and N elements loaded  
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into Mds and Nds by their peers so that they can use these values to satisfy their 
input needs.

Lines 3 and 4 save the threadIdx and blockIdx values into automatic varia-
bles and thus into registers for fast access. Recall that automatic scalar variables are 
placed into registers. Their scope is in each individual thread; i.e., one private version 
of tx, ty, bx, and by is created by the run-time system for each thread and will reside 
in registers that are accessible by the thread. They are initialized with the threadIdx 
and blockIdx values and used many times during the lifetime of the thread. Once the 
thread ends, the values of these variables cease to exist.

Lines 5 and 6 determine the row and column indexes of the P element to be pro-
duced by the thread. The code assumes that each thread is responsible for calculating 
one P element. As shown in Line 6, the horizontal (x) position, or the column index 
of the P element to be produced by a thread, can be calculated as bx*TILE_WIDTH+ 
tx because each block covers TILE_WIDTH elements in the horizontal dimension. 
A thread in block bx would have bx blocks of threads, or (bx*TILE_WIDTH) threads, 
before it; they cover bx*TILE_WIDTH elements of P. Another tx threads within the 
same block would cover another tx elements. Thus, the thread with bx and tx should 
be responsible for calculating the P element whose x index is bx*TILE_WIDTH+ tx. 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
int Width) {

1.   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2.   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.   int bx = blockIdx.x;  int by = blockIdx.y;
4.   int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5.   int Row = by * TILE_WIDTH + ty;
6.   int Col = bx * TILE_WIDTH + tx;

7.   float Pvalue = 0;
// Loop over the d_M and d_N tiles required to compute d_P element

8.   for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of d_M and d_N tiles into shared memory
9.     Mds[ty][tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10.     Nds[ty][tx] = d_N[(ph*TILE_WIDTH + ty)*Width + Col];
11.     __syncthreads();

12.     for (int k = 0; k < TILE_WIDTH; ++k) {
13.       Pvalue += Mds[ty][k] * Nds[k][tx];

}
14.     __syncthreads();

}
15.   d_P[Row*Width + Col] = Pvalue;  

}

FIGURE 4.16

A tiled Matrix Multiplication Kernel using shared memory.
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This horizontal index is saved in the variable Col for the thread and is also illustrated 
in Fig. 4.17.

In Fig. 4.14, the x index of the P element to be calculated by thread0,1 of block1,0 is 
0*2+ 1= 1. Similarly, the y index can be calculated as by*TILE_WIDTH+ ty. This ver-
tical index is saved in the variable Row for the thread. Thus, each thread calculates 
the P element at the Colth column and the Rowth row, as shown in Fig. 4.17. Recalling 
the example in Fig. 4.14, the y index of the P element to be calculated by thread1,0 
of block0,1 is 1*2+ 0= 2. Thus, the P element to be calculated by this thread is P2,1.

Line 8 in Fig. 4.16 marks the beginning of the loop that iterates through all the 
phases of calculating the P element. Each iteration of the loop corresponds to one 
phase of the calculation presented in Fig. 4.15. The ph variable indicates the number 
of phases that have already been done for the dot product. Recall that each phase uses 
one tile of M and one tile of N elements. Therefore, at the beginning of each phase, 
ph*TILE_WIDTH pairs of M and N elements have been processed by previous phases.

In each phase, Line 9 loads the appropriate M element into the shared memory. 
Since we already know the row of M and column of N to be processed by the thread, 
we now discuss the column index of M and row index of N. As shown in Fig. 4.17, 
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Calculation of the matrix indexes in tiled multiplication.
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each block has TILE_WIDTH2 threads that will collaborate to load TILE_WIDTH2 
M elements into the shared memory. Thus, we only need to assign each thread to 
load one M element, which can be conveniently accomplished using blockIdx and 
threadIdx. The beginning column index of the section of M elements to be loaded is 
ph*TILE_WIDTH. Therefore, an easy approach is to have every thread load an element 
that is tx (the threadIdx.x value) positions away from that beginning point.

This case is represented by Line 9, where each thread loads M[Row*Width + 
ph*TILE_WIDTH + tx], where the linearized index is formed with the row index Row 
and column index ph*TILE_WIDTH + tx. Since the value of Row is a linear function 
of ty, each of the TILE_WIDTH2 threads will load a unique M element into the shared 
memory. Together, these threads will load a dark square subset of M in Fig. 4.17. The 
reader should use the examples in Fig. 4.14 and Fig. 4.15 to verify that the address 
calculation works correctly for individual threads.

The barrier __syncthreads() in Line 11 ensures that all threads have finished 
loading the tiles of M and N into Mds and Nds before any of them can move forward. 
The loop in Line 12 then performs one phase of the dot product on the basis of these 
tile elements. The progression of the loop for threadty,tx is shown in Fig. 4.17, with 
the access direction of the M and N elements along the arrow marked with k, the loop 
variable in Line 12. These elements will be accessed from Mds and Nds, the shared 
memory arrays holding these M and N elements. The barrier __syncthreads() in 
Line 14 ensures that all threads have finished using the M and N elements in the shared 
memory before any of them move on to the next iteration and load the elements from 
the next tiles. In this manner, none of the threads would load the elements too early 
and corrupt the input values for other threads.

The nested loop from Line 8 to Line 14 illustrates a technique called strip-mining, 
which takes a long-running loop and break it into phases. Each phase consists of an 
inner loop that executes a number of consecutive iterations of the original loop. The 
original loop becomes an outer loop whose role is to iteratively invoke the inner loop 
so that all the iterations of the original loop are executed in their original order. By 
adding barrier synchronizations before and after the inner loop, we force all threads 
in the same block to focus their work entirely on a section of their input data. Strip-
mining can create the phases needed by tiling in data parallel programs.4

After all phases of the dot product are completed, the execution exits the loop of 
Line 8. All threads write to their P element by using the linearized index calculated 
from Row and Col.

The tiled algorithm provides a substantial benefit. For matrix multiplication, 
the global memory accesses are reduced by a factor of TILE_WIDTH. If one uses  
16 × 16 tiles, we can reduce the global memory accesses by a factor of 16. This 
increases the compute-to-global-memory-access ratio from 1 to 16. This improvement 

4 Interested reader should note that strip-mining has long been used in programming CPUs. Strip-
mining followed by loop interchange is often used to enable tiling for improved locality in sequential 
programs. Strip-mining is also the main vehicle for vectorizing compilers to generate vector or Single-
Instruction, Multiple-Data instructions for CPU programs.
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allows the memory bandwidth of a CUDA device to support a computation rate close 
to its peak performance; e.g. a device with 150 GB/s global memory bandwidth can 
approach ((150/4)*16) = 600 GFLOPS!

While the performance improvement of the tiled matrix multiplication kernel is 
impressive, it includes a few simplifying assumptions. First, the width of the matri-
ces is assumed to be a multiple of the width of the thread blocks. This assumption 
prevents the kernel from correctly processing arbitrary-sized matrices. The second 
assumption is that the matrices are square matrices, which is not always true in real-
life settings. In the next section, we will present a kernel with boundary checks that 
remove these assumptions.

4.6  BOUNDARY CHECKS
We now extend the tiled matrix multiplication kernel to handle matrices with arbi-
trary widths. The extensions will have to allow the kernel to correctly handle matri-
ces whose width is not a multiple of the tile width. By changing the example in Fig. 
4.14 to 3× 3 M, N, and P matrices, Fig. 4.18 is created. The matrices have a width of 
3, which is not a multiple of the tile width (2). Fig. 4.18 shows the memory access 
pattern during phase 1 of block0,0. Thread0,1 and thread1,1 will attempt to load M ele-
ments that do not exist. Similarly, thread1,0 and thread1,1 will attempt to access N 
elements that do not exist.

Accessing nonexisting elements is problematic in two ways. Accessing a nonex-
isting elements past the end of a row (M accesses by thread1,0 and thread1,1 in Fig. 
4.18) will be done to incorrect elements. In our example, the threads will attempt to 
access M0,3 and M1,3, both of which do not exist. In this case, what will happen to these 

FIGURE 4.18

Loading input matrix elements that are close to the edge–phase 1 of Block0,0.
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memory loads? To answer this question, we need to go back to the linearized layout 
of 2D matrices. The element after M0,2 in the linearized layout is M1,0. Although 
thread0,1 is attempting to access M0,3, it will instead obtain M1,0. The use of this value 
in the subsequent inner product calculation will certainly corrupt the output value.

A similar problem arises when accessing an element past the end of a column (N 
accesses by thread1,0 and thread1,1 in Fig. 4.18). These accesses are to memory loca-
tions outside the allocated area for the array. Some systems will return random values 
from other data structures, whereas others will reject these accesses and cause the 
program to abort. Either way, such accesses lead to undesirable outcomes.

From our discussion thus far, the problematic accesses only seem to arise in the 
last phase of execution of the threads. This observation suggests that the problem can 
be dealt with by taking special actions during the last phase of the tiled kernel execu-
tion. Unfortunately, problematic accesses can occur in all phases. Fig. 4.19 shows 
the memory access pattern of block1,1 during phase 0. We see that thread1,0 and 
thread1,1 attempt to access nonexisting M elements M3,0 and M3,1, whereas thread0,1 
and thread1,1 attempt to access N0,3 and N1,3, which do not exist.

Note that these problematic accesses cannot be prevented by excluding the threads 
that do not calculate valid P elements. For instance, thread1,0 in block1,1 does not cal-
culate any valid P element. However, it needs to load M2,1 during phase 0. Further, 
some threads that calculate valid P elements will attempt to access M or N elements 
that do not exist. As shown in Fig. 4.18, thread0,1 of block 0,0 calculates a valid P 
element P0,1. However, it attempts to access a nonexisting M0,3 during phase 1. These 
observations indicate that different boundary condition tests need to be conducted for 
loading M tiles, loading N tiles, and calculating/storing P elements.

We start with the boundary test condition for loading input tiles. When a thread 
intends to load an input tile element, it should test that input element for validity, 

FIGURE 4.19

Loading input elements during phase 0 of block1,0.
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which is easily done by examining the y and x indexes. To illustrate, at Line 9 in  
Fig. 4.16, the linearized index is derived from a y index of Row and an x index of 
ph*TILE_WIDTH + tx. The boundary condition test would be that both indexes are 
smaller than Width: (Row<Width) && (ph*TILE_WIDTH+tx)<Width. If the condition is 
satisfied, the thread should load the M element. The reader should verify that the con-
dition test for loading the N element is (ph*TILE_WIDTH+ty)<Width && Col<Width.

If the condition is not satisfied, the thread should not load the element, in which 
case, the question is what should be placed into the shared memory location. The 
answer is 0.0, a value that will not cause any harm if used in the inner product cal-
culation. If any thread uses this 0.0 value in the calculation of its inner product, no 
change will be observed in the inner product value.

Finally, a thread should only store its final inner product value if it is responsible 
for calculating a valid P element. The test for this condition is (Row < Width) &&  
(Col < Width). The kernel code with the additional boundary condition checks is 
shown in Fig. 4.20.

With the boundary condition checks, the tile matrix multiplication kernel is just one 
more step away from being a general matrix multiplication kernel. In general, matrix 
multiplication is defined for rectangular matrices: a j×k M matrix multiplied by a k×l N 
matrix results in a j×l P matrix. Currently, our kernel can only handle square matrices.

Fortunately, our kernel can be easily extended to a general matrix multiplication 
kernel by making simple modifications. First, the Width argument is replaced by 
three unsigned integer arguments j, k, and l. Where Width is used to refer to the 
height of M or height of P, it may be replaced with j. Where Width is used to refer to 
the width of M or height of N, it may be replaced with k. Where Width is used to refer 
to the width of N or width of P, it may be replaced with l. The revision of the kernel 
with these changes is left as an exercise.

// Loop over the M and N tiles required to compute P element
 8.   for (int ph = 0; ph < ceil(Width/(float)TILE_WIDTH); ++ph) {

// Collaborative loading of M and N tiles into shared memory
9.     if ((Row< Width) && (ph*TILE_WIDTH+tx)< Width) 

Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
10.     if ((ph*TILE_WIDTH+ty)<Width && Col<Width) 

Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];

11.     __syncthreads();

12.     for (int k = 0; k < TILE_WIDTH; ++k) {
13.       Pvalue += Mds[ty][k] * Nds[k][tx];

}
14.     __syncthreads();

}
15.   if ((Row<Width) && (Col<Width)P[Row*Width + Col] = Pvalue;  

FIGURE 4.20

Tiled matrix multiplication kernel with boundary condition checks.
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4.7  MEMORY AS A LIMITING FACTOR TO PARALLELISM
While CUDA registers and shared memory can be extremely effective in reducing the 
number of accesses to global memory, one must be careful to stay within the capac-
ity of these memories. These memories are forms of resources necessary for thread 
execution. Each CUDA device offers limited resources, thereby limiting the number 
of threads that can simultaneously reside in the SM for a given application. In general, 
the more resources each thread requires, the fewer the threads that can reside in each 
SM, and likewise, the fewer the threads that can run in parallel in the entire device.

To illustrate the interaction between register usage of a kernel and the level of par-
allelism that a device can support, assume that in a current-generation device D, each 
SM can accommodate up to 1536 threads and 16,384 registers. While 16,384 is a large 
number, each thread is only allowed to use a very limited number of registers, consid-
ering the number of threads that can reside in each SM. To support 1536 threads, each 
thread can use only 16,384/1536 = 10 registers. If each thread uses 11 registers, the 
number of threads that can be executed concurrently in each SM will be reduced. Such 
reduction occurs at the block granularity; e.g., if each block contains 512 threads, the 
reduction of threads will be accomplished by reducing 512 threads at a time. Thus, the 
next smaller number of threads from 1536 will be 1024, indicating a 1/3 reduction of 
threads that can simultaneously reside in each SM. This procedure can substantially 
reduce the number of warps available for scheduling, thereby decreasing the ability of 
the processor to find useful work in the presence of long-latency operations.

The number of registers available to each SM varies from one device to another. 
An application can dynamically determine the number of registers available in each 
SM of the device used and choose a version of the kernel that uses the number of 
registers appropriate for the device. The number of registers can be determined by 
calling the cudaGetDeviceProperties function, which was discussed in Section 3.6. 
Assume that the variable &dev_prop is passed to the function for the device property 
and the field dev_prop.regsPerBlock generates the number of registers available in 
each SM. For device D, the returned value for this field should be 16,384. The appli-
cation can then divide this number by the targeted number of threads to reside in each 
SM to determine the number of registers that can be used in the kernel.

Shared memory usage can also limit the number of threads assigned to each SM. 
We can assume that the same device D has 16,384 (16K) bytes of shared memory, 
is allocated to thread blocks, in each SM. We can also assume that each SM in D 
can accommodate up to 8 blocks. To reach this maximum, each block must not use 
more than 2K bytes of shared memory; otherwise, the number of blocks that can 
reside in each SM is reduced such that the total amount of shared memory used by 
these blocks does not exceed 16K bytes. For instance, if each block uses 5K bytes of 
shared memory, no more than three blocks can be assigned to each SM.

For the matrix multiplication example, shared memory can become a limiting fac-
tor. For a tile size of 16 × 16, each block needs 16 × 16 × 4=1K bytes of storage for Mds. 
(Note that each element is a float type, which is 4 bytes.) Another 1KB is needed for Nds. 
Thus, each block uses 2K bytes of shared memory. The 16K-byte shared memory allows 
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8 blocks to simultaneously reside in an SM. Since this is the same as the maximum 
allowed by the threading hardware, shared memory is not a limiting factor for this tile 
size. In this case, the real limitation is the threading hardware limitation that only allows 
1536 threads in each SM. This constraint limits the number of blocks in each SM to six. 
Consequently, only 6*2KB= 12KB of the shared memory will be used. These limits 
change from one device to another but can be determined at runtime with device queries.

The size of shared memory in each SM can also vary depending on the device. 
Each generation or model of device can have different amounts of shared memory 
in each SM. It is often desirable for a kernel to be able to use different amount of 
shared memory according to the amount available in the hardware. We may want a 
host code to dynamically determine the size of the shared memory and adjust the 
amount of shared memory used by a kernel, which can be done by calling the cuda-
GetDeviceProperties function. We make the assumption that variable &dev_prop is 
passed to the function and that field dev_prop.sharedMemPerBlock gives the number 
of registers available in each SM. The programmer can then determine the amount of 
shared memory that should be used by each block.

Unfortunately, the kernel in Fig. 4.16 does not support this. The declarations used 
in Fig. 4.16 hardwire the size of its shared memory usage to a compile-time constant:

    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

That is, the size of Mds and Nds is set to be TILE_WIDTH2 elements, regardless of 
the value of TILE_WIDTH at compile-time. To illustrate, assume that the file contains

    #define TILE_WIDTH 16.

Both Mds and Nds will have 256 elements. If we want to change the size of Mds 
and Nds, we change the value of TILE_WIDTH and recompile the code. The kernel can-
not easily adjust its shared memory usage at runtime without recompilation.

We can enable such an adjustment with a different style of declaration in CUDA. 
We can add a C “extern” keyword in front of the shared memory declaration and 
omit the size of the array in the declaration. In this manner, the declarations for Mds 
and Nds read as

    extern __shared__ Mds[];
    extern __shared__ Nds[];

Note that the arrays are now one-dimensional. We will need to use a linearized 
index based on the vertical and horizontal indexes.

At runtime when we launch the kernel, we can dynamically determine the amount 
of shared memory to be used according to the device query result and supply that 
as a third configuration parameter to the kernel launch. The revised kernel could be 
launched with the following statements:

  size_t size=
    calculate_appropriate_SM_usage(dev_prop.sharedMemPerBlock,...);
  matrixMulKernel<<<dimGrid, dimBlock, size>>>(Md, Nd, Pd, Width);
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where size_t is a built-in type for declaring a variable to holds the size information for dynami-
cally allocated data structures. The size is expressed in bytes. In our matrix multiplication 
example, for a 16 × 16 tile, we have a size of 16 × 16 × 4=1024 bytes. The details of the 
calculation for setting the value of size at run-time have been omitted.

4.8  SUMMARY
In summary, the execution speed of a program in modern processors can be severely 
limited by the speed of the memory. To achieve good utilization of the execution 
throughput of CUDA devices, a high compute-to-global-memory-access ratio in 
the kernel code should be obtained. If the ratio obtained is low, the kernel is mem-
ory-bound; i.e., its execution speed is limited by the rate at which its operands are 
accessed from memory.

CUDA defines registers, shared memory, and constant memory. These memo-
ries are much smaller than the global memory but can be accessed at much higher 
rates. Using these memories effectively requires a redesign of the algorithm. We use 
matrix multiplication to illustrate tiling, a widely used technique to enhance locality 
of data access and effectively use shared memory. In parallel programming, tiling 
forces multiple threads to jointly focus on a subset of the input data at each phase 
of execution so that the subset data can be placed into these special memory types, 
consequently increasing the access speed. We demonstrate that with 16 × 16 tiling, 
global memory accesses are no longer the major limiting factor for matrix multipli-
cation performance.

However, CUDA programmers need to be aware of the limited sizes of these 
types of memory. Their capacities are implementation-dependent. Once their capaci-
ties are exceeded, they limit the number of threads that can simultaneously execute 
in each SM. The ability to reason about hardware limitations when developing an 
application is a key aspect of computational thinking.

Although we introduced tiled algorithms in the context of CUDA programming, 
the technique is an effective strategy for achieving high-performance in virtually all 
types of parallel computing systems. The reason is that an application must exhibit 
locality in data access in order to effectively use high-speed memories in these sys-
tems. In a multicore CPU system, data locality allows an application to effectively 
use on-chip data caches to reduce memory access latency and achieve high-perfor-
mance. Therefore, the reader will find the tiled algorithm useful when he/she devel-
ops a parallel application for other types of parallel computing systems using other 
programming models.

Our goal for this chapter is to introduce the concept of locality, tiling, and dif-
ferent CUDA memory types. We introduced a tiled matrix multiplication kernel by 
using shared memory. The use of registers and constant memory in tiling has yet to 
be discussed. The use of these memory types in tiled algorithms will be explained 
when parallel algorithm patterns are discussed.
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4.9  EXERCISES

	 1.	 Consider matrix addition. Can one use shared memory to reduce the global 
memory bandwidth consumption? Hint: Analyze the elements accessed by 
each thread and see if there is any commonality between threads.

	 2.	 Draw the equivalent of Fig. 4.14 for an 8× 8 matrix multiplication with 2× 2 
tiling and 4× 4 tiling. Verify that the reduction in global memory bandwidth 
is indeed proportional to the dimensions of the tiles.

	 3.	 What type of incorrect execution behavior can happen if one or both  
__syncthreads() are omitted in the kernel of Fig. 4.16?

	 4.	 Assuming that capacity is not an issue for registers or shared memory, give 
one important reason why it would be valuable to use shared memory instead 
of registers to hold values fetched from global memory? Explain your answer.

	 5.	 For our tiled matrix–matrix multiplication kernel, if we use a 32x32 tile, what 
is the reduction of memory bandwidth usage for input matrices M and N?
A.	 1/8 of the original usage
B.	 1/16 of the original usage
C.	 1/32 of the original usage
D.	 1/64 of the original usage

	 6.	 Assume that a CUDA kernel is launched with 1,000 thread blocks, with each 
having 512 threads. If a variable is declared as a local variable in the kernel, 
how many versions of the variable will be created through the lifetime of the 
execution of the kernel?
A.	 1
B.	 1000
C.	 512
D.	 512000

	 7.	 In the previous question, if a variable is declared as a shared memory 
variable, how many versions of the variable will be created throughout the 
lifetime of the execution of the kernel?
A.	 1
B.	 1000
C.	 512
D.	 51200

	 8.	 Consider performing a matrix multiplication of two input matrices with 
dimensions N × N. How many times is each element in the input matrices 
requested from global memory in the following situations?
A.	 There is no tiling.
B.	 Tiles of size T × T are used.
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	 9.	 A kernel performs 36 floating-point operations and 7 32-bit word global 
memory accesses per thread. For each of the following device properties, 
indicate whether this kernel is compute- or memory-bound.
A.	 Peak FLOPS= 200 GFLOPS, Peak Memory Bandwidth= 100 GB/s
B.	 Peak FLOPS= 300 GFLOPS, Peak Memory Bandwidth= 250 GB/s

	10.	 To manipulate tiles, a new CUDA programmer has written the following 
device kernel, which will transpose each tile in a matrix. The tiles are of 
size BLOCK_WIDTH by BLOCK_WIDTH, and each of the dimensions of matrix A 
is known to be a multiple of BLOCK_WIDTH. The kernel invocation and code 
are shown below. BLOCK_WIDTH is known at compile time, but could be set 
anywhere from 1 to 20.
dim3 blockDim(BLOCK_WIDTH,BLOCK_WIDTH);
dim3 gridDim(A_width/blockDim.x,A_height/blockDim.y);
BlockTranspose<<<gridDim, blockDim>>>(A, A_width, A_height);
__global__ void
BlockTranspose(float* A_elements, int A_width, int A_height)
{
  __shared__ float blockA[BLOCK_WIDTH][BLOCK_WIDTH];
  int baseIdx=blockIdx.x * BLOCK_SIZE + threadIdx.x;
  baseIdx += (blockIdx.y * BLOCK_SIZE + threadIdx.y) * A_width;
  blockA[threadIdx.y][threadIdx.x]=A_elements[baseIdx];
  A_elements[baseIdx]=blockA[threadIdx.x][threadIdx.y];
}

A.	 Out of the possible range of values for BLOCK_SIZE, for what values of 
BLOCK_SIZE will this kernel function execute correctly on the device?

B.	 If the code does not execute correctly for all BLOCK_SIZE values, 
suggest a fix to the code to make it work for all BLOCK_SIZE values.
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The execution speed of a parallel program can vary greatly depending on the resource 
constraints of the computing hardware. While managing the interaction between par-
allel code and hardware resource constraints is important for achieving high per-
formance in virtually all parallel programming models, it is a practical skill that is 
best learned with hands-on exercises in a parallel programming model designed for 
high performance. In this chapter, we will discuss the major types of resource con-
straints in a CUDA device and how they can affect the kernel execution performance 
[Ryoo 2008][CUDA C Best Practice]. In order to achieve his/her goals, a program-
mer often has to find ways to achieve a required level of performance that is higher 
than that of an initial version of the application. In different applications, different 
constraints may dominate and become the limiting factors, commonly referred to as 
bottlenecks. One can often dramatically improve the performance of an application 
on a particular CUDA device by trading one resource usage for another. This strategy 
works well if the resource constraint thus alleviated was actually the dominating con-
straint before the strategy was applied, and the one thus exacerbated does not have 
negative effects on parallel execution. Without such understanding, performance tun-
ing would be guesswork; plausible strategies may or may not lead to performance 
enhancements. Beyond insights into these resource constraints, this chapter further 
offers principles and case studies designed to cultivate intuition about the type of 
algorithm patterns that can result in high performance execution. It also establishes 
idioms and ideas that will likely lead to good performance improvements during your 
performance tuning efforts.
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5.1  GLOBAL MEMORY BANDWIDTH
One of the most important factors of CUDA kernel performance is accessing data in 
the global memory. CUDA applications exploit massive data parallelism. Naturally, 
CUDA applications tend to process a massive amount of data from the global mem-
ory within a short period of time. In Chapter 4, Memory and data locality, we studied 
tiling techniques that utilize shared memories to reduce the total amount of data that 
must be accessed from the global memory by a collection of threads in each thread 
block. In this chapter, we will further discuss memory coalescing techniques that 
can more effectively move data from the global memory into shared memories and 
registers. Memory coalescing techniques are often used in conjunction with tiling 
techniques to allow CUDA devices to reach their performance potential by more 
efficiently utilizing the global memory bandwidth.1

The global memory of a CUDA device is implemented with DRAMs. Data bits are 
stored in DRAM cells that are small capacitors, where the presence or absence of a tiny 
amount of electrical charge distinguishes between 0 and 1. Reading data from a DRAM 
cell requires the small capacitor to use its tiny electrical charge to drive a highly capaci-
tive line leading to a sensor and set off its detection mechanism that determines whether 
a sufficient amount of charge is present in the capacitor to qualify as a “1” (see “Why is 
DRAM so slow?” sidebar). This process takes 10 s of nanoseconds in modern DRAM 
chips. This is in sharp contrast with the sub-nanosecond clock cycle time of modern 
computing devices. Because this is a very slow process relative to the desired data 
access speed (sub-nanosecond access per byte), modern DRAMs use parallelism to 
increase their rate of data access, commonly referred to as memory access throughput.

1 Recent CUDA devices use on-chip caches for global memory data. Such caches automatically 
coalesce more of the kernel access patterns and somewhat reduce the need for programmer to manu-
ally rearrange their access patterns. However, even with caches, coalescing techniques will continue to 
have significant effect on kernel execution performance in the foreseeable future.

WHY ARE DRAMS SO SLOW?
The following figure shows a DRAM cell and the path for accessing its con-
tent. The decoder is an electronic circuit that uses a transistor to drive a line 
connected to the outlet gates of thousands of cells. It can take a long time for 
the line to be fully charged or discharged to the desired level.
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Each time a DRAM location is accessed, a range of consecutive locations that 
includes the requested location are actually accessed. Many sensors are provided in 
each DRAM chip and they work in parallel. Each senses the content of a bit within 
these consecutive locations. Once detected by the sensors, the data from all these 
consecutive locations can be transferred at very high-speed to the processor. These 
consecutive locations accessed and delivered are referred to as DRAM bursts. If an 
application makes focused use of data from these bursts, the DRAMs can supply the 
data at a much higher rate than if a truly random sequence of locations were accessed.

Recognizing the burst organization of modern DRAMs, current CUDA devices 
employ a technique that allows the programmers to achieve high global memory access 
efficiency by organizing memory accesses of threads into favorable patterns. This tech-
nique takes advantage of the fact that threads in a warp execute the same instruction at 
any given point in time. When all threads in a warp execute a load instruction, the hard-
ware detects whether they access consecutive global memory locations. That is, the 
most favorable access pattern is achieved when all threads in a warp access consecutive 
global memory locations. In this case, the hardware combines, or coalesces, all these 
accesses into a consolidated access to consecutive DRAM locations. For example, for 
a given load instruction of a warp, if thread 0 accesses global memory location N2, 
thread 1 location N+1, thread 2 location N+2, and so on, all these accesses will be coa-
lesced, or combined into a single request for consecutive locations when accessing the 
DRAMs. Such coalesced access allows the DRAMs to deliver data as a burst.3

A more formidable challenge is for the cell to drive the vertical line to the sense 
amplifiers and allow the sense amplifier to detect its content. This is based on 
electrical charge sharing. The gate lets out the tiny amount of electrical charge 
stored in the cell. If the cell content is “1”, the tiny amount of charge must raise 
the electrical potential of the large capacitance of the long bit line to a suffi-
ciently high level that can trigger the detection mechanism of the sense ampli-
fier. A good analogy would be for someone to hold a small cup of coffee at one 
end of a long hallway for another person to smell the aroma propagated through 
the hallway to determine the flavor of the coffee.

One could speed up the process by using a larger, stronger capacitor in 
each cell. However, the DRAMs have been going in the opposite direction. 
The capacitors in each cell have been steadily reduced in size and thus reduced 
in their strength over time so that more bits can be stored in each chip. This is 
why the access latency of DRAMs has not decreased over time.

2 Different CUDA devices may also impose alignment requirements on N. For example, in some CUDA 
devices, N is required to be aligned to 16-word boundaries. That is, the lower 6 bits of N should all be 
0 bits. Such alignment requirements have been relaxed in recent CUDA devices due to the presence of 
2nd-level caches.
3 Note that modern CPUs also recognize the DRAM burst organization in their cache memory design. 
A CPU cache line typically maps to one or more DRAM bursts. Applications that make full use of 
bytes in each cache line they touch tend to achieve much higher performance than those that randomly 
access memory locations. The techniques presented in this chapter can be adapted to help CPU pro-
grams to achieve high performance.
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In order to understand how to effectively use the coalescing hardware, we need to 
review how the memory addresses are formed in accessing C multidimensional array 
elements. Recall from Chapter 3, Scalable parallel execution (Fig. 3.3, replicated as 
Fig. 5.1 for convenience) that multidimensional array elements in C and CUDA are 
placed into the linearly addressed memory space according to the row-major conven-
tion. The term row major refers to the fact that the placement of data preserves the 
structure of rows: all adjacent elements in a row are placed into consecutive locations 
in the address space. In Fig. 5.1, the four elements of row 0 are first placed in their 
order of appearance in the row. Elements in row 1 are then placed, followed by ele-
ments of row 2, followed by elements of row 3. It should be clear that M0,0 and M1,0, 
though appear to be consecutive in the two-dimensional matrix, are placed four loca-
tions away in the linearly addressed memory.

Fig. 5.2 illustrates the favorable vs. unfavorable CUDA kernel 2D row-major 
array data access patterns for memory coalescing. Recall from Fig. 4.7 that in our 
simple matrix multiplication kernel, each thread accesses a row of the M array and 
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a column of the N array. The reader should review Section 4.3 before continuing. 
Figure 5.2(A) illustrates the data access pattern the M array, where threads in a warp 
read adjacent rows. That is, during iteration 0, threads in a warp read element 0 of 
rows 0 through 31. During iteration 1, these same threads read element 1 of rows 0 
through 31. None of the accesses will be coalesced. A more favorable access pattern 
is shown in Fig. 5.2(B), where each thread reads a column of N. During iteration 0, 
threads in warp 0 read element 1 of columns 0 through 31. All these accesses will be 
coalesced.

In order to understand why the pattern in Fig. 5.2(B) is more favorable than that 
in Fig. 5.2(A), we need to review how these matrix elements are accessed in more 
detail. Fig. 5.3 shows a small example of the favorable access pattern in accessing a 
4×4 matrix. The arrow in the top portion of Fig. 5.3 shows the access pattern of the 
kernel code. This access pattern is generated by the access to N in Fig. 4.3:

N[k*Width + Col]

Within a given iteration of the k loop, the k*Width value is the same across all 
threads. Recall that Col=blockIdx.x*blockDim.x+threadIdx.x. Since the value of 
blockIndx.x and blockDim.x are of the same value for all threads in the same block, 
the only part of k*Width+Col that varies across a thread block is threadIdx.x. Since 
adjacent threads have consecutive threadIdx.x values, their accessed elements 
will have consecutive addresses. For example, in Fig. 5.3, assume that we are using 
4×4 blocks and that the warp size is 4. That is, for this toy example, we are using 
only 1 block to calculate the entire P matrix. The values of Width, blockDim.x, 
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blockIdx.x are 4, 4, and 0 for all threads in the block. In iteration 0, the k value is 0. 
The index used by each thread for accessing N is

N[k*Width+Col]=N[k*Width+blockIdx.x*blockDim.x+threadIdx.x]
                 =N[0*4 + 0*4 + threadidx.x]
                 =N[threadIdx.x]

That is, within this thread block, the index for accessing N is simply the value 
of threadIdx.x. The N elements accessed by T0, T1, T2, T3 are N[0], N[1], N[2], 
and N[3]. This is illustrated with the “Load iteration 0” box of Fig. 5.3. These ele-
ments are in consecutive locations in the global memory. The hardware detects that 
these accesses are made by threads in a warp and to consecutive locations in the 
global memory. It coalesces these accesses into a consolidated access. This allows 
the DRAMs to supply data at a high rate.

During the next iteration, the k value is 1. The index used by each thread for 
accessing N becomes:

N[k*Width+Col]  =N[k*Width+blockIdx.x*blockDim.x+threadIdx.x]
                   =N[1*4 + 0*4 + threadidx.x]
                   =N[4+threadIdx.x]

The N elements accessed by T0, T1, T2, T3 in this iteration are N[5], N[6], N[7], 
and N[8], as shown with the “Load iteration 1” box in Fig. 5.3. All these accesses 
are again coalesced into a consolidated access for improved DRAM bandwidth 
utilization.

Fig. 5.4 shows an example of a matrix data access pattern that is not coalesced. 
The arrow in the top portion of the figure shows that the kernel code for each thread 
accesses elements of a row in sequence. The arrow in the top portion of Figure 5.4 
shows the access pattern of the kernel code for one thread. This access pattern is 
generated by the access to M in Fig. 4.3:

M[Row*Width+k]

Within a given iteration of the k loop, k*Width value is the same across all threads. 
Recall from Fig. 4.3 that Row=blockIdx.y*blockDim.y+threadIdx.y. Since the 
value of blockIndx.y and blockDim.y are of the same value for all threads in the 
same block, the only part of Row*Width+k that can vary across a thread block is 
threadIdx.y. In Fig. 5.4, we assume again that we are using 4×4 blocks and that the 
warp size is 4. The values of Width, blockDim.y, blockIdx.y are 4, 4, and 0 for 
all threads in the block. In iteration 0, the k value is 0. The index used by each thread 
for accessing M is:

M[Row*Width+k]  =M[(blockIdx.y*blockDim.y+threadIdx.y)*Width+k]
                   =M[((0*4+threadIdx.y)*4 + 0]
                   =M[threadIdx.x*4]

That is, the index for accessing M is simply the value of threadIdx.x*4. The 
M elements accessed by T0, T1, T2, T3 are M[0], M[4], M[8], and M[12]. This is 
illustrated with the “Load iteration 0” box of Fig. 5.4. These elements are not in 
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consecutive locations in the global memory. The hardware cannot coalesce these 
accesses into a consolidated access.

During the next iteration, the k value is 1. The index used by each thread for 
accessing M becomes:

M[Row*Width+k]  =M[(blockIdx.y*blockDim.y+threadIdx.y)*Width+k]
                   =M[(0*4+threadidx.x)*4+1]
                   =M[threadIdx.x*4+1]

The M elements accessed by T0, T1, T2, T3 are M[1], M[5], M[9], and M[13], as 
shown with the “Load iteration 1” box in Fig. 5.4. Again, these accesses cannot be 
coalesced into a consolidated access.

For a realistic matrix, there are typically hundreds or even thousands of elements 
in each dimension. The M elements accessed in each iteration by neighboring threads 
can be hundreds or even thousands of elements apart. The “Load iteration 0” box in 
the bottom portion shows how the threads access these nonconsecutive locations in 
the 0th iteration. The hardware will determine that accesses to these elements are far 
away from each other and cannot be coalesced. As a result, when a kernel loop iter-
ates through a row, the accesses to global memory are much less efficient than the 
case where a kernel iterates through a column.

If an algorithm intrinsically requires a kernel code to iterate through data along 
the row direction, one can use the shared memory to enable memory coalescing. The 
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technique, called corner turning, is illustrated in Fig. 5.5 for matrix multiplication. 
Each thread reads a row from M, a pattern that cannot be coalesced. Fortunately, 
a tiled algorithm can be used to enable coalescing. As we discussed in Chapter 4, 
Memory and data locality, threads of a block can first cooperatively load the tiles 
into the shared memory. Care must be taken to ensure that these tiles are loaded in 
a coalesced pattern. Once the data is in shared memory, they can be accessed either 
on a row basis or a column basis with much less performance variation because the 
shared memories are implemented as intrinsically high-speed on-chip memory that 
does not require coalescing to achieve high data access rate.

We replicate Fig. 4.16 here as Fig. 5.6, where the matrix multiplication kernel 
loads two tiles of matrix M and N into the shared memory. Recall that at the beginning 
of each phase (Lines 9–11) each thread in a thread block is responsible for loading 
one M element and one N element into Mds and Nds. Note that there are TILE_WIDTH2 
threads involved in each tile. The threads use threadIdx.y and threadIdx.y to 
determine the elements to load.

The M elements are loaded in line 9, where the index calculation for each thread 
uses ph to locate the left end of the tile. The linearized index calculation is equivalent 
to the two-dimensional array access expression M[Row][ph*TILE_SIZE+tx]. Note 
that the column index used by the threads only differs in terms of threadIdx. The 
row index is determined by blockIdx.y and threadIdx.y (Line 5), which means that 
threads in the same thread block with identical blockIdx.y/threadIdx.y and adja-
cent threadIdx.x values will access adjacent M elements. That is, each row of the tile 

Original
access
pattern

Tiled
access
pattern

Copy into 
scratchpad 

memory

Perform 
multiplication 

with scratchpad 
values

d_M d_N

W
ID

T
H

WIDTH

d_M d_N

FIGURE 5.5

Using shared memory to enable coalescing.
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is loaded by TILE_WIDTH threads whose threadIdx are identical in the y dimension 
and consecutive in the x dimension. The hardware will coalesce these loads.

In the case of N, the row index ph*TILE_SIZE+ty has the same value for all 
threads with the same threadIdx.y value. The question is whether threads with 
adjacent threadIdx.x values access adjacent N elements of a row. Note the column 
index calculation for each thread, Col=bx*TILE_SIZE+tx (see line 6). The first term, 
bx*TILE_SIZE, is the same for all threads in the same block. The second term, tx, is 
simply the threadIdx.x value. Therefore, threads with adjacent threadIdx.x values 
access adjacent N elements in a row. The hardware will coalesce these loads.

Note that in the simple algorithm, threads with adjacent threadIdx.x values 
access vertically adjacent elements that are not physically adjacent in the row major 
layout. The tiled algorithm “transformed” this into a different access pattern where 
threads with adjacent threadIdx.x values access horizontally adjacent elements. 
That is, we turned a vertical access pattern into a horizontal access pattern, which 
is sometimes referred to as corner turning. Corner turning could be also used to 
turn a horizontal access pattern into a vertical access pattern, which is beneficial in 
languages such as FORTRAN where 2D arrays are laid out in column-major order.

In the tiled algorithm, loads to both the M and N elements are coalesced. Therefore, 
the tiled matrix multiplication algorithm has two advantages over the simple matrix 

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) 

{

1.   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2.   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.   int bx = blockIdx.x;  int by = blockIdx.y;
4.   int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the P element to work on
5.   int Row = by * TILE_WIDTH + ty;
6.   int Col = bx * TILE_WIDTH + tx;

7.   float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element

8.   for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of M and N tiles into shared memory
9.     Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];

10.     Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
11.     __ syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k) {
13. Pvalue += Mds[ty][k] * Nds[k][tx];

}
14. __syncthreads();

}
15.   P[Row*Width + Col] = Pvalue;  

}

FIGURE 5.6

Tiled Matrix Multiplication Kernel using shared memory.
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multiplication. First, the number of memory loads is reduced due to the reuse of data 
in the shared memory. Second, the remaining memory loads are coalesced so the 
DRAM bandwidth utilization is further improved. These two improvements have 
multiplicative effect on each other and result in very significant increased execution 
speed of the kernel. On a current generation device, the tiled kernel can run more 
than 30x faster than the simple kernel.

Lines 5, 6, 9, 10 in Fig. 5.6 form a frequently used programming pattern for load-
ing matrix elements into shared memory in tiled algorithms. We would also like to 
encourage the reader to analyze the data access pattern by the dot-product loop in 
lines 12 and 13. Note that the threads in a warp do not access consecutive locations 
of Mds. This is not a problem since Mds is in shared memory, which does not require 
coalescing to achieve high-speed data access.

5.2  MORE ON MEMORY PARALLELISM
As we explained in Section 5.1, DRAM bursting is a form of parallel organization: 
multiple locations around are accessed in the DRAM core array in parallel. However, 
bursting alone is not sufficient to realize the level of DRAM access bandwidth 
required by modern processors. DRAM systems typically employ two more forms of 
parallel organization – banks and channels. At the highest level, a processor contains 
one or more channels. Each channel is a memory controller with a bus that connects 
a set of DRAM banks to the processor. Fig. 5.7 illustrates a processor that contains 
four channels, each with a bus that connects four DRAM banks to the processor. In 
real systems, a processor typically has one to eight channels and each channel is con-
nected to a large number of banks.

The data transfer bandwidth of a bus is defined by its width and clock frequency. 
Modern double data rate (DDR) busses perform two data transfers per clock cycle, 
one at the rising edge and one at the falling edge of each clock cycle. For example, a 
64-bit DDR bus with a clock frequency of 1 GHz has a bandwidth of 8B*2*1 GHz = 
16 GB/sec. This seems to be a large number but is often too small for modern CPUs 

FIGURE 5.7

Channels and banks in DRAM systems.
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and GPUs. A modern CPU might require a memory bandwidth of at least 32 GB/s, 
whereas a modern GPU might require 128 GB/s. For this example, the CPU would 
require 2 channels and the GPU would require 8 channels.

For each channel, the number of banks connected to it is determined by the num-
ber of banks required to fully utilize the data transfer bandwidth of the bus. This 
is illustrated in Fig. 5.8. Each bank contains an array of DRAM cells, the sensing 
amplifiers for accessing these cells, and the interface for delivering bursts of data to 
the bus (Section 5.1).

Fig. 5.8(A) illustrates the data transfer timing when a single bank is connected to a 
channel. It shows the timing of two consecutive memory read accesses to the DRAM 
cells in the bank. Recall from Section 5.1 that each access involves a long latency for 
the decoder to enable the cells and for the cells to share their stored charge with the 
sensing amplifier. This latency is shown as the light gray section at the left end of the 
time frame. Once the sensing amplifier completes its work, the burst data is delivered 
through the bus. The time for transferring the burst data through the bus is shown as 
the left dark section of the time frame in Fig. 5.8(A). The second memory read access 
will incur a similar long access latency (light section between the dark sections of the 
time frame) before its burst data can be transferred (right dark section).

In reality, the access latency (light sections) is much longer than the data trans-
fer time (dark section). It should be apparent that the access-transfer timing of a 
one-bank organization would grossly underutilize the data transfer bandwidth of 
the channel bus. For example, if the ratio of DRAM cell array access latency to 
the data transfer time is 20:1, the maximal utilization of the channel bus would be 
1/21 = 4.8%. That is a 16 GB/s channel would deliver data to the processor at a rate 
no more than 0.76 GB/s. This would be totally unacceptable. This problem is solved 
by connecting multiple banks to a channel bus.

When two banks are connected to a channel bus, an access can be initiated in 
the second bank while the first bank is serving another access. Therefore, one can 
overlap the latency for accessing the DRAM cell arrays. Fig. 5.8(B) shows the timing 
of a two-bank organization. We assume that the bank 0 started at a time earlier than 
the window shown in Fig. 5.8(B). Shortly after the first bank starts accessing its cell 

FIGURE 5.8

Banking improves the utilization of data transfer bandwidth of a channel.
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array, the second bank also starts accessing its cell array. When the access in bank 0 
is complete, it transfers the burst data (leftmost dark section of the time frame). Once 
bank 0 completes its data transfer, bank 1 can transfer its burst data (second dark sec-
tion). This pattern repeats for the next accesses.

From Fig. 5.8(B), we can see that by having two banks, we can potentially double 
the utilization of the data transfer bandwidth of the channel bus. In general, if the 
ratio of the cell array access latency and data transfer time is R, we need to have at 
least R+1 banks if we hope to fully utilize the data transfer bandwidth of the chan-
nel bus. For example, if the ratio is 20, we will need at least 21 banks connected to 
each channel bus. In reality, the number of banks connected to each channel bus 
needs to be larger than R for two reasons. One is that having more banks reduces the 
probability of multiple simultaneous accesses targeting the same bank, a phenom-
enon called bank conflict. Since each bank can serve only one access at a time, the 
cell array access latency can no longer be overlapped for these conflicting accesses. 
Having a larger number of banks increases the probability that these accesses will be 
spread out among multiple banks. The second reason is that the size of each cell array 
is set to achieve reasonable latency and manufacturability. This limits the number of 
cells that each bank can provide. One may need a large number of banks just to be 
able to support the memory size required.

There is an important connection between the parallel execution of threads and 
the parallel organization of the DRAM system. In order to achieve the memory access 
bandwidth specified for device, there must be a sufficient number of threads making 
simultaneous memory accesses. Furthermore, these memory accesses must be evenly 
distributed to the channels and banks. Of course, each access to a bank must also be 
a coalesced access, as we studied in Section 5.1.

Fig. 5.9 shows a toy example of distributing array M elements to channels and 
banks. We assume a small burst size of two elements (eight bytes). The distribution 
is done by hardware design. The addressing of the channels and banks is such that 
the first eight bytes of the array (M[0] and M[1]) are stored in bank 0 of channel 0, the 
next eight bytes (M[2] and M[3]) in bank 0 of Channel 1, the next eight bytes (M[4] 
and M[5]) in bank 0 of Channel 2, and the next eight bytes (M[6] and M[7]) in bank 
0 of Channel 3.

At this point, the distribution wraps back to Channel 0 but will use bank 1 for 
the next eight bytes (M[8] and M[9]). This way, elements M[10] and M[11] will be in 
bank 1 of Channel 1, M[12] and M[13] in bank 1 of Channel 2, and M[14] and M[15] 
in bank 1 of Channel 3. Although not shown in the figure, any additional elements 
will be wrapped around and start with bank 0 of Channel 0. For example, if there are 
more elements, M[16] and M[17] will be stored in bank 0 of Channel 0, M[18] and 
M[19] will be in bank 0 of Channel 1, and so on.

The distribution scheme illustrated in Fig. 5.9, often referred to as interleaved 
data distribution, spreads the elements across the banks and channels in the system. 
This scheme ensures that even relatively small arrays are spread out nicely. That 
is, we only assign enough elements to fully utilize the DRAM burst of bank 0 of 
Channel 0 before moving on to bank 0 of Channel 1. In our toy example, as long as 
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we have at least 16 elements, the distribution will involve all the channels and banks 
for storing the elements.

We now illustrate the interaction between parallel thread execution and the paral-
lel memory organization. We will use the example in Fig. 4.9, replicated as Fig. 5.10. 
We assume that the multiplication will be performed with 2×2 thread blocks and  
2×2 tiles.

During the phase 0 of the kernel’s execution, all four thread blocks will be load-
ing their first tile. The M elements involved in each tile are shown in Fig. 5.11. Row 
2 shows the M elements accessed in Phase 0, with their 2D indices. Row 3 shows 
the same M elements with their linearized indices. Assume that all thread blocks are 
executed in parallel. We see that each block will make two coalesced accesses.

FIGURE 5.9

Distributing array elements into channels and banks.
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FIGURE 5.10

A small example of matrix multiplication (replicated from Fig. 4.9).
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According to the distribution in Fig. 5.9, these coalesced accesses will be made to 
the two banks in channel 0 as well as the two banks in channel 2. These four accesses 
will be done in parallel to take advantage of two channels as well as improving the 
utilization of the data transfer bandwidth of each channel.

We also see that Block0,0 and Block0,1 will load the same M elements. Most of the 
modern devices are equipped with caches that will combine these accesses into one 
as long as the execution timing of these blocks are sufficiently close to each other. 
In fact, the cache memories in GPU devices are mainly designed to combine such 
accesses and reduce the number of accesses to the DRAM system.

Rows 4 and 5 show the M elements loaded during phase 1 of the kernel execu-
tion. We see that the accesses are now done to the banks in channel 1 and channel 3. 
Once again, these accesses will be done in parallel. It should be clear to the reader 
that there is a symbiotic relationship between the parallel execution of the threads 
and the parallel structure of the DRAM system. On one hand, good utilization of the 
potential access bandwidth of the DRAM system requires that many threads simul-
taneously access data that reside in different banks and channels. On the other hand, 
the execution throughput of the device relies on good utilization of the parallel struc-
ture of the DRAM system. For example, if the simultaneously executing threads 
all access data in the same channel, the memory access throughput and the overall 
device execution speed will be greatly reduced.

The reader is invited to verify that multiplying two larger matrices, such as 8×8 
with the same 2×2 thread block configuration, will make use of all the four channels 
in Fig. 5.9. Also, an increased DRAM burst size would require multiplication of even 
larger matrices to fully utilize the data transfer bandwidth of all the channels.

FIGURE 5.11

M elements loaded by thread blocks in each phase.
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5.3  WARPS AND SIMD HARDWARE
We now turn our attention to aspects of the thread execution that can limit perfor-
mance. Recall that launching a CUDA kernel generates a grid of threads that is 
organized as a two-level hierarchy. At the top level, a grid consists of a one-, two-, or 
three-dimensional array of blocks. At the bottom level, each block, in turn, consists 
of a one-, two-, or three-dimensional array of threads. In Chapter 3, Scalable parallel 
execution, we saw that blocks can execute in any order relative to each other, which 
allows for transparent scalability across different devices. However, we did not say 
much about the execution timing of threads within each block.

Conceptually, one should assume that threads in a block can execute in any order 
with respect to each other. In algorithms with phases, barrier synchronizations should 
be used whenever we want to ensure that all threads have completed a common phase 
of their execution before any of them start the next phase. We saw such an example 
in the tiled matrix multiplication kernel. The correctness of executing a kernel should 
not depend on the fact that certain threads will execute in synchrony with each other. 
Having said this, we also want to point out that due to various hardware cost consid-
erations, current CUDA devices actually bundle multiple threads for execution. Such 
implementation strategy leads to performance limitations for certain types of kernel 
code constructs. It is advantageous for application developers to change these types 
of constructs to other equivalent forms that perform better.

As we discussed in Chapter 3, Scalable parallel execution, each thread block is par-
titioned into warps. The execution of warps is implemented by an SIMD hardware (see 
“Warps and SIMD Hardware” sidebar). This implementation technique helps to reduce 
hardware manufacturing cost, lower run-time operation electricity cost, and enable coa-
lescing of memory accesses. In the foreseeable future, we expect that warp partitioning 
will remain as a popular implementation technique. However, the size of warps can 
easily vary from implementation to implementation. Up to this point in time, all CUDA 
devices have used similar warp configurations where each warp consists of 32 threads.

WARPS AND SIMD HARDWARE
The motivation for executing threads as warps is illustrated in the follow-
ing picture (Same as Fig. 4.8). The processor has only one control unit that 
fetches and decodes instructions. The same control signal goes to multiple 
processing units, each of which executes one of the threads in a warp. Since 
all processing units are controlled by the same instruction, their execution 
differences are due to the different data operand values in the register files. 
This is called Single-Instruction-Multiple-Data (SIMD) in processor design. 
For example, although all processing units are controlled by an instruction:

add r1, r2, r3

the r2 and r3 values are different in different processing units.
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Thread blocks are partitioned into warps based on thread indices. If a thread 
block is organized into a one-dimensional array, i.e., only threadIdx.x is used, the 
partition is straightforward. ThreadIdx.x values within a warp are consecutive and 
increasing. For warp size of 32, warp 0 starts with thread 0 and ends with thread 31, 
warp 1 starts with thread 32 and ends with thread 63. In general, warp n starts with 
thread 32*n and ends with thread 32(n+1) − 1. For a block whose size is not a multi-
ple of 32, the last warp will be padded with extra threads to fill up the 32-thread posi-
tions. For example, if a block has 48 threads, it will be partitioned into two warps, 
and its warp 1 will be padded with 16 extra threads.

For blocks that consist of multiple dimensions of threads, the dimensions will 
be projected into a linearized row-major order before partitioning into warps. The 
linear order is determined by placing the rows with larger y and z coordinates after 
those with lower ones. That is, if a block consists of two dimensions of threads, one 
would form the linear order by placing all threads whose threadIdx.y is 1 after 
those whose threadIdx.y is 0. Threads whose threadIdx.y is 2 will be placed after 
those whose threadIdx.y is 1, and so on.

Fig. 5.12 shows an example of placing threads of a two-dimensional block into 
linear order. The upper part shows the two-dimensional view of the block. The reader 
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Control units in modern processors are quite complex, including sophis-
ticated logic for fetching instructions and access ports to the instruction 
memory. They include on-chip instruction caches to reduce the latency of 
instruction fetch. Having multiple processing units to share a control unit 
can result in significant reduction in hardware manufacturing cost and power 
consumption.

As the processors are increasingly power-limited, new processors will 
likely use SIMD designs. In fact, we may see even more processing units 
sharing a control unit in the future.
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should recognize the similarity with the row-major layout of two-dimensional arrays. 
Each thread is shown as Ty,x, x being threadIdx.x and y being threadIdx.y. The lower 
part of Fig. 5.12 shows the linearized view of the block. The first four threads are those 
threads whose threadIdx.y value is 0; they are ordered with increasing threadIdx.x 
values. The next four threads are those threads whose threadIdx.y value is 1. They are 
also placed with increasing threadIdx.x values. For this example, all 16 threads form 
half a warp. The warp will be padded with another 16 threads to complete a 32-thread 
warp. Imagine a two-dimensional block with 8×8 threads. The 64 threads will form 
two warps. The first warp starts with T0,0 and ends with T3,7. The second warp starts 
with T4,0 and ends with T7,7. It would be a useful exercise to draw out the picture.

For a three-dimensional block, we first place all threads whose threadIdx.z value 
is 0 into the linear order. Among these threads, they are treated as a two-dimensional 
block as shown in Fig. 5.12. All threads whose threadIdx.z value is 1 will then 
be placed into the linear order, and so on. For a three-dimensional thread block of 
dimensions 2×8×4 (four in the x dimension, eight in the y dimension, and two in the 
z dimension), the 64 threads will be partitioned into two warps, with T0,0,0 through 
T0,7,3 in the first warp and T1,0,0 through T1,7,3 in the second warp.

The SIMD hardware executes all threads of a warp as a bundle. An instruction is 
run for all threads in the same warp. It works well when all threads within a warp fol-
low the same execution path, or more formally referred to as control flow, when work-
ing their data. For example, for an if-else construct, the execution works well when 
either all threads execute the if part or all execute the else part. When threads within a 
warp take different control flow paths, the SIMD hardware will take multiple passes 
through these divergent paths. One pass executes those threads that follow the if part 
and another pass executes those that follow the else part. During each pass, the threads 
that follow the other path are not allowed to take effect. These passes are sequential to 
each other, thus will add to the execution time.

T0,2

T1,1

T0,1T0,0

T1,0

T0,3

T1,2 T1,3

T0,2T0,1T0,0 T0,3 T1,1T1,0 T1,2 T1,3 T2,1T2,0 T2,2 T2,3

T2,1T2,0 T2,2 T2,3

T3,1T3,0 T3,2 T3,3

T3,1T3,0 T3,2 T3,3

linear order

logical 2−D
organization

FIGURE 5.12

Placing 2D threads into linear order.
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The multipass approach to divergent warp execution extends the SIMD hard-
ware’s ability to implement the full semantics of CUDA threads. While the hardware 
executes the same instruction for all threads in a warp, it selectively lets the threads 
take effect in only each pass, allowing every thread to take its own control flow path. 
This preserves the independence of threads while taking advantage of the reduced 
cost of SIMD hardware.

When threads in the same warp follow different execution paths, we say that these 
threads diverge in their execution. In the if-else example, divergence arises if some 
threads in a warp take the if path and some the else path. The cost of divergence is 
the extra pass the hardware needs to take in order to allow the threads in a warp to 
make their own decisions.

Divergence also can arise in other constructs, for example, if threads in a warp 
execute a for-loop which can iterate six, seven, or eight times for different threads. 
All threads will finish the first six iterations together. Two passes will be used to 
execute the 7th iteration, one for those that take the iteration and one for those that do 
not. Two passes will be used to execute the 8th iteration, one for those that take the 
iteration and one for those that do not.

One can determine if a control construct can result in thread divergence by 
inspecting its decision condition. If the decision condition is based on threadIdx 
values, the control statement can potentially cause thread divergence. For example, 
the statement if (threadIdx.x > 2) {} causes the threads to follow two divergent 
control flow paths. Threads 0, 1, and 2 follow a different path than threads 3, 4, 5, 
etc. Similarly, a loop can cause thread divergence if its loop condition is based on 
thread index values.

A prevalent reason for using a control construct with thread divergence is han-
dling boundary conditions when mapping threads to data. This is usually because 
the total number of threads needs to be a multiple of the block size whereas the size 
of the data can be an arbitrary number. Starting with our vector addition kernel in 
Fig. 2.12, we had an if (i<n) statement in addVecKernel. This is because not all 
vector lengths can be expressed as multiples of the block size. For example, assume 
that the vector length is 1003. Assume that we picked 64 as block size. One would 
need to launch 16 thread blocks to process all the 1003 vector elements. However, 
the 16 thread blocks would have 1024 threads. We need to disable the last 21 threads 
in thread block 15 from doing work not expected/allowed by the original program. 
Keep in mind that these 16 blocks are partitioned into 32 warps. Only the last warp 
will have control divergence.

Note that the performance impact of control divergence decreases with the size 
of the vectors being processed. For a vector length of 100, one of the four warps will 
have control divergence, which can have significant impact on performance. For a 
vector size of 1000, only one out of the 32 warps will have control divergence. That 
is, control divergence will affect only about 3% of the execution time. Even if it 
doubles the execution time of the warp, the net impact to the total execution time will 
be about 3%. Obviously, if the vector length is 10,000 or more, only one of the 313 
warps will have control divergence. The impact of control divergence will be much 
less than 1%!
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For two-dimensional data, such as the color-to-greyscale conversion exam-
ple, if-statements are also used to handle the boundary conditions for threads that 
operate at the edge of the data. In Fig. 3.2, to process the 76×62 picture, we used  
20 = 5*4 two-dimensional blocks that consist of 16×16 threads each. Each block 
will be partitioned into 8 warps, each one consists of two rows of a block. There are 
a total 160 warps (8 warps per block) involved.

To analyze the impact of control divergence, refer to Fig. 3.5. None of the warps 
in the 12 blocks in region 1 will have control divergence. There are 12*8 = 96 warps 
in region 1. For region 2, all the 24 warps will have control divergence. For region 3, 
note that all the bottom warps are mapped to data that are completely outside the 
picture. As a result, none of them will pass the if-condition. The reader should verify 
that these warps would have had control divergence if the picture had an odd number 
of pixels in the vertical dimension. Since they all follow the same control flow path, 
none of these 32 warps will have control divergence! In region 4, the first seven 
warps will have control divergence but the last warp will not. All in all, 31 out of the 
160 warps will have control divergence.

Once again, the performance impact of control divergence decreases as the num-
ber of pixels in the horizontal dimension increases. For example, if we process a  
200×150 picture with 16×16 blocks, there will be a total 130 = 13*10 thread blocks 
or 1040 warps. The number of warps in regions 1 through 4 will be 864 (12*9*8), 72 
(9*8), 96 (12*8), and 8 (1*8). Only 80 of these warps will have control divergence. 
Thus, the performance impact of control divergence will be less than 8%. Obviously, 
if we process a realistic picture with more than 1000 pixels in the horizontal dimen-
sion, the performance impact of control divergence will be less than 2%.

Control divergence also naturally arises in some important parallel algorithms 
where the number of threads participating in the computation varies over time. We 
will use a reduction algorithm to illustrate such behavior.

A reduction algorithm derives a single value from an array of values. The single 
value could be the sum, the maximal value, the minimal value, etc., among all ele-
ments. All these types of reductions share the same computation structure. A reduc-
tion can be easily done by sequentially going through every element of the array. 
When an element is visited, the action to take depends on the type of reduction being 
performed. For a sum reduction, the value of the element being visited at the current 
step, or the current value, is added to a running sum. For a maximal reduction, the 
current value is compared to a running maximal value of all the elements visited so 
far. If the current value is larger than the running maximal, the current element value 
becomes the running maximal value. For a minimal reduction, the value of the ele-
ment currently being visited is compared to a running minimal. If the current value 
is smaller than the running minimal, the current element value becomes the running 
minimal. The sequential algorithm ends when all the elements are visited.

The sequential reduction algorithm is work efficient in that every element is only 
visited once and only a minimal amount of work is performed when each element is 
visited. Its execution time is proportional to the number of elements involved. That 
is, the computational complexity of the algorithm is O(N), where N is the number of 
elements involved in the reduction.
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The time needed to visit all elements of a large array motivates parallel execution. 
A parallel reduction algorithm typically resembles the structure of a soccer tourna-
ment. In fact, the elimination process of the World Cup is a reduction of “maximal” 
where the maximal is defined as the team that “beats” all other teams. The tour-
nament “reduction” is done in multiple rounds. The teams are divided into pairs. 
During the first round, all pairs play in parallel. Winners of the first round advance 
to the second round, whose winners advance to the third round, etc. With 16 teams 
entering a tournament, eight winners will emerge from the first round, four from the 
second round, two from the third round, and one final winner from the fourth round.

It should be easy to see that even with 1024 teams, it takes only 10 rounds to 
determine the final winner. The trick is to have enough soccer fields to hold the 512 
games in parallel during the first round, 256 games in the second round, 128 games 
in the third round, and so on. With enough fields, even with sixty thousand teams, we 
can determine the final winner in just 16 rounds. Of course, one would need to have 
enough soccer fields and enough officials to accommodate the thirty thousand games 
in the first round, etc.

Fig. 5.13 shows a kernel function that performs parallel sum reduction. The origi-
nal array is in the global memory. Each thread block reduces a section of the array by 
loading the elements of the section into the shared memory and performing parallel 
reduction on these elements. The code loads the elements of the input array X from 
global memory into the shared memory. The reduction is done in place, which means 
some of the elements in the shared memory will be replaced by partial sums. Each 
iteration of the for-loop in the kernel function implements a round of reduction.

The __syncthreads() statement (Line 5) in the for-loop ensures that all partial 
sums for the previous iteration have been generated and before any one of the threads 
is allowed to begin the current iteration. This way, all threads that enter the second 
iteration will be using the values produced in the first iteration. After the first round, 
the even elements will be replaced by the partial sums generated in the first round. 
After the second round, the elements whose indices are multiples of four will be 
replaced with the partial sums. After the final round, the total sum of the entire sec-
tion will be in partialSum[0].

1. __shared__ float partialSum[SIZE];

partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];
2. unsigned int t = threadIdx.x;

3. for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)

4. {

5. __syncthreads();

6. if (t % (2*stride) == 0)

7. partialSum[t] += partialSum[t+stride];

8. }  

FIGURE 5.13

A simple sum reduction kernel.
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In Fig. 5.13, Line 3 initializes the stride variable to 1. During the first iteration, 
the if-statement in Line 6 is used to select only the even threads to perform addi-
tion between two neighboring elements. The execution of the kernel is illustrated in  
Fig. 5.14. The threads and the array element values are shown in the horizontal direc-
tion. The iterations taken by the threads are shown in the vertical direction with time 
progressing from top to bottom. Each row of Fig. 5.14 shows the contents of the array 
elements after an iteration of the for-loop.

As shown in Fig. 5.16, the even elements of the array hold the pair-wise partial 
sums after iteration 1. Before the second iteration, the value of the stride variable 
is doubled to 2. During the second iteration, only those threads whose indices are 
multiples of four will execute the add-statement in Line 7. Each thread generates a 
partial sum of four elements, as shown in row 2. With 512 elements in each section, 
the kernel function will generate the sum of the entire section after 9 iterations. By 
using blockDim.x as the loop bound in Line 4, the kernel assumes that it is launched 
with the same number of threads as the number of elements in the section. That is, for 
section size of 512, the kernel needs to be launched with 512 threads.4

Let us analyze the total amount of work done by the kernel. Assume that the 
total number of elements to be reduced is N. The first round requires N/2 additions. 
The second round requires N/4 additions. The final round has only one addition. 
There are log2(N) rounds. The total number of additions performed by the kernel is  
N/2 + N/4+ N/8 + … + 1 = N−1. Therefore, the computational complexity of the 
reduction algorithm is O(N). The algorithm is work efficient. However, we also need 
to make sure that the hardware is efficiently utilized while executing the kernel.
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FIGURE 5.14

Execution of the sum reduction kernel.

4 Note that using the same number of threads as the number of elements in a section is wasteful. Half of 
the threads in a block will never execute. The reader is encouraged to modify the kernel and the kernel 
launch execution configuration parameters to eliminate this waste (Exercise 5.1).
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The kernel in Fig. 5.13 clearly has thread divergence. During the first iteration 
of the loop, only those threads whose threadIdx.x are even will execute the add-
statement. One pass will be needed to execute these threads and one additional pass 
will be needed to execute those that do not execute Line 7. In each successive itera-
tion, fewer threads will execute Line 7 but two passes will be still needed to execute 
all the threads during each iteration. This divergence can be reduced with a slight 
change to the algorithm.

Fig. 5.15 shows a modified kernel with a slightly different algorithm for sum 
reduction. Instead of adding neighbor elements in the first round, it adds elements 
that are half a section away from each other. It does so by initializing the stride to be 
half the size of the section. All pairs added during the first round are half the section 
size away from each other. After the first iteration, all the pair-wise sums are stored 
in the first half of the array, as shown in Fig. 5.16. The loop divides the stride by 2 
before entering the next iteration. Thus for the second iteration, the stride variable 
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FIGURE 5.16

Execution of the revised algorithm.

1.  __shared__ float partialSum[SIZE];
partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];

2. unsigned int t = threadIdx.x;
3. for (unsigned int stride = blockDim.x/2; stride >= 1; stride = stride>>1) 

4.    {

5. __syncthreads();
6. if (t < stride)
7. partialSum[t] += partialSum[t+stride];

8. }

FIGURE 5.15

A kernel with fewer thread divergence.
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value is one-quarter of the section size. That is, the threads add elements that are 
quarter a section away from each other during the second iteration.

Note that the kernel in Fig. 5.15 still has an if-statement (Line 6) in the loop. The 
number of threads that execute Line 7 in each iteration is the same as in Fig. 5.13. So, 
why should there be a performance difference between the two kernels? The answer 
lies in the positions of threads that execute Line 7 relative to those that do not.

Fig. 5.16 illustrates the execution of the revised kernel in Fig. 5.15. During the 
first iteration, all threads whose threadIdx.x values are less than half of the size of 
the section execute Line 7. For a section of 512 elements, Threads 0 through 255 
execute the add-statement during the first iteration while threads 256 through 511 
do not. The pair-wise sums are stored in elements 0 through 255 after the first itera-
tion. Since the warps consists of 32 threads with consecutive threadIdx.x values, all 
threads in warp 0 through warp 7 execute the add-statement, whereas warp 8 through 
warp 15 all skip the add-statement. Since all threads in each warp take the same path, 
there is no thread divergence!

The kernel in Fig. 5.15 does not completely eliminate the divergence caused by 
the if-statement. The reader should verify that starting with the 5th iteration, the 
number of threads that execute Line 7 will fall below 32. That is, the final five itera-
tions will have only 16, 8, 4, 2, and 1 thread(s) performing the addition. This means 
that the kernel execution will still have divergence in these iterations. However, the 
number of iterations of the loop that has divergence is reduced from ten to five.

The difference between Figs. 5.13 and 5.15 is small but has very significant perfor-
mance impact. It requires someone with clear understanding of the execution of threads 
on the SIMD hardware of the device to be able to confidently make such adjustments.

5.4  DYNAMIC PARTITIONING OF RESOURCES
The execution resources in an SM include registers, shared memory, thread block 
slots, and thread slots. These resources are dynamically partitioned and assigned 
to threads to support their execution. In Chapter 3, Scalable parallel execution, we 
have seen that Fermi generation of devices have 1536 thread slots. These thread slots 
are partitioned and assigned to thread blocks during runtime. If each thread block 
consists of 512 threads, the 1536 thread slots are partitioned and assigned to three 
blocks. In this case, each SM can accommodate up to three thread blocks due to 
limitations on thread slots.

If each thread block contains 256 threads, the 1536 thread slots are partitioned 
and assigned to 6 thread blocks. The ability to dynamically partition the thread slots 
among thread blocks makes SMs versatile. They can either execute many thread 
blocks each having few threads, or execute few thread blocks each having many 
threads. This is in contrast to a fixed partitioning method where each block receives 
a fixed amount of resources regardless of their real needs. Fixed partitioning results 
in wasted thread slots when a block has few threads and fails to support blocks that 
require more thread slots than the fixed partition allows.
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Dynamic partitioning of resources can lead to subtle interactions between resource 
limitations, which can cause underutilization of resources. Such interactions can occur 
between block slots and thread slots. For example, if each block has 128 threads, the 1536 
thread slots can be partitioned and assigned to 12 blocks. However, since there are only 
8 block slots in each SM, only 8 blocks will be allowed. This means that in the end, only 
1024 of the thread slots will be utilized. Therefore, to fully utilize both the block slots and 
thread slots, one needs at least 256 threads in each block.

As we mentioned in Chapter 4, Memory and data locality, the automatic vari-
ables declared in a CUDA kernel are placed into registers. Some kernels may use 
lots of automatic variables and others may use few of them. Thus, one should expect 
that some kernels require many registers and some require fewer. By dynamically 
partitioning the registers among blocks, the SM can accommodate more blocks if 
they require few registers, and fewer blocks if they require more registers. One does, 
however, need to be aware of potential interactions between register limitations and 
other resource limitations.

In the matrix multiplication example, assume that each SM has 16,384 registers 
and the kernel code uses 10 registers per thread. If we have 16×16 thread blocks, how 
many threads can run on each SM? We can answer this question by first calculating the 
number of registers needed for each block, which is 10*16*16 = 2560. The number 
of registers required by six blocks is 15,360, which is under the 16,384 limit. Adding 
another block would require 17,920 registers, which exceeds the limit. Therefore, the 
register limitation allows six blocks that altogether have 1536 threads to run on each 
SM, which also fits within the limit of 8 block slots and 1536 thread slots.

Now assume that the programmer declares an additional two automatic variables in 
the kernel and bumps the number of registers used by each thread to 12. Assuming the 
same 16×16 blocks, each block now requires 12*16*16 = 3072 registers. The number 
of registers required by six blocks is now 18,432, which exceeds the register limitation 
for some CUDA hardware. The CUDA runtime system deals with this situation by 
reducing the number of blocks assigned to each SM by one, thus reducing the number 
of registers required to 15,360. This, however, reduces the number of threads running 
on an SM from 1536 to 1280. That is, by using two extra automatic variables, the 
program saw a 1/6 reduction in the warp parallelism in each SM. This is sometimes a 
referred to as a “performance cliff” where a slight increase in resource usage can result 
in significant reduction in parallelism and performance achieved [RRS 2008].

Shared memory is another resource that is dynamically partitioned at run-time. 
Tiled algorithms often require a large amount of shared memory to be effective. 
Unfortunately, large shared memory usage can reduce the number of thread blocks 
running on an SM. As we discussed in Section 5.3, reduced thread parallelism can 
negatively affect the utilization of the memory access bandwidth of the DRAM sys-
tem. The reduced memory access throughput, in turn, can further reduce the thread 
execution throughput. This is a pitfall that can result in disappointing performance of 
tiled algorithms and should be carefully avoided.

It should be clear to the reader that the constraints of all the dynamically parti-
tioned resources interact with each other in a complex manner. Accurate determi-
nation of the number of threads running in each SM can be difficult. The reader is 
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referred to the CUDA Occupancy Calculator [NVIDIA], which is a downloadable 
Excel sheet that calculates the actual number of threads running on each SM for a 
particular device implementation given the usage of resources by a kernel.

5.5  THREAD GRANULARITY
An important algorithmic decision in performance tuning is the granularity of 
threads. It is sometimes advantageous to put more work into each thread and use 
fewer threads. Such advantage arises when some redundant work exists between 
threads. In the current generation of devices, each SM has limited instruction pro-
cessing bandwidth. Every instruction consumes instruction processing bandwidth, 
whether it is a floating-point calculation instruction, a load instruction, or a branch 
instruction. Eliminating redundant work can ease the pressure on the instruction pro-
cessing bandwidth and improve the overall execution speed of the kernel.

Fig. 5.17 illustrates such an opportunity in matrix multiplication. The tiled algo-
rithm in Fig. 5.6 uses one thread to compute one element of the output P matrix. This 
requires a dot-product between one row of M and one column of N.
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Increased thread granularity with rectangular tiles.
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The opportunity of thread granularity adjustment comes from the fact that mul-
tiple blocks redundantly load each M tile. This was also demonstrated in Fig. 5.11. 
As shown in Fig. 5.17, the calculation of two P elements in adjacent tiles uses 
the same M row. With the original tiled algorithm, the same M row is redundantly 
loaded by the two blocks assigned to generate these two P tiles. One can eliminate 
this redundancy by merging the two thread blocks into one. Each thread in the new 
thread block now calculates two P elements. This is done by revising the kernel so 
that two dot-products are computed by the innermost loop of the kernel. Both dot-
products use the same Mds row but different Nds columns. This reduces the global 
memory access by one-quarter. The reader is encouraged to write the new kernel 
as an exercise.

The potential downside is that the new kernel now uses even more registers and 
shared memory. As we discussed in the previous section, the number of blocks that 
can be running on each SM may decrease. For a given matrix size, this also reduces 
the total number of thread blocks by half, which may result in an insufficient amount 
of parallelism for matrices of smaller dimensions. In practice, combining up to four 
adjacent horizontal blocks to compute adjacent horizontal tiles significantly improves 
the performance of large (2048×2048 or more) matrix multiplication.

5.6  SUMMARY
In this chapter, we reviewed the major aspects of application performance on a CUDA 
device: global memory access coalescing, memory parallelism, control flow diver-
gence, dynamic resource partitioning and instruction mixes. Each of these aspects 
is rooted in the hardware limitations of the devices. With these insights, the reader 
should be able to reason about the performance of any kernel code he/she comes 
across.

More importantly, we need to be able to convert poor performing code into well 
performing code. As a starting point, we presented practical techniques for creat-
ing good program patterns for these performance aspects. We will continue to study 
practical applications of these techniques in the parallel computation patterns and 
application case studies in the next few chapters.

5.7  EXERCISES

	 1.	 The kernels in Figs. 5.13 and 5.15 are wasteful in their use of threads; half of 
the threads in each block never execute. Modify the kernels to eliminate such 
waste. Give the relevant execute configuration parameter values at the kernel 
launch. Is there a cost in terms of extra arithmetic operation needed? Which 
resource limitation can be potentially addressed with such modification? 
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(Hint: (1) Line 2 and/or Line 3 can be adjusted in each case. (2) The number 
of elements in a section may need to increase.)

	 2.	 Compare the modified kernels you wrote for Exercise 5.1. Which kernel 
incurred fewer additional arithmetic operations from the modification?

	 3.	 Write a complete kernel based on Exercise 5.1 by (1) adding the statements 
that load a section of the input array from global memory to shared memory, 
(2) using blockIdx.x to allow multiple blocks to work on different sections 
of the input array, (3) writing the reduction value for the section to a location 
according to the blockIdx.x so that all blocks will deposit their section 
reduction value to the lower part of the input array in global memory.

	 4.	 Design a reduction program based on the kernel you wrote for Exercise 5.3. 
The host code should (1) transfer a large input array to the global memory, 
(2) use a loop to repeatedly invoke the kernel you wrote for Exercise 5.3 with 
adjusted execution configuration parameter values so that the reduction result 
for the input array will eventually be produced.

	 5.	 For the tiled matrix multiplication kernel in Fig. 5.6, draw the access patterns 
of threads in a warp of Lines 9 and 10 for a small 16×16 matrix size. 
Calculate the tx values and ty values for each thread in a warp and use these 
values in the M and N index calculations in Lines 9 and 10. Show that the 
threads indeed access consecutive M and N locations in global memory during 
each iteration.

	 6.	 For the simple matrix multiplication (P = M*N) based on row-major layout, 
which input matrix will have coalesced accesses?
A.	 M
B.	 N
C.	 M, N
D.	 Neither

	 7.	 For the tiled matrix–matrix multiplication (M*N) based on row-major layout, 
which input matrix will have coalesced accesses?
A.	 M
B.	 N
C.	 M, N
D.	 Neither

	 8.	 For the simple reduction kernel, if the block size is 1024 and warp size is 32, 
how many warps in a block will have divergence during the 5th iteration?
A.	 0
B.	 1
C.	 16
D.	 32
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	 9.	 For the improved reduction kernel, if the block size is 1024 and warp size is 
32, how many warps will have divergence during the 5th iteration?
A.	 0
B.	 1
C.	 16
D.	 32

	10.	 Write a matrix multiplication kernel function that corresponds to the design 
illustrated in Figure 5.17.

	11.	 For tiled matrix multiplication out of the possible range of values for 
BLOCK_SIZE, for what values of BLOCK_SIZE will the kernel completely avoid 
un-coalesced accesses to global memory? (You need to consider only square 
blocks.)

	12.	 In an attempt to improve performance, a bright young engineer changed the 
reduction kernel into the following. (A) Do you believe that the performance 
will improve? Why or why not? (B) Should the engineer receive a reward or a 
lecture? Why?

__shared__ float partialSum[];
unsigned int tid=threadIdx.x;
for (unsigned int stride=n>>1; stride >= 32; stride >>= 1) {
      __syncthreads();
      if (tid < stride)
            shared[tid] += shared[tid + stride];
}
__syncthreads();
if (tid < 32) {    // unroll last 5 predicated steps
      shared[tid] += shared[tid + 16];
      shared[tid] += shared[tid + 8];
      shared[tid] += shared[tid + 4];
      shared[tid] += shared[tid + 2];
      shared[tid] += shared[tid + 1];
}
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In the early days of computing, floating-point arithmetic capability was found only 
in mainframes and supercomputers. Although many microprocessors designed in 
the 1980’s started to have floating-point coprocessors, their floating-point arithmetic 
speed was extremely slow, about three orders of magnitude slower than that of main-
frames and supercomputers. With advances in microprocessor technology, many 
microprocessors designed in the 1990’s, such as Intel Pentium III and AMD Athlon, 
started to have high performance floating-point capabilities that rival supercomput-
ers. High speed floating-point arithmetic has become a standard feature for micro-
processors and GPUs today. Floating-point representation allows for larger dynamic 
range of representable data values and more precise representation of tiny data val-
ues. These desirable properties make floating-point preferred data representative for 
modeling the physical and artificial phenomena, such as combustion, aerodynamics, 
light illumination, and financial risks. Large scale evaluation of these models has 
been driving the need for parallel computing. As a result, it is important for applica-
tion programmers to understand the nature of floating-point arithmetic in developing 
their parallel applications. In particular, we will focus on the accuracy of floating-
point arithmetic operations, the precision of floating-point number representation, 
the stability of numerical algorithms and how they should be taken into consideration 
in parallel programming.
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6.1  FLOATING-POINT DATA REPRESENTATION
The IEEE-754 Floating-Point Standard is an effort for the computer manufacturers 
to conform to a common representation and arithmetic behavior for floating-point 
data [IEEE 2008]. Most, if not all, of the computer manufacturers in the world have 
accepted this standard. In particular, virtually all microprocessors designed in the 
future will either fully conform to or almost fully conform to the IEEE-754 Floating-
Point Standard and its more recent IEEE-754 2008 revision [2008]. Therefore, it is 
important for application developers to understand the concepts and practical con-
siderations of this standard.

A floating-point number system starts with the representation of a numerical 
value as bit patterns. In the IEEE Floating-Point Standard, a numerical value is rep-
resented in three groups of bits: sign (S), exponent (E), and mantissa (M). With some 
exceptions that will be detailed later, each (S, E, M) pattern uniquely identifies a 
numeric value according to the following formula:

	 Value ( 1) *1. *{2 }biasS EM	 (6.1)

The interpretation of S is simple: S = 0 means a positive number and S = 1 a nega-
tive number. Mathematically, any number, including −1, when raised to the power  
of 0, results in 1. Thus the value is positive. On the other hand, when −1 is raised to 
the power of 1, it is −1 itself. With a multiplication by −1, the value becomes nega-
tive. The interpretation of M and E bits are, however, much more complex. We will 
use the following example to help explain the interpretation of M and E bits.

Assume for the sake of simplicity that each floating-point number consists of a 
1-bit sign, 3-bit exponent, and 2-bit mantissa. We will use this hypothetical 6-bit for-
mat to illustrate the challenges involved in encoding E and M. As we discuss numeric 
values, we will sometimes need to express a number either in decimal place value or 
in binary place value. Numbers expressed in decimal place value will have subscript D 
and those in binary place value will have subscript B. For example, 0.5D (5*10−1 since 
the place to the right of the decimal point carries a weight of 10−1) is the same as 0.1B 
(1*2−1 since the place to the right of the decimal point carries a weight of 2−1).

NORMALIZED REPRESENTATION OF M
Formula (6.1) requires that all values are derived by treating the mantissa value as 
1.M, which makes the mantissa bit pattern for each floating-point number unique. 
For example, under this interpretation of the M bits, the only mantissa bit pattern 
allowed for 0.5D is the one where all bits that represent M are 0s:

	 0.5 1.0 * 2D B
1
	

Other potential candidates would be 0.1B*20 and 10.0B*2−2, but neither fits the 
form of 1.M. The numbers that satisfy this restriction will be referred to as normalized 
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numbers. Because all mantissa values that satisfy the restriction are of the form 1.XX, 
we can omit the “1.” part from the representation. Therefore, the mantissa value of 
0.5 in a 2-bit mantissa representation is 00, which is derived by omitting “1.” from 
1.00. This makes a 2-bit mantissa effectively a 3-bit mantissa. In general, with IEEE 
format, an m-bit mantissa is effectively an (m+1)-bit mantissa.

EXCESS ENCODING OF E
The number of bits used to represent E determines the range of numbers that can 
be represented. Large positive E values result in very large floating-point absolute 
values. For example, if the value of E is 64, the floating-point number being repre-
sented is between 264 (>1018) and 265. You would be extremely happy if this was the 
balance of your savings account! Large negative E values result in very small float-
ing values. For example, if E value is −64, the number being represented is between 
2−64 (<10−18) and 2−63. This is a very tiny fractional number. The E field allows a 
floating-point number format to represent a wider range of numbers than integer 
number formats. We will come back to this point when we look at the representable 
numbers of a format.

The IEEE standard adopts an excess or biased encoding convention for E. If  
e bits are used to represent the exponent E, (2e−1–1) is added to the two’s complement 
representation for the exponent to form its excess representation. A two’s comple-
ment representation is a system where the negative value of a number can be derived 
by first complementing every bit of the value and adding one to the result. In our 
3-bit exponent representation, there are three bits in the exponent (e = 3). Therefore, 
the value 23–1−1 = 011 will be added to the 2’s complement representation of the 
exponent value.

The advantage of excess representation is that an unsigned comparator can be 
used to compare signed numbers. As shown in Fig. 6.1, in our 3-bit exponent repre-
sentation, the excess-3 bit patterns increase monotonically from –3 to 3 when viewed 
as unsigned numbers. We will refer to each of these bit patterns as the code for 

2’s complement Decimal value Excess-3

101 –3 000 

110 –2 001 

111 –1 010 

000 0 011 

001 1 100 

010 2 101 

011 3 110 

100 Reserved pattern 111 

FIGURE 6.1

Excess-3 encoding, sorted by excess-3 ordering.
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the corresponding value. For example, the code for –3 is 000 and that for 3 is 110. 
Thus, if one uses an unsigned number comparator to compare excess-3 code for any 
number from –3 to 3, the comparator gives the correct comparison result in terms of 
which number is larger, smaller, etc. For another example, if one compares excess-3 
codes 001 and 100 with an unsigned comparator, 001 is smaller than 100. This is the 
right conclusion since the values that they represent, –2 and 1, have exactly the same 
relation. This is a desirable property for hardware implementation since unsigned 
comparators are smaller and faster than signed comparators.

Fig. 6.1 also shows that the pattern of all 1’s in the excess representation is a 
reserved pattern. Note that a 0 value and an equal number of positive and negative 
values result in an odd number of patterns. Having the pattern 111 as either an even 
number or odd number would result in an unbalanced number of positive and nega-
tive numbers. The IEEE standard uses this special bit pattern in special ways that will 
be discussed later.

Now we are ready to represent 0.5D with our 6-bit format:

	 0.5 001000, where 0, 010, and (1.)00D � � � �S E M

That is, the 6-bit representation for 0.5D is 001000.
In general, with normalized mantissa and excess-coded exponent, the value of a 

number with an n-bit exponent is:

	 ( 1) *1. *2( (2 1))( 1)

� � ��

S M E n

6.2  REPRESENTABLE NUMBERS
The representable numbers of a representation format are the numbers that can be 
exactly represented in the format. For example, if one uses a 3-bit unsigned integer 
format, the representable numbers are shown in Fig. 6.2.

Neither −1 nor 9 can be represented in the format given above. We can draw a 
number line to identify all the representable numbers, as shown in Fig. 6.3 where all 
representable numbers of the 3-bit unsigned integer format are marked with stars.

000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

FIGURE 6.2

Representable numbers of a 3-bit unsigned integer format.
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The representable numbers of a floating-point format can be visualized in a simi-
lar manner. In Fig. 6.4, we show all the representable numbers of what we have so 
far and two variations. We use a 5-bit format to keep the size of the table manage-
able. The format consists of 1-bit S, 2-bit E (excess-1 coded), and 2-bit M (with “1.” 
part omitted). The no-zero column gives the representable numbers of the format we 
discussed thus far. The reader is encouraged to generate at least part of the no-zero 
column using the formula given in Section 6.1. Note that with this format, 0 is not 
one of the representable numbers.

A quick look at how these representable numbers populate the number line, as 
shown in Fig. 6.5, provides further insights about these representable numbers. In 
Fig. 6.5, we show only the positive representable numbers. The negative numbers are 
symmetric to their positive counterparts on the other side of 0.

We can make five observations. First, the exponent bits define the major intervals 
of representable numbers. In Fig. 6.5, there are three major intervals on each side of 0 

0 71 42 3 5 6–1 98

FIGURE 6.3

Representable numbers of a 3-bit unsigned integer format.
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FIGURE 6.4

Representable numbers of no-zero, abrupt underflow, and denorm formats.

0 1 2 3 4

FIGURE 6.5

Representable numbers of the no-zero representation.
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because there are two exponent bits. Basically, the major intervals are between pow-
ers of 2s. With two bits of exponents and one reserved bit pattern (11), there are three 
powers of two (2−1 = 0.5D, 20 = 1.0D, 21 = 2.0D), each starts an interval of represent-
able numbers. Keep in mind that there are also three powers of two (−2−1 = −0.5D, 
−20 = −1.0D, −21 = −2.0D) on the left of zero, are not shown in Fig. 6.5.

The second observation is that the mantissa bits define the number of represent-
able numbers in each interval. With two mantissa bits, we have four representable 
numbers in each interval. In general, with N mantissa bits, we have 2N representable 
numbers in each interval. If a value to be represented falls within one of the intervals, 
it will be rounded to one of these representable numbers. Obviously, the larger the 
number of representable numbers in each interval, the more precisely we can rep-
resent a value in the region. Therefore, the number of mantissa bits determines the 
precision of the representation.

The third observation is that 0 is not representable in this format. It is missing 
from the representable numbers in the no-zero column of Fig. 6.5. Because 0 is one 
of the most important numbers, not being able to represent 0 in a number representa-
tion system is a serious deficiency. We will address this deficiency soon.

The fourth observation is that the representable numbers become closer to each 
other toward the neighborhood of 0. Each interval is half the size of the previous 
interval as we move toward zero. In Fig. 6.5, the rightmost interval is of width 2, the 
next one is of width 1, and the next one is of width 0.5. While not shown in Fig. 6.5, 
there are three intervals on the left of zero. They contain the representable negative 
numbers. The leftmost interval is of width 2, the next one is of width 1 and the next 
one is width 0.5. Since every interval has the same representable numbers, four in 
Fig. 6.5, the representable numbers become closer to each other as we move toward 
zero. In other words, the representative numbers become closer as their absolute val-
ues become smaller. This is a desirable trend because as the absolute value of these 
numbers become smaller, it is more important to represent them more precisely. The 
distance between representable numbers determines the maximal rounding error for 
a value that falls into the interval. For example, if you have 1 billion dollars in your 
bank account, you may not even notice that there is a 1 dollar rounding error in cal-
culating your balance. However, if the total balance is 10 dollars, having a 1 dollar 
rounding error would be much more noticeable!

The fifth observation is that, unfortunately, the trend of increasing density of rep-
resentable numbers, and thus increasing precision of representing numbers in the 
intervals as we move toward zero, does not hold for the very vicinity of 0. That is, 
there is a gap of representable numbers in the immediate vicinity of 0. This is because 
the range of normalized mantissa precludes 0. This is another serious deficiency. The 
representation introduces significantly larger (4×) errors when representing numbers 
between 0 and 0.5 compared to the errors for the larger numbers between 0.5 and 
1.0. In general, with m bits in the mantissa, this style of representation would intro-
duce 2m times more error in the interval closest to zero than the next interval. For 
numerical methods that rely on accurate detection of convergence conditions based 
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on very small data values, such deficiency can cause instability in execution time 
and accuracy of results. Furthermore, some algorithms generate small numbers and 
eventually use them as denominators. The errors in representing these small numbers 
can be greatly magnified in the division process and cause numerical instability in 
these algorithms.

One method that can accommodate 0 into a normalized floating-point number 
system is the abrupt underflow convention, which is illustrated in the second column 
of Fig. 6.4. Whenever E is 0, the number is interpreted as 0. In our 5-bit format, this 
method takes away eight representable numbers (four positive and four negative) in 
the vicinity of 0 (between −1.0 and +1.0) and makes them all 0. Due to its simplic-
ity, some mini-computers in the 1980s used abrupt underflow. Even to this day, some 
arithmetic units that need to operate in high-speed still use abrupt underflow conven-
tion. Although this method makes 0 a representable number, it creates an even larger 
gap between representable numbers in 0’s vicinity, as shown in Fig. 6.6. It is obvi-
ous, when compared with Fig. 6.5, that the gap of representable numbers has been 
enlarged significantly (by 2×) from 0.5 to 1.0. As we explained before, this is very 
problematic for many numerical algorithms whose correctness relies on accurate rep-
resentation of small numbers near zero.

The actual method adopted by the IEEE standard is called denormalization. The 
method relaxes the normalization requirement for numbers very close to 0. As shown 
in Fig. 6.8, whenever E = 0, the mantissa is no longer assumed to be of the form 
1.XX. Rather, it is assumed to be 0.XX. The value of the exponent is assumed to be 
the same as the previous interval. For example, in Fig. 6.4, the denormalized represen-
tation 00001 has exponent value 00 and mantissa value 01. The mantissa is assumed 
to be 0.01 and the exponent value is assumed to be the same as that of the previous 
interval: 0 rather than −1. That is, the value that 00001 represents is now 0.01*20 
= 2−2. Fig. 6.7 shows the representable numbers for the denormalized format. The 
representation now has uniformly spaced representable numbers in the close vicin-
ity of 0. Intuitively, the denormalized convention takes the four numbers in the last 
interval of representable numbers of a no-zero representation and spreads them out to 
cover the gap area. This eliminates the undesirable gap in the previous two methods.  

0 1 2 3 4

FIGURE 6.6

Representable numbers of the abrupt underflow format.

0 1 2

FIGURE 6.7

Representable numbers of a denormalization format.
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Note that the distances between representable numbers in the last two intervals are 
actually identical. In general, if the n-bit exponent is 0, the value is:

	 0. *2 2 2( 1)

M
n

As we can see, the denormalization formula is quite complex. The hardware also 
needs to be able to detect whether a number falls into the denormalized interval 
and choose the appropriate representation for that number. The amount of hard-
ware required to implement denormalization in high speed is quite significant. 
Implementations that use a moderate amount of hardware often introduce thousands 
of clock cycles of delay whenever a denormalized number needs to be generated or 
used. This was the reason why early generations of CUDA devices did not support 
denormalization. However, virtually all recent generations of CUDA devices, thanks 
to the increasing number of available transistors of more recent fabrication processes, 
support denormalization. More specifically, all CUDA devices of compute capabil-
ity 1.3 and up support denormalized double-precision operands, and all devices of  
compute capability 2.0 and up support denormalized single-precision operands.

In summary, the precision of a floating-point representation is measured by the 
maximal error that we can introduce to a floating-point number by representing that 
number as one of the representable numbers. The smaller the error is, the higher the 
precision. The precision of a floating-point representation can be improved by adding 
more bits to mantissa. Adding one bit to the representation of the mantissa improves 
the precision by reducing the maximal error by half. Thus, a number system has 
higher precision when it uses more bits for mantissa. This is reflected in double preci-
sion versus single precision numbers in the IEEE standard.

6.3  SPECIAL BIT PATTERNS AND PRECISION  
IN IEEE FORMAT
We now turn to more specific details of the actual IEEE format. When all exponent 
bits are 1s, the number represented is an infinity value if the mantissa is 0. It is a Not 
a Number (NaN) if the mantissa is not 0. All special bit patterns of the IEEE floating-
point format are described in Fig. 6.8.

Exponent Mantissa Meaning

11…1 ≠ 0 NaN

11…1 = 0 (–1)S *∞
00…0 ≠ 0 denormalized

00…0 = 0 0 

FIGURE 6.8

Special bit patterns in the IEEE standard format.
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All other numbers are normalized floating-point numbers. Single precision num-
bers have 1-bit S, 8-bit E, and 23-bit M. Double precision numbers have 1-bit S, 
11-bit E, and 52-bit M. Since a double precision number has 29 more bits for man-
tissa, the largest error for representing a number is reduced to 1/229 of that of the sin-
gle precision format! With the additional three bits of exponent, the double precision 
format also extends the number of intervals of representable numbers. This extends 
the range of representable numbers to very large as well as very small values.

All representable numbers fall between −∞ (negative infinity) and +∞ (positive 
infinity). An ∞ can be created by overflow, e.g., a large number divided by a very 
small number. Any representable number divided by +∞ or −∞ results in 0.

NaN is generated by operations whose input values do not make sense, for exam-
ple, 0/0, 0*∞, ∞/∞, ∞–∞. They are also used for data that have not been properly 
initialized in a program. There are two types of NaN’s in the IEEE standard: signal-
ing and quiet. Signaling NaN’s (SNaNs) should be represented with the most signifi-
cant mantissa bit cleared, whereas Quiet NaN’s are represented with most significant 
mantissa bit set.

Signaling NaN causes an exception when used as input to arithmetic operations. 
For example, the operation (1.0+ signaling NaN) raises an exception signal to the 
operating system. Signaling NaN’s are used in situations where the programmer 
would like to make sure that the program execution be interrupted whenever any 
NaN values are used in floating-point computations. These situations usually mean 
that there is something wrong with the execution of the program. In mission critical 
applications, the execution cannot continue until the validity of the execution can 
be verified with a separate means. For example, software engineers often mark all 
the uninitialized data as signaling NaN. This practice ensures the detection of using 
uninitialized data during program execution. The current generation of GPU hard-
ware does not support signaling NaN. This is due to the difficulty of supporting 
accurate signaling during massively parallel execution.

Quiet NaN generates another quiet NaN without causing an exception when used 
as input to arithmetic operations. For example, the operation (1.0+ quiet NaN) gen-
erates a quiet NaN. Quiet NaN’s are typically used in applications where the user 
can review the output and decide if the application should be re-run with a different 
input for more valid results. When the results are printed, Quiet NaN’s are printed as 
“NaN” so that the user can spot them in the output file easily.

6.4  ARITHMETIC ACCURACY AND ROUNDING
Now that we have a good understanding of the IEEE floating-point format, we are 
ready to discuss the concept of arithmetic accuracy. While the precision is determined 
by the number of mantissa bits used in a floating-point number format, the accuracy 
is determined by the operations performed on a floating number. The accuracy of a 
floating-point arithmetic operation is measured by the maximal error introduced by 
the operation. The smaller the error is, the higher the accuracy. The most common 
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source of error in floating-point arithmetic is when the operation generates a result 
that cannot be exactly represented and thus requires rounding. Rounding occurs if 
the mantissa of the result value needs too many bits to be represented exactly. For 
example, a multiplication generates a product value that consists of twice the number 
of bits than either of the input values. For another example, adding two floating-point 
numbers can be done by adding their mantissa values together if the two floating-
point values have identical exponents. When two input operands to a floating-point 
addition have different exponents, the mantissa of the one with the smaller exponent 
is repeatedly divided by 2 or right-shifted (i.e., all the mantissa bits are shifted to the 
right by one bit position) until the exponents are equal. As a result, the final result can 
have more bits than the format can accommodate.

Alignment shifting of operands can be illustrated with a simple example based on  
the 5-bit representation in Fig. 6.4. Assume that we need to add 1.00B*2−2(0, 00, 01) 
to 1.00*21

D (0, 10, 00), i.e., we need to perform 1.00B*21 + 1.00B*2−2. Due to the 
difference in exponent values, the mantissa value of the second number needs to be 
right-shifted by 3-bit positions before it is added to the first mantissa value. That is, 
the addition becomes 1.00B*21 + 0.001B*21. The addition can now be performed by 
adding the mantissa values together. The ideal result would be 1.001B*21. However, 
we can see that this ideal result is not a representable number in a 5-bit representa-
tion. It would have required three bits of mantissa and there are only two mantissa 
bits in the format. Thus, the best one can do is to generate one of the closest repre-
sentable numbers, which is either 1.01B*21 or 1.00B*21. By doing so, we introduce 
an error, 0.001B*21, which is half the place value of the least significant place. We 
refer to this as 0.5D ULP (Units in the Last Place). If the hardware is designed to 
perform arithmetic and rounding operations perfectly, the most error that one should 
introduce should be no more than 0.5D ULP. To our knowledge, this is the accuracy 
achieved by the addition and subtraction operations in all CUDA devices today.

In practice, some of the more complex arithmetic hardware units, such as division 
and transcendental functions, are typically implemented with polynomial approxi-
mation algorithms. If the hardware does not use a sufficient number of terms in the 
approximation, the result may have an error larger than 0.5D ULP. For example, if 
the ideal result of an inversion operation is 1.00B*21 but the hardware generates a 
1.10B*21 due to the use of an approximation algorithm, the error is 2D ULP since 
the error (1.10B − 1.00B = 0.10B) is two times bigger than the units in the last place 
(0.01B). In practice, the hardware inversion operations in some early devices intro-
duce an error that is twice the place value of the least place of the mantissa, or 2 
ULP. Thanks to the more abundant transistors in more recent generations of CUDA 
devices, their hardware arithmetic operations are much more accurate.

6.5  ALGORITHM CONSIDERATIONS
Numerical algorithms often need to sum up a large number of values. For example, 
the dot product in matrix multiplication needs to sum up pair-wise products of input 
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matrix elements. Ideally, the order of summing these values should not affect the 
final total since addition is an associative operation. However, with finite precision, 
the order of summing these values can affect the accuracy of the final result. For 
example, if we need to perform a sum reduction on four numbers in our 5-bit repre-
sentation: 1.00B*20+1.00B*20+1.00B*2−2+1.00B*2−2.

If we add up the numbers in strict sequential order, we have the following 
sequence of operations:

	

1.00 *2 1.00 *2 1.00 *2 1.00 *2 1.00 *2 1.00 *2

1
B

0
B

0
B

2
B

2
B

1
B

2

..00 *2 1.00 *2 1.00 *2 1.00 *2B
2

B
1

B
2

B
1

Note that in the second step and third step, the smaller operand simply disappears 
because it is too small compared to the larger operand.

Now, let us consider a parallel algorithm where the first two values are added 
and the second two operands are added in parallel. The algorithm then adds up the 
pair-wise sum:

	

( )1.00 *2 1.00 *2 (1.00 *2 1.00 *2 ) 1.00 *2 1.00 *2B
0

B
0

B
2

B
2

B
1

B
1

B
11.01 *2

Note that the results are different from the sequential result! This is because the 
sum of the third and fourth values is large enough that it now affects the addition 
result. This discrepancy between sequential algorithms and parallel algorithms often 
surprises application developers who are not familiar with floating-point precision 
and accuracy considerations. Although we showed a scenario where a parallel algo-
rithm produced a more accurate result than a sequential algorithm, the reader should 
be able to come up with a slightly different scenario where the parallel algorithm 
produces a less accurate result than a sequential algorithm. Experienced application 
developers either make sure that the variation in the final result can be tolerated, or 
ensure that the data is sorted or grouped in a way that the parallel algorithm results 
in the most accurate results.

A common technique to maximize floating-point arithmetic accuracy is to pre-
sort data before a reduction computation. In our sum reduction example, if we pre-
sort the data according to ascending numerical order, we will have the following:

	 1.00 *2 1.00 *2 1.00 *2 1.00 *2B
2

B
2

B
0

B
0

When we divide up the numbers into groups in a parallel algorithm, say the first 
pair in one group and the second pair in another group, numbers with numerical 
values close to each other are in the same group. Obviously, the sign of the numbers 
needs to be taken into account during the presorting process. Therefore, when we 
perform addition in these groups, we will likely have accurate results. Furthermore, 
some parallel algorithms use each thread to sequentially reduce values within each 
group. Having the numbers sorted in ascending order allows a sequential addition 
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to get higher accuracy. This is a reason why sorting is frequently used in massively 
parallel numerical algorithms. Interested readers should study more advanced 
techniques such as compensated summation algorithm, also known as Kahan’s 
Summation Algorithm, for getting even a more robust approach to accurate summa-
tion of floating-point values [Kahan 1965].

6.6  LINEAR SOLVERS AND NUMERICAL STABILITY
While the order of operations may cause variation in the numerical outcome of reduc-
tion operations, it may have even more serious implications on some types of com-
putation such as solvers for linear systems of equations. In these solvers, different 
numerical values of input may require different ordering of operations in order to find 
a solution. If an algorithm fails to follow a desired order of operations for an input, it 
may fail to find a solution even though the solution exists. Algorithms that can always 
find an appropriate operation order, thus finding a solution to the problem as long as 
it exists for any given input values, are called numerically stable. Algorithms that fall 
short are referred to as numerically unstable.

In some cases, numerical stability considerations can make it more difficult to 
find efficient parallel algorithms for a computational problem. We can illustrate this 
phenomenon with a solver that is based on Gaussian Elimination. Consider the fol-
lowing system of linear equations:

	 3 5 2 19X Y Z	 (Equation 1)

	 2 3 11X Y Z	 (Equation 2)

	 X Y Z2 2 11	 (Equation 3)

As long as the three planes represented by these equations have an intersection 
point, we can use Gaussian elimination to derive the solution that gives the coordi-
nate of the intersection point. We show the process of applying Gaussian elimination 
to this system in Fig. 6.9, where variables are systematically eliminated from lower 
positioned equations.

In the first step, all equations are divided by their coefficient for the X variable: 3 
for Equation 1, 2 for Equation 2, and 1 for Equation 3. This makes the coefficients for 
X in all equations the same. In step two, Equation 1 is subtracted from Equation 2 and 
Equation 3. These subtractions eliminate variable X from Equation 2 and Equation 3,  
as shown in Fig. 6.9.

We can now treat Equation 2 and Equation 3 as a smaller system of equations 
with one fewer variable than the original equation. Since they do not have variable X, 
they can be solved independently from Equation 1. We can make more progress by 
eliminating variable Y from Equation 3. This is done in step 3 by dividing Equation 2 
and Equation 3 by the coefficients for their Y variables: −1/6 for Equation 2 and 1/3 
for Equation 3. This makes the coefficients for Y in both Equation 2 and Equation 3 
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the same. In step four, Equation 2 is subtracted from Equation 3, which eliminates 
variable Y from Equation 3.

For systems with larger number of equations, the process would be repeated 
more. However, since we have only three variables in this example, the third equa-
tion has only the Z variable. We simply need to divide Equation 3 by the coefficient 
for variable Z. This conveniently gives us the solution Z = 3.

With the solution for Z variable in hand, we can substitute the Z value into 
Equation 2 to get the solution Y = 2. We can then substitute both Z = 3 and Y = 2 
into Equation 1 to get the solution X = 1. We now have the complete solution for the 
original system. It should be obvious why step 6 and step 7 form the second phase of 
the method called backward substitution. We go backwards from the last equation to 
the first equation to get solutions for more and more variables.

In general, the equations are stored in matrix forms in computers. Since all cal-
culations only involve the coefficients and the right-hand-side values, we can just 
store these coefficients and right-hand-side values in a matrix. Fig. 6.10 shows the 
matrix view of the Gaussian elimination and back substitution process. Each row 
of the matrix corresponds to an original equation. Operations on equations become 
operations on matrix rows.

3X + 5Y +2Z = 19

2X + 3Y +  Z = 11

X + 2Y + 2Z = 11

Original

X + 5/3Y + 2/3Z = 19/3

X + 3/2Y + 1/2Z = 11/2

X +     2Y +     2Z = 11
Step 1: divide Equation 1 by 3,
Equation 2 by 2

X + 5/3Y +2/3Z = 19/3

–1/6Y –1/6Z =  –5/6

1/3Y + 4/3Z = 14/3
Step 2: subtract Equation 1 from
Equation 2 and Equation 3

X + 5/3Y +2/3Z = 19/3

Y + Z =      5

Y + 4Z = 14

Step 3: divide Equation 2 by -1/6
and Equation 3 by 1/3

X + 5/3Y +2/3Z = 19/3

Y + Z =      5

+    3Z =      9
Step 4: subtract Equation 2 from
Equation 3 

X + 5/3Y +2/3Z = 19/3

Y + Z =      5

Z =      3
Step 5 : divide Equation 3 by 3
Solution for Z!

X + 5/3Y +2/3Z = 19/3

Y =      2

Z =      3
Step 6: substitute Z solution into
Equation 2. Solution for Y!

X =       1

Y =       2

Z =       3
Step 7: substitute Y and Z into 

Equation 1. Solution for X!

FIGURE 6.9

Gaussian elimination and backward substitution for solving systems of linear equations.
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After Gaussian elimination, the matrix becomes a triangular matrix. This is a very 
popular type of matrix for various physics and mathematics reasons. We see that the 
end goal is to make the coefficient part of the matrix into a diagonal form, where each 
row has only a value 1 on the diagonal line. This is called an identity matrix because 
the result of multiplying any matrix multiplied by an identity matrix is itself. This 
is also the reason why performing Gaussian elimination on a matrix is equivalent to 
multiplying the matrix by its inverse matrix.

In general, it is straightforward to design a parallel algorithm for the Gaussian elim-
ination procedure that we described in Fig. 6.10. For example, we can write a CUDA 
kernel and designate each thread to perform all calculations to be done on a row of 
the matrix. For systems that can fit into shared memory, we can use a thread block to 
perform Gaussian elimination. All threads iterate through the steps. After each division 
step, all threads participate in barrier synchronization. They then all perform a subtrac-
tion step, after which one thread will stop its participation since its designated row has 
no more work to do until the backward substitution phase. After the subtraction step, all 
threads need to perform barrier synchronization again to ensure that the next step will 
be done with the updated information. With systems of equations with many variables, 
we can expect reasonable amount of speedup from the parallel execution.

3 5 2 19

2 3 1 11

1 2 2 11

Original

1 5/3 2/3 19/3

1 3/2 1/2 11/2

1 2 2 11

Step 1: divide row 1 by 3, row 2
by 2

1 5/3 2/3 19/3

–1/6 –1/6 –5/6

1/3 4/3 14/3

Step 2: subtract row 1 from row
2 and row 3

1 5/3 2/3 19/3

1 1 5

1 4 14

Step 3: divide row 2 by -1/6 and
row 3 by 1/3

1 5/3 2/3 19/3

1 1 5

3 9

Step 4: subtract row 2 from row 3

1 5/3 2/3 19/3

1 1 5

1 3

Step 5: divide Equation 3 by 3
Solution for Z!

1 5/3 2/3 19/3

1 2

1 3

Step 6: substitute Z solution into
Equation 2. Solution for Y!

1 1

1 2

1 3
Step 7: substitute Y and Z into
Equation 1. Solution for X!

FIGURE 6.10

Gaussian elimination and backward substitution in matrix view.
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Unfortunately, the simple Gaussian elimination algorithm we have been using 
can suffer from numerical instability. This can be illustrated with the example:

	 5 2 16Y Z	 (Equation 1)

	 2 3 11X Y Z	 (Equation 2)

	 X Y Z2 2 11	 (Equation 3)

We will encounter a problem when we perform step 1 of the algorithm. The coeffi-
cient for the X variable in Equation 1 is zero. We will not be able to divide Equation 1  
by the coefficient for variable X and eliminate the X variable from Equation 2 and 
Equation 3 by subtracting Equation 1 from Equation 2 and Equation 3. The reader 
should verify that this system of equation is solvable and has the same solution X = 1,  
Y = 2, and Z = 3. Therefore, the algorithm is numerically unstable. It can fail to gen-
erate a solution for certain input values even though the solution exists.

This is a well-known problem with Gaussian elimination algorithms and can be 
addressed with a method commonly referred to as pivoting. The idea is to find one of 
the remaining equations whose coefficient for the lead variable is not zero. By swap-
ping the current top equation with the identified equation, the algorithm can success-
fully eliminate the lead variable from the rest of the equations. If we apply pivoting 
to the three equations, we end up with the following set:

	 	 (Equation 1’, original Equation 2)

	 	 (Equation 2’, original Equation 1)

	 	 (Equation 3’, original Equation 3)

Note that the coefficient for X in Equation 1’ is no longer zero. We can proceed 
with Gaussian elimination, as illustrated in Fig. 6.11.

The reader should follow the steps in Fig. 6.11. The most important additional 
insight is that some equations may not have the variable that the algorithm is elimi-
nating at the current step (see row 2 of Step 1 in Fig. 6.11). The designated thread 
does not need to do the division on the equation.

In general, the pivoting step should choose the equation with the largest absolute 
coefficient value among all the lead variables and swap its equation (row) with the cur-
rent top equation as well as swap the variable (column) with the current variable. While 
pivoting is conceptually simple, it can incur significant implementation complexity and 
performance overhead. In the case of our simple CUDA kernel implementation, recall 
that each thread is assigned a row. Pivoting requires an inspection and perhaps swap-
ping of coefficient data spread across these threads. This is not a big problem if all coef-
ficients are in the shared memory. We can run a parallel max reduction using threads 
in the block as long as we control the level of control flow divergence within warps.

However, if the system of linear equations is being solved by multiple thread 
blocks or even multiple nodes of a compute cluster, the idea of inspecting data spread 

2 3 11X Y Z

5 2 16Y Z

X Y Z2 2 11
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across multiple thread blocks or multiple compute cluster nodes can be an extremely 
expensive proposition. This is the main motivation for communication avoiding 
algorithms that avoids a global inspection of data such as pivoting [Ballard 2011]. 
In general, there are two approaches to this problem. Partial pivoting restricts the 
candidates of the swap operation to come from a localized set of equations so that the 
cost of global inspection is limited. This can, however, slightly reduce the numerical 
accuracy of the solution. Researchers have also demonstrated that randomization 
tends to maintain a high level of numerical accuracy for the solution.

6.7  SUMMARY
This chapter introduces the concepts of floating-point format and representable num-
bers that are foundational to the understanding of precision. Based on these concepts, 
we also explain the denormalized numbers and why they are important in many 
numerical applications. In early CUDA devices, denormalized numbers were not 
supported. However, later hardware generations support denormalized numbers. We 
have also explained the concept of arithmetic accuracy of floating-point operations. 
This is important for CUDA programmers to understand the potential lower accu-
racy of fast arithmetic operations implemented in the special function units. More 

5 2 16

2 3 1 11

1 2 2 11

Original

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 1: divide row 1 by 3, no
need to divide row 2 or row 3

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row 3
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

Step 3: divide row 2 by 5 and row
3 by 1/2

Step 4: subtract row 2 from row 3

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5
Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5         16/5

1 3

Step 6: substitute Z solution into
Equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into
Equation 1. Solution for X!

2 3 1 11

5 2 16

1 2 2 11
Pivoting: Swap row 1 (Equation1)
with row 2 (Equation 2)

1 5/3 2/3 19/3

1 2

1 3

FIGURE 6.11

Gaussian elimination with pivoting.
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importantly, the readers should now have a good understanding of why parallel algo-
rithms often can affect the accuracy of calculation results and how one can poten-
tially use sorting and other techniques to improve the accuracy of their computation.

6.8  EXERCISES

1.	 Draw the equivalent of Fig. 6.5 for a 6-bit format (1-bit sign, 3-bit mantissa, 
2-bit exponent). Use your result to explain what each additional mantissa bit 
does to the set of representable numbers on the number line.

2.	 Draw the equivalent of Fig. 6.5 for another 6-bit format (1-bit sign, 2-bit 
mantissa, 3-bit exponent). Use your result to explain what each additional 
exponent bit does to the set of representable numbers on the number line.

3.	 Assume that in a new processor design, due to technical difficulty, the 
floating-point arithmetic unit that performs addition can only do “round to 
zero” (rounding by truncating the value toward 0). The hardware maintains 
sufficient number of bits that the only error introduced is due to rounding. 
What is the maximal ulp error value for add operations on this machine?

4.	 A graduate student wrote a CUDA kernel to reduce a large floating-point 
array to the sum of all its elements. The array will always be sorted with the 
smallest values to the largest values. To avoid branch divergence, he decided 
to implement the algorithm of Fig. 6.4. Explain why this can reduce the 
accuracy of his results.

5.	 Assume that in an arithmetic unit design, the hardware implements an 
iterative approximation algorithm that generates two additional accurate 
mantissa bits of the result for the sin() function in each clock cycle. The 
architect decided to allow the arithmetic function to iterate 9 clock cycles. 
Assume that the hardware fills in all remaining mantissa bits as 0’s. What 
would be the maximal ulp error of the hardware implementation of the sin() 
function in this design for the IEEE single-precision numbers? Assume that 
the omitted “1.” mantissa bit must also be generated by the arithmetic unit.

REFERENCES
Ballard, G., Demmel, J., Holtz, O., & Schwartz, O. (2011). Minimizing communication in 

numerical linear algebra. SIAM Journal of Matrix Analysis Applications, 32(3), 866–901.
<http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-

754-compliance-nvidia-gpus>.
IEEE Microprocessor Standards Committee, Draft Standard for Floating-Point Arithmetic 

P754, Most recent revision January 2008.
Kahan, W. (January 1965). Further remarks on reducing truncation errors. Communications of 

the ACM, 8(1), 40. http://dx.doi.org/10.1145/363707.363723.

http://refhub.elsevier.com/B978-0-12-811986-0.00006-6/sbref1
http://refhub.elsevier.com/B978-0-12-811986-0.00006-6/sbref1
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
http://dx.doi.org/10.1145/363707.363723


This page intentionally left blank



149Programming Massively Parallel Processors. DOI: 
Copyright ©	 David B. Kirk/NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved2017

http://dx.doi.org/10.1016/B978-0-12-811986-0.00007-8

Parallel patterns: convolution
An introduction to stencil computation 7

CHAPTER 

CHAPTER OUTLINE

7.1	 Background........................................................................................................150
7.2	 1D Parallel Convolution—A Basic Algorithm.........................................................153
7.3	 Constant Memory and Caching.............................................................................156
7.4	 Tiled 1D Convolution with Halo Cells....................................................................160
7.5	 A Simpler Tiled 1D Convolution—General Caching................................................165
7.6	 Tiled 2D Convolution with Halo Cells....................................................................166
7.7	 Summary............................................................................................................172
7.8	 Exercises............................................................................................................173

In the next several chapters, we will discuss a set of important patterns of parallel  
computation. These patterns are the basis of a wide range of parallel algorithms that 
appear in many parallel applications. We will start with convolution, which is a popu-
lar array operation that is used in various forms in signal processing, digital record-
ing, image processing, video processing, and computer vision. In these application 
areas, convolution is often performed as a filter that transforms signals and pixels 
into more desirable values. Our image blur kernel is such a filter that smooths out the 
signal values so that one can see the big-picture trend. For another example, Gaussian 
filters are convolution filters that can be used to sharpen boundaries and edges of 
objects in images.

In high-performance computing, the convolution pattern is often referred to as 
stencil computation, which appears widely in numerical methods for solving dif-
ferential equations. It also forms the basis of many force calculation algorithms in 
simulation models. Convolution typically involves a significant number of arithmetic 
operations on each data element. For large data sets such as high-definition images 
and videos, the amount of computation can be very large. Each output data element 
can be calculated independently of each other, a desirable trait for parallel comput-
ing. On the other hand, there is substantial level of input data sharing among output 
data elements with somewhat challenging boundary conditions. This makes convo-
lution an important use case of sophisticated tiling methods and input data staging 
methods.
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7.1  BACKGROUND
Convolution is an array operation where each output data element is a weighted sum 
of a collection of neighboring input elements. The weights used in the weighted sum 
calculation are defined by an input mask array, commonly referred to as the convolu-
tion kernel. Since there is an unfortunate name conflict between the CUDA kernel 
functions and convolution kernels, we will refer to these mask arrays as convolu-
tion masks to avoid confusion. The same convolution mask is typically used for all  
elements of the array.

In audio digital signal processing, the input data are in 1D form and represent 
sampled signal volume as a function of time. Fig. 7.1 shows a convolution example for 
1D data where a 5-element convolution mask array M is applied to a 7-element input 
array N. We will follow the C language convention where N and P elements are indexed 
from 0 to 6 and M elements are indexed from 0 to 4. The fact that we use a 5-element 
mask M means that each P element is generated by a weighted sum of the N element at 
the corresponding position, two N elements to the left and two N elements to the right.

For example, the value of P[2] is generated as the weighted sum of N[0]  
(i.e., N[2-2]) through N[4] (i.e., N[2+2]). In this example, we arbitrarily assume 
that the values of the N elements are 1, 2, 3, …,7. The M elements define the weights, 
whose values are 3, 4, 5, 4, 3 in this example. Each weight value is multiplied to the 
corresponding N element values before the products are summed together. As shown 
in Fig. 7.1, the calculation for P[2] is as follows:

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]
  	   = 1*3 + 2*4 + 3*5 + 4*4 + 5*3
  	   = 57

In general, the size of the mask tends to be an odd number, which makes the 
weighted sum calculation symmetric around the element being calculated. That is, an 
odd number of mask elements defines the weighted sum to include the same number 
of elements on each side of the element being calculated. In Fig. 7.1, the mask size is 

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 16 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M
3 4 5 4 3 3 8 15 16 15

FIGURE 7.1

A 1D convolution example, inside elements.
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5 elements. Each output element is calculated as the weighted sum of the correspond-
ing input element, two elements on the left, and two elements on the right.

In Fig. 7.1, the calculation for P[i] can be viewed as an inner product between the 
subarray of N that starts at N[i-2] and the M array. Fig. 7.2 shows the calculation for 
P[3]. The calculation is shifted by one N element from that of Fig. 7.1. That is, the 
value of P[3] is the weighted sum of N[1] (i.e., N[3-2]), through N[5] (i.e., N[3 + 2]).  
We can think of the calculation for P[3] as follows:

P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]
  	   = 2*3 + 3*4 + 4*5 + 5*4 + 6*3
  	   = 76

Because convolution is defined in terms of neighboring elements, boundary con-
ditions naturally arise for output elements that are close to the ends of an array. As 
shown in Fig. 7.3, when we calculate P[1], there is only one N element to the left 
of N[1]. That is, there are not enough N elements to calculate P[1] according to our 
definition of convolution. A typical approach to handling such boundary condition 
is to define a default value to these missing N elements. For most applications, the 

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 76 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M
3 4 5 4 3 6 12 20 20 18

FIGURE 7.2

1D convolution, calculation of P[3].

N PN[0] N[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]

3 38 57 16 151 2 3 4 5 6 7 3 30

Filled in

M M[0] M[3]M[1] M[2] M[4]

3 4 5 4 3 0 4 10 12 12

FIGURE 7.3

1D convolution boundary condition.
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default value is 0, which is what we used in Fig. 7.3. For example, in audio signal 
processing, we can assume that the signal volume is 0 before the recording starts and 
after it ends. In this case, the calculation of P[1] is as follows:

P[1] = 0 * M[0] + N[0]*M[1] + N[1]*M[2] + N[2]*M[3] + N[3]*M[4]
  	   = 0 * 3 + 1*4 + 2*5 + 3*4 + 4*3
  	   = 38

The N element that does not exist in this calculation is illustrated as a dashed box 
in Fig. 7.3. It should be clear that the calculation of P[0] will involve two missing N 
elements, both will be assumed to be 0 for this example. We leave the calculation of 
P[0] as an exercise. These missing elements are typically referred to as “ghost cells” 
or “halo cells” in literature. There are also other types of ghost cells due to the use of 
tiling in parallel computation. These ghost cells can have significant impact on the 
effectiveness and/or efficiency of tiling. We will come back to this point soon.

Also, not all applications assume that the ghost cells contain 0. For example, 
some applications might assume that the ghost cells contain the same value as the 
closest valid data element.

For image processing and computer vision, input data are typically two- 
dimensional arrays, with pixels in an x-y space. Image convolutions are therefore 
2D convolutions, as illustrated in Fig. 7.4. In a 2D convolution, the mask M is a 2D 
array. Its x- and y-dimensions determine the range of neighbors to be included in the 
weighted sum calculation. In Fig. 7.4, we use a 5 × 5 mask for simplicity. In general, 

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

1 2 3 4 5

2 3 4 5 62 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

2 3 4 5 6

3 4 321 6 7

4 5 6 7 84 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

M

3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

9 16 25 24 21

8 15 24 21 16

5 12 21 16 55 12 21 16 5

FIGURE 7.4

A 2D convolution example.
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the mask does not have to be a square array. To generate an output element, we take 
the subarray whose center is at the corresponding location in the input array N. We 
then perform pairwise multiplication between elements of the mask array and those 
of the image array. For our example, the result is shown as the 5 × 5 product array 
below N and P in Fig. 7.4. The value of the output element is the sum of all elements 
of the product array.

The example in Fig. 7.4 shows the calculation of P2,2. For brevity, we will use Ny,x 
to denote N[y][x] in addressing a C array. Since N and P are most likely dynamically 
allocated arrays, we will be using linearized indices in our actual code examples. 
The subarray of N for calculating the value of P2,2 spans from N0,0 to N0,4 in the x or 
horizontal direction and N0,0 to N4,0 in the y or vertical direction. The calculation is 
as follows:

P2,2 = N0,0*M0,0 + N0,1*M0,1 + N0,2*M0,2 + N0,3*M0,3 + N0,4*M0,4
    	    + N1,0*M1,0 + N1,1*M1,1 + N1,2*M1,2 + N1,3*M1,3 + N1,4*M1,4
    	    + N2,0*M2,0 + N2,1*M1,1 + N2,2*M2,2 + N2,3*M2,3 + N2,4*M2,4
    	    + N3,0*M3,0 + N3,1*M3,1 + N3,2*M3,2 + N3,3*M3,3 + N3,4*M3,4
    	    + N4,0*M4,0 + N4,1*M4,1 + N4,2*M4,2 + N4,3*M4,3 + N4,4*M4,4
      = 1*1 + 2*2 + 3*3 + 4*2 + 5*1
    	    + 2*2 + 3*3 + 4*4 + 5*3 + 6*2
    	    + 3*3 + 4*4 + 5*5 + 6*4 + 7*3
    	    + 4*2 + 5*3 + 6*4 + 7*3 + 8*2
    	    + 5*1 + 6*2 + 7*3 + 8*2 + 5*1
      = 1 + 4 + 9 + 8 + 5
    	    + 4 + 9 + 16 + 15 + 12
    	    + 9 + 16 + 25 + 24 + 21
    	    + 8 + 15 + 24 + 21 + 16
    	    + 5 + 12 + 21 + 16 + 5
      = 321

Like 1D convolution, 2D convolution must also deal with boundary conditions. 
With boundaries in both the x and y dimensions, there are more complex boundary con-
ditions: the calculation of an output element may involve boundary conditions along a 
horizontal boundary, a vertical boundary, or both. Fig. 7.5 illustrates the calculation of a 
P element that involves both boundaries. From Fig. 7.5, the calculation of P1,0 involves 
two missing columns and one missing horizontal row in the subarray of N. Like in 1D 
convolution, different applications assume different default values for these missing N 
elements. In our example, we assume that the default value is 0. These boundary condi-
tions also affect the efficiency of tiling. We will come back to this point soon.

7.2  1D PARALLEL CONVOLUTION—A BASIC ALGORITHM
As we mentioned in Section 7.1, the calculation of all output (P) elements can be 
done in parallel in a convolution. This makes convolution an ideal problem for par-
allel computing. Based on our experience in matrix–matrix multiplication, we can 
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quickly write a simple parallel convolution kernel. For simplicity, we will start with 
1D convolution.

The first step is to define the major input parameters for the kernel. We assume 
that the 1D convolution kernel receives five arguments: pointer to input array N, 
pointer to input mask M, pointer to output array P, size of the mask Mask_Width, and 
size of the input and output arrays Width. Thus, we have the following setup:

__global__ void convolution_1D_basic_kernel(float *N, float *M, 
float *P,
    int Mask_Width, int Width) {
    // kernel body
}

The second step is to determine and implement the mapping of threads to output 
elements. Since the output array is 1D, a simple and good approach is to organize 
the threads into a 1D grid and have each thread in the grid to calculate one output 
element. The reader should recognize that this is the same arrangement as the vector 
addition example as far as output elements are concerned. Therefore, we can use the 
following statement to calculate an output element index from the block index, block 
dimension, and thread index for each thread:

    int i = blockIdx.x*blockDim.x + threadIdx.x;

N
P

1 2 3 4 5 6 7 1 2 3 4 5

2 3 4 5 6 7 8

3 4 5 6 7 8 9

112 3 4 5 6

3 4 5 6 7

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

4

M

0 1 2

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

0 0 0 0 0

0 0 4 6 6

0 0 10 12 123 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 10 12 12

0 0 12 12 10

0 0 12 10 60 0 12 10 6

FIGURE 7.5

A 2D convolution boundary condition.
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Once we determined the output element index, we can access the input N elements 
and the mask M elements using offsets to the output element index. For simplicity, 
we assume that Mask_Width is an odd number and the convolution is symmetric, 
i.e., Mask_Width is 2*n + 1 where n is an integer. The calculation of P[i] will use 
N[i-n], N[i-n+1],…, N[i-1], N[i], N[i+1], N[i+n-1], N[i+n]. We can use a 
simple loop to do this calculation in the kernel:

      float Pvalue = 0;
      int N_start_point = i - (Mask_Width/2);
      for (int j = 0; j < Mask_Width; j++) {
          if (N_start_point + j >= 0 && N_start_point + j < Width) {
            Pvalue += N[N_start_point + j]*M[j];
          }
      }
      P[i] = Pvalue;

The variable Pvalue will allow all intermediate results to be accumulated in a 
register to save DRAM bandwidth. The for loop accumulates all the contributions 
from the neighboring elements to the output P element. The if statement in the loop 
tests if any of the input N elements used are ghost cells, either on the left side or the 
right side of the N array. Since we assume that 0 values will be used for ghost cells, 
we can simply skip the multiplication and accumulation of the ghost cell element and 
its corresponding N element. After the end of the loop, we release the Pvalue into the 
output P element. We now have a simple kernel in Fig. 7.6.

We can make two observations about the kernel in Fig. 7.6. First, there will be 
control flow divergence. The threads that calculate the output P elements near the left 
end or the right end of the P array will handle ghost cells. As we showed in Section 
7.1, each of these neighboring threads will encounter a different number of ghost cells. 
Therefore, they will all be somewhat different decisions in the if statement. The thread 
that calculates P[0] will skip the multiply-accumulate statement about half of the time 

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
int Mask Width int Width) {int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}}
}
P[i] = Pvalue;

}

FIGURE 7.6

A 1D convolution kernel with boundary condition handling.
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whereas the one that calculates P[1] will skip one fewer times, and so on. The cost of 
control divergence will depend on Width the size of the input array and Mask_Width the 
size of the mask. For large input arrays and small masks, the control divergence only 
occurs in a small portion of the output elements, which will keep the effect of control 
divergence small. Since convolution is often applied to large images and spatial data, 
we typically expect that the effect of convergence to be modest or insignificant.

A more serious problem is memory bandwidth. The ratio of floating-point arithmetic 
calculation to global memory accesses is only about 1.0 in the kernel. As we have seen 
in the matrix–matrix multiplication example, this simple kernel can only be expected to 
run at a small fraction of the peak performance. We will discuss two key techniques for 
reducing the number of global memory accesses in the next two sections.

7.3  CONSTANT MEMORY AND CACHING
There are three interesting properties of the way the mask array M is used in convo-
lution. First, the size of the M array is typically small. Most convolution masks are 
less than 10 elements in each dimension. Even in the case of a 3D convolution, the 
mask typically contains only less than 1000 elements. Second, the contents of M are 
not changed throughout the execution of the kernel. Third, all threads need to access 
the mask elements. Even better, all threads access the M elements in the same order, 
starting from M[0] and move by one element a time through the iterations of the for 
loop in Fig. 7.6. These two properties make the mask array an excellent candidate for 
constant memory and caching (Fig. 7.7).

Grid

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cache

Registers Registers Registers Registers

Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

Constant Memory

FIGURE 7.7

A review of the CUDA Memory Model.
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As we discussed in Chapter 5, Performance Considerations, the CUDA program-
ming model allows programmers to declare a variable in the constant memory. Like 
global memory variables, constant memory variables are also visible to all thread 
blocks. The main difference is that a constant memory variable cannot be changed 
by threads during kernel execution. Furthermore, the size of the constant memory is 
quite small, currently at 64KB.

In order to use constant memory, the host code needs to allocate and copy con-
stant memory variables in a different way than global memory variables. To declare 
an M array in constant memory, the host code declares it as a global variable as 
follows:

    #define MAX_MASK_WIDTH 10
    __constant__ float M[MAX_MASK_WIDTH];

This is a global variable declaration and should be outside any function in the 
source file. The keyword__constant__ (two underscores on each side) tells the com-
piler that array M should be placed into the device constant memory.

Assume that the host code has already allocated and initialized the mask in a 
mask M_h array in the host memory with Mask_Width elements. The contents of the 
M_h can be transferred to M in the device constant memory as follows:

      cudaMemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));

Note that this is a special memory copy function that informs the CUDA runt-
ime that the data being copied into the constant memory will not be changed dur-
ing kernel execution. In general, the use of cudaMemcpyToSymble() function is 
as follows:

    cudaMemcpyToSymbol(dest, src, size)

where dest is a pointer to the destination location in the constant memory, src 
is a pointer to the source data in the host memory, and size is the number of bytes 
to be copied.

Kernel functions access constant memory variables as global variables. Thus, 
their pointers do not need to be passed to the kernel as parameters. We can revise our 
kernel to use the constant memory as shown in Fig. 7.8. Note that the kernel looks 
almost identical to that in Fig. 7.6. The only difference is that M is no longer accessed 
through a pointer passed in as a parameter. It is now accessed as a global variable 
declared by the host code. Keep in mind that all the C language scoping rules for 
global variables apply here. If the host code and kernel code are in different files, the 
kernel code file must include the relevant external declaration information to ensure 
that the declaration of M is visible to the kernel.

Like global memory variables, constant memory variables are also located in 
DRAM. However, because the CUDA runtime knows that constant memory varia-
bles are not modified during kernel execution, it directs the hardware to aggressively 
cache the constant memory variables during kernel execution. In order to under-
stand the benefit of constant memory usage, we need to first understand more about  
modern processor memory and cache hierarchies.
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As we discussed in Chapter 5, Performance considerations, the long latency and 
limited bandwidth of DRAM has been a major bottleneck in virtually all modern 
processors. In order to mitigate the effect of memory bottleneck, modern proces-
sors commonly employ on-chip cache memories, or caches, to reduce the number 
of variables that need to be accessed from the main memory (DRAM) as shown  
in Fig. 7.9.

Unlike CUDA shared memory, or scratch memories in general, caches are “trans-
parent” to programs. That is, in order to use CUDA shared memory, a program needs 
to declare variables as__shared__ and explicitly move a global memory variable 
into a shared memory variable. On the other hand, when using caches, the program 

__global__ void convolution_1D_ba sic_kernel(float *N, float *P, int Mask_Width,
int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N start point + j >= 0 && N start point + j < Width) {if _ _ _
Pvalue += N[N_start_point + j]*M[j];

}
}
P[i] = Pvalue;

}

FIGURE 7.8

A 1D convolution kernel using constant memory for M.

The chip

Processor

regs

L1 Cache

L2 Cache

Main Memory

FIGURE 7.9

A simplified view of the cache hierarchy of modern processors.
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simply accesses the original variables. The processor hardware will automatically 
retain some of the most recently or frequently used variables in the cache and remem-
ber their original DRAM addresses. When one of the retained variables is used later, 
the hardware will detect from their addresses that a copy of the variable is available 
in cache. The value of the variable will then be provided from the cache, eliminating 
the need to access DRAM.

There is a tradeoff between the size of a memory and the speed of a memory. 
As a result, modern processors often employ multiple levels of caches. The num-
bering convention for these cache levels reflects the distance to the processor. The 
lowest level, L1 or Level 1, is the cache that is directly attached to a processor 
core. It runs at a speed very close to the processor in both latency and bandwidth. 
However, an L1 cache is small in size, typically between 16KB and 64KB. L2 
caches are larger, in the range of 128KB to 1MB, but can take tens of cycles to 
access. They are typically shared among multiple processor cores, or SMs in a 
CUDA device. In some high-end processors today, there are even L3 caches that 
can be several MB in size.

A major design issue with using caches in a massively parallel processor is 
cache coherence, which arises when one or more processor cores modify cached 
data. Since L1 caches are typically directly attached to only one of the processor 
cores, changes in its contents are not easily observed by other processor cores. This 
causes a problem if the modified variable is shared among threads running on dif-
ferent processor cores. A cache coherence mechanism is needed to ensure that the 
contents of the caches of the other processor cores are updated. Cache coherence is 
difficult and expensive to provide in massively parallel processors. However, their 
presence typically simplifies parallel software development. Therefore, modern 
CPUs typically support cache coherence among processor cores. While modern 
GPUs provide two levels of caches, they typically do without cache coherence to 
maximize hardware resources available to increase the arithmetic throughput of 
the processor.

Constant memory variables play an interesting role in using caches in massively 
parallel processors. Since they are not changed during kernel execution, there is no 
cache coherence issue during the execution of a kernel. Therefore, the hardware can 
aggressively cache the constant variable values in L1 caches. Furthermore, the design 
of caches in these processors is typically optimized to broadcast a value to a large 
number of threads. As a result, when all threads in a warp access the same constant 
memory variable, as is the case of M, the caches can provide tremendous amount of 
bandwidth to satisfy the data needs of threads. Also, since the size of M is typically 
small, we can assume that all M elements are effectively always accessed from caches. 
Therefore, we can simply assume that no DRAM bandwidth is spent on M accesses. 
With the use of constant memory and caching, we have effectively doubled the ratio 
of floating-point arithmetic to memory access to 2.

As it turns out, the accesses to the input N array elements can also benefit from 
caching in more recent GPUs. We will come back to this point in Section 7.5.
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7.4  TILED 1D CONVOLUTION WITH HALO CELLS
We will now address the memory bandwidth issue in accessing N array element with 
a tiled convolution algorithm. Recall that in a tiled algorithm, threads collaborate to 
load input elements into an on-chip memory and then access the on-chip memory for 
their subsequent use of these elements. For simplicity, we will continue to assume 
that each thread calculates one output P element. With up to 1024 threads in a block 
we can process up to 1024 data elements. We will refer to the collection of output 
elements processed by each block as an output tile. Fig. 7.10 shows a small example 
of 16-element 1D convolution using four thread blocks of four threads each. In this 
example, there are four output tiles. The first output tile covers N[0] through N[3], 
the second tile N[4] through N[7], the third tile N[8] through N[11], and the fourth 
tile N[12] through N[15]. Keep in mind that we use four threads per block to keep 
the example small. In practice, there should be at least 32 threads per block for the 
current generation of hardware. From this point on, we will assume that M elements 
are in the constant memory.

We will discuss two input data tiling strategies for reducing the total number of 
global memory accesses. The first one is the most intuitive and involves loading all 
input data elements needed for calculating all output elements of a thread block into 
the shared memory. The number of input elements to be loaded depends on the size 
of the mask. For simplicity, we will continue to assume that the mask size is an odd 
number equal to 2*n+1. That is each output element P[i] is a weighted sum of the 
input element at the corresponding input element N[i], the n input elements to the 
left (N[i−n], … N[i−1]), and the n input elements to the right (N[i+1], … N[i+n]).  
Fig. 7.10 shows an example where Mask_Width=5 and n=2.

Threads in the Block 0 calculate output elements P[0] through P[3]. They col-
lectively require input elements N[0] through N[5]. Note that the calculation also 

0

N

Tile 0

Tile 1

Tile 2

Tile 3

1 2 3 4 5

0 1 2 3 4 5

432 5 6 7 8 9

876 9 10 11 12 13

121110 13 14 15

6 7 8 9 10 11 12 13 14 15

FIGURE 7.10

A 1D tiled convolution example.
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requires two ghost cell elements to the left of N[0]. This is shown as two dashed 
empty elements on the left end of Tile 0 of Fig. 7.6. These ghost elements will be 
assumed have default value of 0. Tile 3 has a similar situation at the right end of input 
array N. In our discussions, we will refer to tiles like Tile 0 and Tile 3 as boundary 
tiles since they involve elements at or outside the boundary of the input array N.

Threads in Block 1 calculate output elements P[4] through P[7]. They collec-
tively require input elements N[2] through N[9], also shown in Fig. 7.7. Note that 
elements N[2] and N[3] belong to two tiles and are loaded into the shared memory 
twice, once to the shared memory of Block 0 and once to the shared memory of Block 
1. Since the contents of shared memory of a block are only visible to the threads of 
the block, these elements need to be loaded into the respective shared memories for all 
involved threads to access them. The elements that are involved in multiple tiles and 
loaded by multiple blocks are commonly referred to as halo cells or skirt cells since 
they “hang” from the side of the part that is used solely by a single block. We will refer 
to the center part of an input tile that is used solely by a single block the internal cells 
of that input tile. Tile 1 and Tile 2 are commonly referred to as internal tiles since they 
do not involve any ghost elements at our outside the boundaries of the input array N.

We now show the kernel code that loads the input tile into shared memory. We first 
declare a shared memory array N_ds to hold the N tile for each block. The size of the 
shared memory array must be large enough to hold the left halo cells, the center cells, 
and the right halo cells of an input tile. We assume that Mask_Width is an odd number. 
Assume that the constant MAX_MASK_WIDTH specifies the maximal possible value of 
Mask_Width. The maximal possible size of the shared memory array is TILE_SIZE + 
MAX_MASK_WIDTH - 1, which is used in the following declaration in the kernel:

      __shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

We then load the left halo cells, which include the last n = Mask_Width/2 center 
elements of the previous tile. For example, in Fig. 7.6, the left halo cells of Tile 1 
consist of the last 2 center elements of Tile 0. In C, assuming that Mask_Width is an 
odd number, the expression Mask_Width/2 will result in an integer value that is the 
same as (Mask_Wdith-1)/2. We will use the last (Mask_Width/2) threads of the 
block to load the left halo element. This is done with the following two statements:

      int halo_index_left = (blockIdx.x - 1)*blockDim.x + 
threadIdx.x;
      if (threadIdx.x >= blockDim.x - n) {
        N_ds[threadIdx.x - (blockDim.x - n)] =
          (halo_index_left < 0) ? 0 : N[halo_index_left];
      }

In the first statement, we map the thread index to element index into the previous 
tile with the expression (blockIdx.x-1)*blockDim.x+threadIdx.x. We then pick 
only the last n threads to load the needed left halo elements using the condition in 
the if statement. For example, in Fig. 7.6, blockDim.x equals 4 and n equals 2; only 
thread 2 and thread 3 will be used. Thread 0 and thread 1 will not load anything due 
to the failed condition.
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For the threads used, we also need to check if their halo cells are actually ghost 
cells. This can be checked by testing if the calculated halo_index_left value is 
negative. If so, the halo cells are actually ghost cells since their N indices are negative, 
outside the valid range of the N indices. The conditional C assignment will choose 0 
for threads in this situation. Otherwise, the conditional statement will use the halo_
index_left to load the appropriate N elements into the shared memory. The shared 
memory index calculation is such that left halo cells will be loaded into the shared 
memory array starting at element 0. For example, in Fig. 7.6, blockDim.x-n equals 2. 
So for block 1, thread 2 will load the left most halo element into N_ds[0] and thread 
3 will load the next halo element into N_ds[1]. However, for block 0, both thread 2 
and thread 3 will load value 0 into N_ds[0] and N_ds[1].

The next step is to load the center cells of the input tile. This is done by mapping 
the blockIdx.x and threadIdx.x values into the appropriate N indices, as shown in the 
following statement. The reader should be familiar with the N index expression used:

      N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + 
threadIdx.x];

Since the first n elements of the N_ds array already contain the left halo cells, the 
center elements need to be loaded into the next section of N_ds. This is done by adding n 
to threadIdx.x as the index for each thread to write its loaded center element into N_ds.

We now load the right halo elements, which is quite similar to loading the left 
halo. We first map the blockIdx.x and threadIdx.x to the elements of next output 
tile. This is done by adding (blockIdx.x+1)*blockDim.x to the thread index to form 
the N index for the right halo cells. In this case, we are loading the beginning n ele-
ments of the next tile.

      int halo_index_right = (blockIdx.x + 1)*blockDim.x + 
threadIdx.x;
      if (threadIdx.x < n) {
          N_ds[n + blockDim.x + threadIdx.x] =
              (halo_index_right >= Width) ? 0 : N[halo_index_right];
      }

Now that all the input tile elements are in N_ds, each thread can calculate their 
output P element value using the N_ds elements. Each thread will use a different 
section of the N_ds. Thread 0 will use N_ds[0] through N_ds[Mask_Width-1]; 
thread 1 will use N_ds[1] through N[Mask_Width]. In general, each thread will use  
N_ds[threadIdx.x] through N[threadIdx.x+Mask_Width-1]. This is implemented 
in the following for loop to calculate the P element assigned to the thread:

      float Pvalue = 0;
      for(int j = 0; j < Mask_Width; j++) {
          Pvalue += N_ds[threadIdx.x + j]*M[j];
      }
      P[i] = Pvalue;
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However, one must not forget to do a barrier synchronization using __syncthreads() 
to make sure that all threads in the same block have completed loading their assigned 
N elements before anyone should start using them from the shared memory.

Note that the code for multiply and accumulate is simpler than the base algo-
rithm. The conditional statements for loading the left and right halo cells have placed 
the 0 values into the appropriate N_ds elements for the first and last thread block.

The tiled 1D convolution kernel is significantly longer and more complex than 
the basic kernel. We introduced the additional complexity in order to reduce the num-
ber of DRAM accesses for the N elements. The goal is to improve the arithmetic to 
memory access ratio so that the achieved performance is not limited or less limited by 
the DRAM bandwidth. We will evaluate improvement by comparing the number of 
DRAM accesses performed by each thread block for the kernels in Figs. 7.8 and 7.11.

In Fig. 7.8, there are two cases. For thread blocks that do not handle ghost cells, 
the number of N elements accessed by each thread is Mask_Width. Thus, the total 
number of N elements accessed by each thread block is blockDim.x*Mask_Width or 
blockDim.x*(2n+1). For example, if Mask_Width is equal to 5 and each block con-
tains 1024 threads, each block access a total of 5120 N elements.

__global__ void convolution_1D_tiled_kernel(float *N, float *P, int Mask_Width,

int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float  N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

__syncthreads();

float Pvalue = 0;

for(int j = 0; j < Mask_Width; j++) {

Pvalue += N_ds[threadIdx.x + j]*M[j];

}

P[i] = Pvalue;

}

FIGURE 7.11

A tiled 1D convolution kernel using constant memory for M.
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For the first and the last blocks, the threads that handle ghost cells do not perform 
memory access for the ghost cells. This reduces the number of memory accesses. We 
can calculate the reduced number of memory accesses by enumerating the number of 
threads that use each ghost cell. This is illustrated with a small example in Fig. 7.12. 
The leftmost ghost cell is used by one thread. The second left ghost cell is used by 
two threads. In general, the number of ghost cells is n and the number of threads that 
use each of these ghost cells, from left to right is 1, 2, … n. This is a simple series 
with sum n(n+1)/2, which is the total number of accesses that were avoided due to 
ghost cells. For our simple example where Mask_Width is equal to 5 and n is equal to 
2, the number of accesses avoided due to ghost cells is 2*3/2 = 3. A similar analysis 
gives the same results for the right ghost cells. It should be clear that for large thread 
blocks, the effect of ghost cells for small mask sizes will be insignificant.

We now calculate the total number of memory accesses for N elements by the tiled 
kernel in Fig. 7.11. All the memory accesses have been shifted to the code that loads the N 
elements into the shared memory. In the tiled kernel, each N element is only loaded by one 
thread. However, 2n halo cells will also be loaded, n from the left and n from the right, for 
blocks that do not handle ghost cells. Therefore, we have the blockDim.x+2n elements 
loaded by the internal thread blocks and blockDim+n by boundary thread blocks.

For internal thread blocks, the ratio of memory accesses between the basic and 
the tiled 1D convolution kernel is:

(blockDim.x*(2n+1)) / (blockDim.x+2n)

whereas the ratio for boundary blocks is:

(blockDim.x*(2n+1) – n(n+1)/2) / (blockDim.x+n)

For most situations, blockDim.x is much larger than n. Both ratios can be approx-
imated by eliminating the small terms n(n+1)/2 and n:

(blockDim.x*(2n+1)/ blockDim.x = 2n+1 = Mask_Width

N

0 N[0] N[3]N[1] N[2] N[5]N[4] N[6]0 00

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

FIGURE 7.12

A small example of accessing N elements and ghost cells.
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This should be quite an intuitive result. In the original algorithm, each N ele-
ment is redundantly loaded by approximately Mask_Width threads. For example, in  
Fig. 7.12, N[2] is loaded by the 5 threads that calculate P[2], P[3], P[4], P[5], 
and P[6]. That is, the ratio of memory access reduction is approximately propor-
tional to the mask size.

However, in practice, the effect of the smaller terms may be significant and can-
not be ignored. For example, if blockDim.x is 128 and n is 5, the ratio for the internal 
blocks is:

(128*11 – 10) / (128 + 10) = 1398 / 138 = 10.13

whereas the approximate ratio would be 11. It should be clear that as the 
blockDim.x becomes smaller, the ratio also becomes smaller. For example, if block-
Dim is 32 and n is 5, the ratio for the internal blocks becomes:

(32*11 – 10) / (32+10) = 8.14

The readers should always be careful when using smaller block and tile sizes. 
They may result in significantly less reduction in memory accesses than expected. 
In practice, smaller tile sizes are often used due to insufficient amount of on-chip 
memory, especially for 2D and 3D convolution where the amount of on-chip memory 
needed grows quickly with the dimension of the tile.

7.5  A SIMPLER TILED 1D CONVOLUTION— 
GENERAL CACHING
In Fig. 7.11, much of the complexity of the code has to do with loading the left and 
right halo cells in addition to the internal elements into the shared memory. More 
recent GPUs such as Fermi provide general L1 and L2 caches, where L1 is private 
to each streaming multiprocessor and L2 is shared among all streaming multiproces-
sors. This leads to an opportunity for the blocks to take advantage of the fact that 
their halo cells may be available in the L2 cache.

Recall that the halo cells of a block are also internal cells of a neighboring block. 
For example, in Fig. 7.10, the halo cells N[2] and N[3] of Tile 1 are also internal 
elements of Tile 0. There is a significant probability that by the time Block 1 needs 
to use these halo cells, they are already in L2 cache due to the accesses by Block 0. 
As a result, the memory accesses to these halo cells may be naturally served from L2 
cache without causing additional DRAM traffic. That is, we can leave the accesses 
to these halo cells in the original N elements rather than loading them into the N_ds. 
We now present a simpler tiled 1D convolution algorithm that only loads the internal 
elements of each tile into the shared memory.

In the simpler tiled kernel, the shared memory N_ds array only needs to hold 
the internal elements of the tile. Thus, it is declared with the TILE_SIZE, rather than 
TILE_SIZE+Mask_Width-1.

        __shared__ float N_ds[TILE_SIZE];



166 CHAPTER 7  Parallel patterns: convolution

Loading the tile becomes very simple with only one line of code:

      N_ds[threadIdx.x] = N[blockIdx.x*blockDim.x+threadIdx.x];

We still need a barrier synchronization before using the elements in N_ds. The 
loop that calculates P elements, however, becomes more complex. It needs to add 
conditions to check for use of both halo cells and ghost cells. The handling of ghost 
cells is done with the same conditional statement as that in Fig. 7.6. The multiply-
accumulate statement becomes more complex, shown in Fig. 7.13.

The variables This_tile_start_point and Next_tile_start_point hold the 
starting position index of the tile processed by the current block and that of the tile 
processed by the next in the next block. For example, in Fig. 7.10, the value of This_
tile_start_point for Block 1 is 4 and the value of Next_tile_start_point is 8.

The new if statement tests if the current access to the N element falls within tile 
by testing it against This_tile_start_point and Next_tile_start_point. If the 
element falls within the tile, that is, it is an internal element for the current block, 
it is accessed from the N_ds array in the shared memory. Otherwise, it is accessed 
from the N array, which is hopefully in the L2 cache. The complete tiled kernel using 
general caching is shown in Fig. 7.14.

7.6  TILED 2D CONVOLUTION WITH HALO CELLS
Now that we have learned how to tile a parallel 1D convolution computation, we 
can extend our knowledge to 2D quite easily. For a little more fun, we will use an 
example based on a class of 2D image format that is frequently encountered in image 
libraries and applications.

As we have seen in Chapter 3, Scalable Parallel Execution, real-world images 
are represented as 2D matrices and come in all sizes and shapes. Image processing 

__syncthreads();

    int This_tile_start_point = blockIdx.x * blockDim.x; 
int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

    int N_start_point = i - (Mask_Width/2); 
float Pvalue = 0;
for (int j = 0; j < Mask_Width; j++) {
int N_index = N_start_point + j;
 if (N_index >= 0  && N_index < Width) { 

if ((N_index >= This_tile_start_point)
&& (N_index < Next_tile_start_point)) {

          Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j]; 
} else {
Pvalue += N[N_index] * M[j];

}
}

}
P[i] = Pvalue;

FIGURE 7.13

Using general caching for halo cells.
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libraries typically store these images in row-major layout when reading them from 
files into memory. If the width of the image in terms of bytes is not a multiple of 
the DRAM burst size, the starting point of row 1 and beyond can be misaligned 
from the DRAM burst boundaries. As we have seen in Chapter  5, Performance 
Considerations, such misalignment can result in poor utilization of DRAM band-
width when we attempt to access data in one of the rows. As a result, image libraries 
often also convert images into a padded format when reading them from files into 
memory, as illustrated in Fig. 7.15.

__global__ void convolution_1D_tiled_caching_kernel(float *N, float *P, int 
  Mask_Width,int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float  N_ds[TILE_SIZE];

N_ds[threadIdx.x] = N[i];

__syncthreads();

int This_tile_start_point = blockIdx.x * blockDim.x;

int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

int N_start_point = i - (Mask_Width/2);

float Pvalue = 0;

for (int j = 0; j < Mask_Width; j++) {

int N_index = N_start_point + j;

if (N_index >= 0  && N_index < Width) {

if ((N_index >= This_tile_start_point)

&& (N_index < Next_tile_start_point)) {

Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];

} else {

Pvalue += N[N_index] * M[j];

}

}

}

P[i] = Pvalue;

}

FIGURE 7.14

A simpler tiled 1D convolution kernel using constant memory and general caching.
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M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

Padded
elements

Pitch

FIGURE 7.15

A padded image format and the concept of pitch.
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In Fig. 7.15, we assume that the original image is 3x3. We further assume that 
each DRAM burst encompasses 4 pixels. Without padding, M1,0 in row 1 would 
reside in one DRAM burst unit whereas M1,1 and M1,2 would reside in the next 
DRAM burst unit. Accessing row 1 would require two DRAM bursts and wasting 
half of the memory bandwidth. To address this inefficiency, the library pads one 
element at the end of each row. With the padded elements, each row occupies an 
entire DRAM burst size. When we access row 1 or row 2, the entire row can now be 
accessed in one DRAM burst. In general, the images are much larger; each row can 
encompass multiple DRAM bursts. The padded elements will be added such that 
each row ends at the DRAM burst boundaries.

With padding, the image matrix has been enlarged by the padded elements. 
However, during computation such as image blur (see Chapter: Scalable Parallel 
Execution), one should not process the padded elements. Therefore, the library data 
structure will indicate the original width and height of the image as shown in Fig. 
7.15. However, the library also has to provide the users with the information about 
the padded elements so that the user code can properly find the actual starting posi-
tion of all the rows. This information is conveyed as the pitch of the padded matrix.

Fig. 7.16 shows how the image pixel elements can be accessed in the row-major 
layout of the padded image matrix. The lower layout shows the linearized order. 
Note that the padded elements are at the end of each row. The top layout shows the 
linearized 1D index of pixel elements in the padded matrix. As before, the three 
original elements, M0,1, M0,2, M0,3 of row 0 become M0, M1, and M2 in the linearized 
1D array. Note that the padded elements become “dummy” linearized elements M3, 
M7, and M11. The original elements of row 1, M1,1, M1,2, M1,3, have their linearized 
1D index as M4, M5, and M6. That is, as shown in the top of Fig. 7.16, to calculate 

M

M

M0

M0,0 M0,1

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

M0,2

Padded
elements

M1,0 M1,1 M1,2 M2,0 M2,1 M2,2

M1 M2 M3 M4

Row*Pitch+Col = 2*4+1 = 9

M5 M6 M7 M8 M9 M10 M11

FIGURE 7.16

Row-major layout of a 2D image matrix with padded elements.
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the linearized 1D index of the pixel elements, we will use pitch instead of width in 
the expression:

Linearized 1D index = row * pitch + column

However, when we iterate through a row, we will use width as the loop bound to 
ensure that we use only the original elements in a computation.

Fig. 7.17 shows the image type that we will be using for the kernel code example. 
Note the channels field indicates the number of channels in the pixel: 3 for an RGB 
color image and 1 for a greyscale image as we have seen in Chapter 2, Data parallel 
computing. We assume that the value of these fields will be used as arguments when 
we invoke the 2D convolution kernel.

We are now ready to work on the design of a tiled 2D convolution kernel. In 
general, we will find that the design of the 2D convolution kernel is a straightforward 
extension of the 1D convolution kernel presented in Section 7.5. We need to first 
design the input and output tiles to be processed by each thread block, as shown in 
Fig. 7.18. Note that the input tiles must include the halo cells and extend beyond their 
corresponding output tiles by the number of halo cells in each direction. Fig. 7.19 
shows the first part of the kernel:

// Image Matrix Structure declaration

//
typedef struct {

} * wbImage_t;

int width;
int height;

int pitch;
int channels;
float* data;

FIGURE 7.17

The C type structure definition of the image pixel element.

row_i and col_i for
Thread (0,0)

row_o and col_o for
Thread (0,0)

FIGURE 7.18

Starting element indices of the input tile versus output tile.
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Each thread of the kernel first calculates the y and x indices of its output element. 
These are the col_o and row_o variables of the kernel. The index values for thread0,0 of 
the thread block (which is responsible for the output element at the upper left corner) is 
shown in Fig. 7.18. Each thread then calculates the y and x indices of the input element it 
is to load into the shared memory by subtracting (Mask_Width/2) from row_o and col_o 
and assigning the results to row_i and col_i, also shown in Fig. 7.18. Note that the input 
tile element to be loaded by thread0,0 is also shown in Fig. 7.18. To simply the tiling code 
over the kernel in Fig. 7.14, we will configure each thread block to be of the same size as 
the input tile. In this design, we can simply have each thread to load one input N element. 
We will turn off some of the threads when we calculate the output since there are more 
threads in each block than the number of data elements in each output tile.

We are now ready to load the input tiles into the shared memory (Fig. 7.20). All 
threads participate in this activity but each of them needs to check if the y and x indi-
ces of its input tile elements are within the valid range of the input. If not, the input 
element it is attempting to load is actually a ghost element and a 0.0 value should be 
placed into the shared memory. These threads belong in the thread blocks that calcu-
late the image tiles that are close to the edge of the image. Note that we use the pitch 
value when we compute the linearized 1D index from the y and x index of the pixel. 
Also note that this code only works for the case where the number of channels is 1. 
In general, we should use a for-loop to load all the pixel channel values based on the 
number of channels present.

__global__ void convolution_2D_tiled_kernel(float *P, float *N, int height, int width,
int pitch, int channels, int Mask_Width,

int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y*O_TILE_WIDTH + ty;

int row_i = row_o - Mask_Width/2;
int col_i = col_o - Mask_Width/2;

int col_o = blockIdx.x*O_TILE_WIDTH + tx;

{
const float __restrict__ *M)

FIGURE 7.19

Part 1 of a 2D convolution kernel.

if((row_i >= 0) && (row_i < height) &&

N_ds[ty][tx] = data[row_i * pitch + col_i];

N_ds[ty][tx] = 0.0f;
}

} else{

(col_i >= 0) && (col_i < width)) {

__shared__ float N_ds[TILE_SIZE+MAX_MASK_WIDTH-1]
           [TILE_SIZE+MAX_MASK_HEIGHT-1];

FIGURE 7.20

Part 2 of a 2D convolution kernel.
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The last part of the kernel, shown in Fig. 7.21, computes the output value using 
the input elements in the shared memory. Keep in mind that we have more threads in 
the thread block than the number of pixels in the output tile. The if-statement ensures 
that only the threads whose indices are both smaller than the O_TILE_WIDTH 
should participate in the calculation of output pixels. The doubly nested for-loop 
iterates through the mask array and performs the multiply and accumulate operation 
on the mask element values and input pixel values. Since the input tile in the shared 
memory N_ds includes all the halo elements, the index expressions N_ds[i+ty][j+tx] 
gives the N_ds element that should be multiplied with M[i][j]. The reader should 
notice that this is a straightforward extension of the index expression in correspond-
ing for-loop in Fig. 7.11. Finally, all threads whose output elements are in the valid 
range write their result values into their respective output elements.

To assess the benefit of the 2D tiled kernel over a basic kernel, we can also extend 
the analysis from 1D convolution. In a basic kernel, every thread in a thread block 
will perform (Mask_Width)2 accesses to the image array. Thus, each thread block 
performs a total of (Mask_Width)2*(O_TILE_WIDTH)2 accesses to the image array.

In the tiled kernel, all threads in a thread block collectively load one input tile. 
Therefore, the total number of accesses by a thread block to the image array is  
(O_TILE_WIDTH+Mask_Width-1)2. That is, the ratio of image array accesses between 
the basic and the tiled 2D convolution kernel is:

(Mask_Width)2*(O_TILE_WIDTH)2/ (O_TILE_WIDTH+Mask_Width-1)2

The larger the ratio, the more effective the tiled algorithm in reducing the number 
of memory accesses as compared to the basic algorithm.

Fig. 7.22 shows the trend of the image array access reduction ratio as we vary 
O_TILE_WIDTH, the output tile size. As O_TILE_WIDTH becomes very large, the size of 
the mask becomes negligible compared to tile size. Thus, each input element loaded 
will be used about (Mask_Width)2 times. For Mask_Width value of 5, we expect that 
the ratio will approach 25 as the O_TILE_SIZE becomes much larger than 5. For 
example, for O_TILE_SIZE=64, the ratio is 22.1. This is significantly higher than the 

float output = 0.0f;

for(i = 0; i < MASK_WIDTH; i++) {
for(j = 0; j < MASK_WIDTH; j++) {
output += M[i][j] * N_ds[i+ty][j+tx];

if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

}

}

}
}

if(row_o < height && col_o < width){
data[row_o*width + col_o] = output;

FIGURE 7.21

Part 3 of a 2D convolution kernel.
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ratio of 11.1 for O_TILE_WIDTH=8. The important takeaway point is that we must have 
a sufficiently large O_TILE_WIDTH in order for the tiled kernel to deliver its potential 
benefit. The cost of a large O_TILE_WIDTH is the amount of shared memory needed 
to hold the input tiles.

For a larger Mask_Width, such as 9 in the bottom row of Fig. 7.22, the ideal ratio 
should be 92=81. However, even with a large O_TILE_WIDTH such as 64, the ratio is 
only 64. Note that O_TILE_WIDTH=64 and Mask_Width=9 translate into input tile size 
of 722=5184 elements or 20,736 bytes assuming single precision data. This is more 
than the amount of available shared memory in each SM of the current generation of 
GPUs. Stencil computation that is derived from finite difference methods for solving 
differential equation often require a Mask_Width of 9 or above to achieve numerical 
stability. Such stencil computation can benefit from larger amount of shared memory 
in future generations of GPUs.

7.7  SUMMARY
In this chapter, we have studied convolution as an important parallel computation 
pattern. While convolution is used in many applications such as computer vision and 
video processing, it also represents a general pattern that forms the basis of many 
parallel algorithms. For example, one can view the stencil algorithms in partial dif-
ferential equation solvers as a special case of convolution. For another example, one 
can also view the calculation of grid point force or potential value as a special case 
of convolution.

We have presented a basic parallel convolution algorithm whose implementa-
tions will be limited by DRAM bandwidth for accessing both the input N and mask 
M elements. We then introduced the constant memory and a simple modification 
to the kernel and host code to take advantage of constant caching and eliminate 
practically all DRAM accesses for the mask elements. We further introduced a 
tiled parallel convolution algorithm that reduces DRAM bandwidth consumption 
by introducing more control flow divergence and programming complexity. Finally 
we presented a simpler tiled parallel convolution algorithm that takes advantage of 
the L2 caches.

TilLE_WIDTH

Reduction
Mask_Width = 5

11.1 16 19.7 22.1

Reduction
Mask_Width = 9

20.3 36 51.8 64

8 16 32 64

FIGURE 7.22

Image array access reduction ratio for different tile sizes.
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Although we have shown kernel examples for only 1D convolution, the tech-
niques are directly applicable to 2D and 3D convolutions. In general, the index cal-
culation for the N and M arrays are more complex due to higher dimensionality. Also, 
one will have more loop nesting for each thread since multiple dimensions need to 
be traversed when loading tiles and/or calculating output values. We encourage the 
reader to complete these higher dimension kernels as homework exercises.

7.8  EXERCISES
	 1.	 Calculate the P[0] value in Fig. 7.3.
	 2.	 Consider performing a 1D convolution on array N = {4,1,3,2,3} with mask  

M = {2,1,4}. What is the resulting output array?
	 3.	 What do you think the following 1D convolution masks are doing?

a.	 [0 1 0]
b.	 [0 0 1]
c.	 [1 0 0]
d.	 [−1/2 0 1/2]
e.	 [1/3 1/3 1/3]

	 4.	 Consider performing a 1D convolution on an array of size n with a mask of 
size m:
a.	 How many halo cells are there in total?
b.	 How many multiplications are performed if halo cells are treated as 

multiplications (by 0)?
c.	 How many multiplications are performed if halo cells are not treated as 

multiplications?
	 5.	 Consider performing a 2D convolution on a square matrix of size nxn with a 

square mask of size mxm:
a.	 How many halo cells are there in total?
b.	 How many multiplications are performed if halo cells are treated as 

multiplications (by 0)?
c.	 How many multiplications are performed if halo cells are not treated as 

multiplications?
	 6.	 Consider performing a 2D convolution on a rectangular matrix of size n1xn2 

with a rectangular mask of size m1xm2:
a.	 How many halo cells are there in total?
b.	 How many multiplications are performed if halo cells are treated as 

multiplications (by 0)?
c.	 How many multiplications are performed if halo cells are not treated as 

multiplications?
	 7.	 Consider performing a 1D tiled convolution with the kernel shown in Fig. 7.11 

on an array of size n with a mask of size m using a tiles of size t:
a.	 How many blocks are needed?
b.	 How many threads per block are needed?
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c.	 How much shared memory is needed in total?
d.	 Repeat the same questions if you were using the kernel in Fig. 7.13.

	 8.	 Revise the 1D kernel in Fig. 7.6 to perform 2D convolution. Add more width 
parameters to the kernel declaration as needed.

	 9.	 Revise the tiled 1D kernel in Fig. 7.8 to perform 2D convolution. Keep in 
mind that the host code also needs to be changed to declare a 2D M array in 
the constant memory. Pay special attention to the increased usage of shared 
memory. Also, the N_ds needs to be declared as a 2D shared memory array.

	10.	 Revise the tiled 1D kernel in Fig. 7.11 to perform 2D convolution. Keep in 
mind that the host code also needs to be changed to declare a 2D M array in 
the constant memory. Pay special attention to the increased usage of shared 
memory. Also, the N_ds needs to be declared as a 2D shared memory array.
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Our next parallel pattern is prefix sum, also commonly known as scan. Parallel scan 
is frequently used to convert seemingly sequential operations into parallel operations. 
These operations include resource allocation, work assignment, and polynomial 
evaluation. In general, a computation that is naturally described as a mathematical 
recursion can likely be parallelized as a parallel scan operation. Parallel scan plays a 
key role in massive parallel computing for a simple reason: any sequential section of 
an application can drastically limit the overall performance of the application. Many 
such sequential sections can be converted into parallel computing with parallel scans. 
Another reason parallel scan is an important parallel pattern is that sequential scan 
algorithms are linear algorithms and are extremely work-efficient, which emphasizes 
the importance of controlling the work efficiency of parallel scan algorithms. A slight 
increase in algorithm complexity can make a parallel scan run slower than a sequen-
tial scan for large data sets. Therefore, a work-efficient parallel scan algorithm also 
represents an important class of parallel algorithms that can run effectively on paral-
lel systems with a wide range of computing resources.



176 CHAPTER 8  Parallel patterns: prefix sum

8.1  BACKGROUND
Mathematically, an inclusive scan operation takes a binary associative operator ⊕ 
and an input array of n elements [x0, x1, …, xn−1] and returns the following output 
array:

	 [ ( ) ( )], , ,x x x x x xn0 0 1 0 1 1   ⊕ … ⊕ ⊕…⊕ −

To illustrate, if ⊕ is an addition operation, then an inclusive scan operation on the 
input array [3 1 7 0 4 1 6 3] would return [3 4 11 11 15 16 22 25].

The applications for inclusive scan operations can be illustrated thus: Assume 
that we have a 40-inch sausage to serve to eight people. Each person orders different 
quantities of sausage: 3, 1, 7, 0, 4, 1, 6, and 3 inches. Person number 0 wants 3 inches 
of sausage, person number 1 wants 1 inch, and so on. The sausage can be cut either 
sequentially or in parallel. The sequential method is very straightforward. We first cut 
a 3-inch section for person number 0; the sausage is now 37 inches long. We then cut 
a 1-inch section for person number 1; the sausage becomes 36 inches long. We can 
continue to cut more sections until we serve the 3-inch section to person number 7. 
By then, we have served a total of 25 inches of sausage, with 15 inches remaining.

With an inclusive scan operation, we can calculate the locations of all cut points 
on the basis of the quantity each person orders; i.e., given an addition operation and 
an order input array [3 1 7 0 4 1 6 3], the inclusive scan operation returns [3 4 11 
11 15 16 22 25]. The numbers in the return array are the cutting locations. With this 
information, we can simultaneously make all of the eight cuts, thereby generating the 
sections ordered by each person. The first cut point is at the 3-inch location so that 
the first section will be 3 inches long, as ordered by person number 0. The second 
cut point is at the 4-inch location so that the second section will be 1-inch long, as 
ordered by person number 1. The final cut point will be at the 25-inch location, which 
will produce a 3-inch long section since the previous cut point is at the 22-inch point. 
Person number 7 will eventually be given what she ordered. Note that since all the 
cut points are known from the scan operation, all cuts can be done in parallel.

In summary, an intuitive way of considering an inclusive scan operation is that 
the operation takes an order from a group of people and identifies all the cut points 
that allow the orders to be served all at once. The order could be for sausage, bread, 
camp ground space, or a contiguous chunk of memory in a computer. All orders can 
be served in parallel as long as we can quickly calculate all the cut points.

An exclusive scan operation is similar to an inclusive operation, except that the 
former returns the following output array:

	 [ ( ) ( )], , , ,0 0 0 1 0 1 2    x x x x x xn⊕ … ⊕ ⊕…⊕ −

The first output element is 0, whereas the last output element only reflects the 
contribution of up to xn−2.

The applications of an exclusive scan operation are rather similar to those of an 
inclusive scan operation. The inclusive scan provides a slightly different information. 
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In the sausage example, an exclusive scan would return [0 3 4 11 11 15 16 22], 
which are the beginning points of the cut sections. To illustrate, the section for per-
son number 0 starts at the 0-inch point, and the section for person number 7 starts 
at the 22-inch point. The beginning point information is useful for applications such 
as memory allocation, where the allocated memory is returned to the requester via a 
pointer to its beginning point.

Converting between the inclusive scan output and the exclusive scan output can 
occur easily. We simply need to shift all elements and fill in an element. To convert 
from inclusive to exclusive, we can simply shift all elements to the right and fill in 
the value 0 for the 0th element. To convert from exclusive to inclusive, we only need 
to shift all elements to the left and fill in the last element with the previous last ele-
ment and the last input element. It is just a matter of convenience that we can directly 
generate an inclusive or exclusive scan, whether we care about the cut points or the 
beginning points for the sections.

In practice, parallel scan is often used as a primitive operation in parallel algo-
rithms that perform radix sort, quick sort, string comparison, polynomial evaluation, 
solving recurrences, tree operations, stream compaction, and histograms.

Before we present parallel scan algorithms and their implementations, we will 
first show a work-efficient sequential inclusive scan algorithm and its implemen-
tation, with the assumption that the operation involved is addition. The algorithm 
assumes that the input elements are in the x array and the output elements are to be 
written into the y array.

  void sequential_scan(float *x, float *y, int Max_i) {
    int accumulator = x[0];
    y[0] = accumulator;
    for (int i = 1; i < Max_i; i++) {
          accumulator += x[i];

y[i] = accumulator;
    }
  }

The algorithm is work-efficient, performing only a small amount of work for each 
input or output element. With a reasonably good compiler, only one addition, one 
memory load, and one memory store are used in processing each input x element. 
This amount of work is pretty much the minimal that we will ever be able to do. As 
we will see, when the sequential algorithm of a computation is so “lean and mean,” 
it is extremely challenging to develop a parallel algorithm that will consistently beat 
the sequential algorithm when the data set size becomes large.

8.2  A SIMPLE PARALLEL SCAN
We start with a simple parallel inclusive scan algorithm by performing a reduction 
operation for each output element. The main objective is to create each element 
quickly by calculating a reduction tree of the relevant input elements for each output 
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element. The reduction tree for each output element may be designed in multiple 
ways. The first method we will present is based on the Kogge–Stone algorithm, 
which was originally invented for designing fast adder circuits in the 1970s [KS 
1973]. This algorithm is currently being used in the design of high-speed computer 
arithmetic hardware.

The algorithm, shown is Fig. 8.1, is an in-place scan algorithm that operates 
on an array XY that originally contains input elements. Subsequently, it iteratively 
evolves the contents of the array into output elements. Before the algorithm begins, 
we assume that XY [i] contains the input element xi. At the end of iteration n, XY[i] 
will contain the sum of up to 2n input elements at and before the location; i.e., at the 
end of iteration 1, XY[i] will contain xi-1+xi, at the end of iteration 2, XY[i] will 
contain xi−3+xi−2+xi−1+xi, and so on.

Fig. 8.1 illustrates the steps of the algorithm with a 16-element input. Each verti-
cal line represents an element of the XY array, with XY[0] in the leftmost position. 
The vertical direction shows the progress of iterations, starting from the top. For 
inclusive scan, by definition, y0 is x0; thus, XY[0] contains its final answer. In the first 
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FIGURE 8.1

A parallel inclusive scan algorithm based on Kogge–Stone adder design.
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iteration, each position other than XY[0] receives the sum of its current content and 
that of its left neighbor, as indicated by the first row of addition operators in Fig. 8.1. 
XY[i] contains xi-1+xi, as reflected in the labeling boxes under the first row of addi-
tion operators in Fig. 8.1. To illustrate, after the first iteration, XY[3] contains x2+x3, 
shown as ∑x2…x3 and XY[1] is equal to x0+x1, which is the final answer for this 
position. Thus, no further changes to XY[1] should be made in subsequent iterations.

In the second iteration, each position other than XY[0] and XY[1] receives the 
sum of its current content and that of the position that is two elements away, as 
illustrated in the labeling boxes below the second row of addition operators. XY[i] 
now contains xi-3+xi-2+xi-1+xi. To illustrate, after the first iteration, XY[3] contains 
x0+x1+x2+x3, shown as ∑x0…x3. After the second iteration, XY[2] and XY[3] con-
tain their final answers and need no changes in subsequent iterations.

The reader is encouraged to work through the rest of the iterations. We now work 
on the parallel implementation of the algorithm illustrated in Fig. 8.1. We assign each 
thread to evolve the contents of one XY element. We will write a kernel that performs 
scan on one section of the input that is small enough for a block to handle. The size 
of a section is defined as the compile-time constant SECTION_SIZE. We assume 
that the kernel launch will use SECTION_SIZE as the block size so that the number 
of threads is equal to the number of section elements. Each thread will be responsible 
for calculating one output element.

All results will be calculated as if the array only contains the elements in the 
section. Later on, we will make final adjustments to these sectional scan results 
for large input arrays. We also assume that input values were originally in a global 
memory array X, whose address is passed to the kernel as an argument. We will have 
all the threads in the block to collaboratively load the X array elements into a shared 
memory array XY . Such loading is accomplished by having each thread calculate 
its global data index i = blockIdx.x*blockDim.x + threadIdx.x for the output 
vector element position it is responsible for. Each thread loads the input element at 
that position into the shared memory at the beginning of the kernel. At the end of the 
kernel, each thread will write its result into the assigned output array Y.

  __global__ void Kogge_Stone_scan_kernel(float *X, float *Y,
    int InputSize) {

    __shared__ float XY[SECTION_SIZE];
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) {
      XY[threadIdx.x] = X[i];
    }
    // the code below performs iterative scan on XY
    …

    Y[i] = XY[threadIdx.x];
}
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We now focus on the implementation of the iterative calculations for each XY 
element in Fig. 8.1 as a for loop:

    for (unsigned int stride = 1; stride < blockDim.x; stride  
      *= 2) {
      __syncthreads();
      if (threadIdx.x >= stride) XY[threadIdx.x] += 
XY[threadIdx.x-stride];
    }

The loop iterates through the reduction tree for the XY array position assigned 
to a thread. We use a barrier synchronization to ensure that all threads have finished 
their previous iteration of additions in the reduction tree before any of them starts 
the next iteration. This is the same use of __syncthreads() as in the reduction discus-
sion in Chapter 5, Performance Considerations. When the stride value exceeds the 
threadIdx.x value of a thread, the assigned XY position of the thread is understood to 
have accumulated all required input values.

The execution behavior of the for-loop is consistent with the example in Fig. 8.1. 
The actions of the smaller positions of XY end earlier than those of the larger posi-
tions. This behavior will cause a certain degree of control divergence in the first warp 
when stride values are small. Adjacent threads will tend to execute the same number 
of iterations. The effect of divergence should be quite modest for large block sizes. 
The detailed analysis is left as an exercise. The final kernel is shown in Fig. 8.2.

We can easily convert an inclusive scan kernel to an exclusive scan kernel. Recall 
that an exclusive scan is equivalent to an inclusive scan with all elements shifted to 
the right by one position and the element 0 filled with the value 0, as illustrated in 
Fig. 8.3. The only real difference is the alignment of elements on top of the picture. 

__global__ void Kogge-Stone_scan_kernel(float *X, float *Y,
int InputSize) {

shared float XY[SECTION SIZE];__ __ _

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < InputSize) {
XY[threadIdx.x] = X[i];

}

// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {

syncthreads();__
if (threadIdx.x >= stride)XY[threadIdx.x] += XY[threadIdx.x-stride];

}

Y[i] = XY[threadIdx.x];

}

FIGURE 8.2

A Kogge–Stone kernel for inclusive scan.
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All labeling boxes are updated to reflect the new alignment. All iterative operations 
remain the same.

We can now easily convert the kernel in Fig. 8.2 into an exclusive scan kernel. 
We only need to load 0 into XY[0] and X[i−1] into XY[threadIdx.x], as shown in 
the code below:

    if (i < InputSize && threadIdx.x != 0) {
      XY[threadIdx.x] = X[i-1];
    } else {
      XY[threadIdx.x] = 0;
    }

Note that the XY positions whose associated input elements are outside the range 
are now also filled with 0, which causes no harm and yet simplifies the code slightly. 
We leave the rest of the steps to complete the exclusive scan kernel as an exercise.

8.3  SPEED AND WORK EFFICIENCY
We now analyze the speed and work efficiency of the kernel in Fig. 8.2. All threads 
will iterate up to log2N steps, where N is SECTION_SIZE. In each iteration, the 
number of inactive threads is equal to the stride size. Therefore, the amount of 
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A parallel exclusive scan algorithm based on Kogge–Stone adder design.
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work done (one iteration of the for loop, represented by the addition operation in  
Fig. 8.1) for the algorithm is calculated as

	 …∑( ) , , ,N stride ,for strides1 2 4 N/2(log N terms)2−

The first part of each term is independent of stride; its summation adds up to 
N*log2N. The second part is a familiar geometric series and sums up to (N−1). Thus, 
the total amount of work done is

	 N*log N N 12 – ( – )

Recall that the number of for-loop iterations executed for a sequential scan algo-
rithm is N−1. Even for modest-sized sections, the kernel in Fig. 8.2 performs much 
more work than the sequential algorithm. In the case of 512 elements, the kernel 
performs approximately 8 times more work than the sequential code. The ratio will 
increase as N becomes larger.

As for execution speed, the for-loop of the sequential code executes N itera-
tions. As for the kernel code, the for-loop of each thread executes up to log2N itera-
tions, which defines the minimal number of steps needed to execute the kernel. With 
unlimited execution resources, the speedup of the kernel code over the sequential 
code would be approximately N/log2N. For N = 512, the speedup would be about  
512/9= 56.9.

In a real CUDA GPU device, the amount of work done by the Kogge–Stone 
kernel is more than the theoretical N*log2N–(N−1) because we are using N threads. 
While many of the threads stop participating in the execution of the for-loop, they 
still consume execution resources until the entire thread block completes execution. 
Realistically, the amount of execution resources consumed by the Kogge–Stone 
Stone is closer to N*log2N.

The concept of time units will be used as an approximate indicator of execu-
tion time for comparing between scan algorithms. The sequential scan should take 
approximately N time units to process N input elements. For instance, the sequential 
scan should take approximately 1024 time units to process 1024 input elements. 
With P execution units (streaming processors) in the CUDA device, we can expect 
the Kogge–Stone kernel to execute for (N*log2N)/P time units. To illustrate, if we 
use 1024 threads and 32 execution units to process 1024 input elements, the kernel 
will likely take (1024*10)/32 = 320 time units. In this case, a speedup of 1024/320= 
3.2 is expected.

The additional work done by the Kogge–Stone kernel over the sequential code is 
problematic in two ways. First, the use of hardware for executing the parallel kernel 
is much less efficient. A parallel machine requires at least 8 times more execution 
units than the sequential machine just to break even. If we execute the kernel on a 
parallel machine with four times the execution resources as a sequential machine, the 
parallel machine executing the parallel kernel can end up with only half the speed of 
the sequential machine executing the sequential code. Second, the extra work con-
sumes additional energy. This additional demand makes the kernel less appropriate 
for power-constrained environments such as mobile applications.
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The strength of the Kogge–Stone kernel lies in its satisfactory execution speed 
given sufficient hardware resource. The Kogge-Stone kernel is typically used to cal-
culate the scan result for a section with a modest number of elements, such as 32 
or 64. Its execution has very limited amount of control divergence. In newer GPU 
architecture generations, its computation can be efficiently performed with shuffle 
instructions within warps. We will see later in this chapter that the Kogge-Stone 
kernel is an important component of the modern high-speed parallel scan algorithms.

8.4  A MORE WORK-EFFICIENT PARALLEL SCAN
While the Kogge–Stone kernel in Fig. 8.2 is conceptually simple, its work efficiency 
is quite low for some practical applications. Mere inspection of Figs. 8.1 and 8.3 
indicates potential opportunities presented by sharing several intermediate results to 
streamline the operations performed. However, we need to strategically calculate the 
intermediate results to be shared and then readily distribute them to different threads 
in order to allow more sharing across multiple threads.

As we know, the fastest parallel way to produce sum values for a set of values 
is a reduction tree. With sufficient execution units, a reduction tree can generate the 
sum for N values in log2N time units. The tree can also generate a number of sub-
sums that can be used to calculate some scan output values. This observation forms 
the basis of the Brent–Kung adder design [BK 1979], which can also be used in a 
parallel scan algorithm.

In Fig. 8.4, we produce the sum of all 16 elements in four steps. We use the mini-
mal number of operations needed to generate the sum. In the first step, only the odd 
element of XY[i] will be updated to XY[i-1]+XY[i]. In the second step, only the XY 
elements whose indexes are of the form 4*n−1 will be updated; these elements are 
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FIGURE 8.4

A parallel inclusive scan algorithm based on the Brent–Kung adder design.
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3, 7, 11, 15 in Fig. 8.4. In the third step, only the XY elements whose indexes are of 
the form 8*n− 1 will be updated; these elements are 7 and 15. Finally, in the fourth 
step, only XY[15] is updated. The total number of operations performed is 8 + 4 + 2 
+ 1 = 15. In general, for a scan section of N elements, we would do (N/2) + (N/4) + 
… + 2 + 1 = N− 1 operations for this reduction phase.

The second part of the algorithm is to use a reverse tree in order to distribute the 
partial sums to the positions that can use these values as quickly as possible, as illus-
trated in the bottom half of Fig. 8.4. At the end of the reduction phase, we have quite 
a few usable partial sums. The first row in Fig. 8.5 shows all the partial sums in XY 
right after the top reduction tree. An important observation is that XY[0], XY[7], and 
X[15] contain their final answers. Therefore, all remaining XY elements can obtain 
the partial sums they need from no farther than four positions away.

To illustrate, XY[14] can obtain all partial sums it needs from XY[7], XY[11], and 
XY[13]. To organize our second half of the addition operations, we will first show all 
operations that need partial sums from four positions away, then two positions away, 
and 1 position way. By inspection, XY[7] contains a critical value needed by many posi-
tions in the right half. A satisfactory method is to add XY[7] to XY[11], which brings 
XY[11] to the final answer. More importantly, XY[7] also becomes a good partial sum 
for XY[12], XY[13], and XY[14]. No other partial sums have so many uses. Therefore, 
only one addition XY[11] = XY[7] + XY[11] needs to occur at the four-position level 
in Fig. 8.4. The updated partial sum is shown in the second row in Fig. 8.5.

We now identify all additions by using partial sums that are two positions away. 
XY[2] only needs the partial sum adjacent to it in XY[1]. XY[4] likewise needs the 
partial sum next to it to be complete. The first XY element that can need a partial sum 
two positions away is XY[5]. Once we calculate XY[5] = XY[3] + XY[5], XY[5] 
contains the final answer. The same analysis indicates that XY[6] and XY[8] can 
become complete with the partial sums adjacent to them in XY[5] and XY[7].

The next two-position addition is XY[9] = XY[7] + XY[9], which makes XY[9] 
complete. XY[10] can wait for the next round to catch XY[9]. XY[12] only needs 
the XY[11], which contains its final answer after the four-position addition. The 
final two-position addition is XY[13] = XY[11] + XY[13]. The third row shows all 
updated partial sums in XY[5], XY[9], and XY[13]. It is clear that now, every posi-
tion is either complete or can be completed when added by their left neighbor. This 
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FIGURE 8.5

Partial sums available in each XY element after the reduction tree phase.
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leads to the final row of additions in Fig. 8.4, which completes the contents for all of 
the incomplete positions XY[2], XY[4], XY[6], XY[8], XY[10], and XY[12].

We could implement the reduction tree phase of the parallel scan by using the 
following loop:

    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
      __synchthreads();
      if ((threadIdx.x + 1)%(2*stride) == 0) {
          XY[threadIdx.x] += XY[threadIdx.x - stride];
    }
    }

This loop is highly similar to the reduction in Fig. 5.2. The only difference is that 
we want the threads with a thread index in the form 2n−1 rather than 2n to perform 
addition in each iteration. This objective is the reason for adding 1 to threadIdx.x 
when we select the threads for performing addition in each iteration. However, 
this style of reduction involves control divergence problems. As seen in Chapter 5, 
Performance Considerations, a preferable technique is to use a decreasing number of 
contiguous threads to perform the additions as the loop advances:

    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
      __syncthreads();
      int index = (threadIdx.x+1) * 2* stride -1;
      if (index < SECTION_SIZE) {
          XY[index] += XY[index - stride];
      }
    }

By using a more complex index calculation in each iteration of the for-loop,  
kernel execution has much fewer control divergence within warps. Fig. 8.4 shows  
16 threads in a block. In the first iteration, a stride is equal to 1. The first eight con-
secutive threads in the block will satisfy the if condition. The index values calculated 
for these threads will be 1, 3, 5, 7, 9, 11, 13, and 15. These threads will perform the 
first row of additions in Fig. 8.4. In the second iteration, a stride is equal to 2. Only 
the first four threads in the block will satisfy the if condition. The index values calcu-
lated for these threads will be 3, 7, 11, 15. These threads will perform the second row 
of additions in Fig. 8.4. Since each iteration will always be using consecutive threads 
in each iteration, the control divergence problem does not arise until the number of 
active threads drops below the warp size.

The distribution tree is slightly more complex to implement. We observe that the 
stride value decreases from SECTION_SIZE/4 to 1. In each iteration, we need to 
“push” the value of the XY element from a position that is a multiple of the stride 
value minus 1 to a position that is a stride away. For example, in Fig. 8.4, the stride 
value decreases from 4 to 1. In the first iteration in Fig. 8.4, we aim to push the 
value of XY[7] to XY[11], where 7 is 2*4−1. Note that only one thread (thread 0) 
is needed for this iteration. In the second iteration, we intend to push the values of 
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XY[3], XY[7], and XY[11] to XY[5], XY[9], and XY[13]. This plan can be imple-
mented using the following loop:

    for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) {
      __syncthreads();
      int index = (threadIdx.x+1)*stride*2 - 1;
      if(index + stride < SECTION_SIZE) {
        XY[index + stride] += XY[index];
      }
    }

The calculation of the index is similar to that in the reduction tree phase. The 
final kernel code for a Brent–Kung parallel scan is presented in Fig. 8.6. The reader 
should notice that having more than SECTION_SIZE/2 threads is unnecessary for 
the reduction phase or the distribution phase. Thus, we could simply launch a kernel 
with SECTION_SIZE/2 threads in a block. Since we can have up to 1024 threads in 
a block, each scan section can have up to 2048 elements. However, each thread has to 
load two X elements at the beginning and store two Y elements at the end.

As in the case of the Kogge–Stone scan kernel, the Brent–Kung inclusive paral-
lel scan kernel can be easily adapted into an exclusive scan kernel, with a minor 
adjustment to the statement that loads X elements into XY. [Harris 2007] presents an 
interesting natively exclusive scan kernel based on a different method of designing 
the distribution tree phase of the scan kernel.

__global__ void Brent_Kung_scan_kernel(float *X, float *Y,  
int InputSize) {

__shared__ float XY[SECTION_SIZE]; 
int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
if (i < InputSize) XY[threadIdx.x] = X[i];
if (i+blockDim.x < InputSize) XY[threadIdx.x+blockDim.x] = X[i+blockDim.x];

for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) { 
__syncthreads(); 
int index = (threadIdx.x+1) * 2* stride -1; 
if (index < SECTION_SIZE) {  
XY[index] += XY[index - stride]; 

} 
} 

for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) { 
__syncthreads(); 
int index = (threadIdx.x+1)*stride*2 - 1; 
if(index + stride < SECTION_SIZE) { 
XY[index + stride] += XY[index]; 

}
}

__syncthreads(); 
if (i < InputSize) Y[i] = XY[threadIdx.x]; 
if (i+blockDim.x < InputSize) Y[i+blockDim.x] = XY[threadIdx.x+blockDim.x];

} 

FIGURE 8.6

A Brent–Kung kernel for inclusive scan.
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We now turn our attention to the analysis of the number of operations in the distri-
bution tree stage. The number of operations is (2 − 1) + (4 ‒ 1) + (16/2 ‒1). In general, 
for N input elements, the total number of operations would be (2 ‒ 1) + (4 ‒ 1) + ... + 
(N/4 ‒ 1) + (N/2 ‒ 1), which is N-1-log2(N). This expression results in the total num-
ber of operations in the parallel scan, 2N-2-log2(N), including both the reduction tree  
(N ‒ 1 operations) and the inverse reduction tree phases (N-1-log2(N) operations).  
The number of operations is now proportional to N rather than N*log2(N).

The advantage of the Brent–Kung algorithm is rather clear in the comparison. 
As the input section increases, the Brent–Kung algorithm never performs more than 
twice the number of operations performed by the sequential algorithm. In an energy-
constrained execution environment, the Brent–Kung algorithm strikes a good bal-
ance between parallelism and efficiency.

While the Brent–Kung algorithm exhibits a considerably higher level of theo-
retical work-efficiency than the Kogge–Stone algorithm, its advantage in a CUDA 
kernel implementation is more limited. Recall that the Brent–Kung algorithm is 
using N/2 threads. The major difference is that the number of active threads drops 
much faster through the reduction tree than the Kogge–Stone algorithm. However, 
the inactive threads continue to consume execution resources in a CUDA device. 
Consequently, the amount of resources consumed by the Brent–Kung kernel is actu-
ally closer to (N/2)*(2*log2(N)−1). This finding makes the work-efficiency of the 
Brent–Kung algorithm similar to that of Kogge–Stone in a CUDA device. In Section 
8.4, if we process 1024 input elements with 32 execution units, the Brent–Kung 
kernel is expected to take approximately 512*(2*10−1)/32 = 304 time units. This 
results in a speedup of 1024/304 = 3.4.

8.5  AN EVEN MORE WORK-EFFICIENT PARALLEL SCAN
We can design a parallel scan algorithm that achieves a higher work efficiency than 
does the Brent–Kung algorithm by adding a phase of fully independent scans on the 
subsections of the input. At the beginning of the algorithm, we partition the input sec-
tion into subsections. The number of subsections is the same as the number of threads 
in a thread block, one for each thread. During the first phase, each thread performs 
a scan on its subsection. In Fig. 8.7, we assume that a block contains four threads;  
we partition the input section into four subsections. During the first phase, thread 0 
will perform a scan on its section (2, 1, 3, 1) and generate (2, 3, 6, 7). Thread 1 will 
perform a scan on its section (0, 4, 1, 2) and generate (0, 4, 5, 7), and so on.

Notably, if each thread directly performs a scan by accessing the input from 
global memory, their accesses would not be coalesced. For instance, in the first itera-
tion, thread 0 would be accessing the input element 0, thread 1 input element 4, 
and so on. Therefore, we use the corner turning technique presented in Chapter 4, 
Memory and Data Locality, to improve memory coalescing. At the beginning of the 
phase, all threads collaborate to load the input into the shared memory iteratively. In 
each iteration, adjacent threads load adjacent elements to enable memory coalescing. 
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In Fig. 8.7, all threads have to collaborate and load four elements in a coalesced 
manner: thread 0 to load element 0, thread 1 to load element 1, and so on. All threads 
move to load the next four elements: thread 0 to load element 4, thread 1 to load ele-
ment 5, and so on.

Once all input elements are in the shared memory, the threads access their own 
subsection from the shared memory, as shown in Fig. 8.7 as Step 1. At the end of Step 
1, the last element of each section (highlighted in black in the second row) contains 
the sum of all input elements in the section. The last element of section 0 contains the 
value 7, which is the sum of the input elements (2, 1, 3, 1) in the section.

During the second phase, all threads in each block collaborate and perform a scan 
operation on a logical array that consists of the last elements of all sections. This pro-
cedure can be performed using a Kogge–Stone or Brent–Kung algorithm since only 
a modest number (number of threads in a block) of elements are involved. In Step 3, 
each thread adds to its elements the new value of the last element of its predecessor’s 
section. The last elements of each subsection need not be updated during this phase. 
In Fig. 8.7, thread 1 adds the value 7 to elements (0, 4, 5) in its section in order to 
produce (7, 11, 12). Note that the last element of the section is already the correct 
value 14 and requires no updating.

Using this three-phase approach, we can use a much smaller number of threads 
than the number of elements in a section. The maximal size of the section is no 
longer limited by the number of threads in the block but rather, the size of the shared 
memory; all elements in the section must fit into the shared memory. This limitation 
will be removed in the hierarchical methods, which will be discussed in the remain-
der of this chapter.
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FIGURE 8.7

Three-phase parallel scan for higher work efficiency and speed.
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The major advantage of the three-phase approach is its efficiency use of execution 
resources. Assume that we use the Kogge–Stone algorithm for phase 2. For an input 
list of N elements, if we use T threads, the amount of work done is N−1 for phase 1, 
T*log2T for phase 2, and N−T for phase 3. If we use P execution units, the execution 
can be expected to take (N−1+T*log2T+N−T)/P time units.

To illustrate, if we use 64 threads and 32 execution units to process 1024 ele-
ments, the algorithm should take approximately (1024−1+ 64*6+ 1024−64)/32= 74 
time units. This number results in a speedup of 1024/74= 13.8.

8.6  �HIERARCHICAL PARALLEL SCAN FOR  
ARBITRARY-LENGTH INPUTS

For a number of applications, a scan operation can process elements in the millions 
or even billions. The three kernels presented thus far assume that the entire input 
can be loaded in the shared memory. Obviously, we cannot expect all input elements 
of these large scan applications to fit into the shared memory, which is why we say 
that these kernels process a section of the input. Furthermore, using only one thread 
block to process these large data sets would be a loss of parallelism opportunity. 
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Scan Block 0

Store Block Sum to Auxiliary Array

+ + +

Scan Block Sums

Time

Add Scanned Block Sum i to All
Values of Scanned Block i + 1

Final Array of Scanned Values

Scan Block 1 Scan Block 2 Scan Block 3

FIGURE 8.8

A hierarchical scan for arbitrary length inputs.
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Fortunately, a hierarchical approach can extend the scan kernels that we have gener-
ated so far to handle inputs of arbitrary size. The approach is illustrated in Fig. 8.8.

For a large data set, we first partition the input into sections so that each of them 
can fit into the shared memory and be processed by a single block. For the current gen-
eration of CUDA devices, the Brent–Kung kernel in Fig. 8.8 can process up to 2048 
elements in each section by using 1024 threads in each block. To illustrate, if the input 
data consist of 2,000,000 elements, we can use ceil (2,000,000/2048.0) = 977 thread 
blocks. With up to 65,536 thread blocks in the x-dimension of a grid, this approach 
can process up to 134,217,728 elements in the input set. If the input is larger than this 
number, additional levels of hierarchy can be used to handle a truly arbitrary number 
of input elements. However, for this chapter, we will restrict our discussion to a two-
level hierarchy that can process up to 134,217,728 elements.

Assume that we launch one of the three kernels in Sections 8.2, 8.4, and 8.5 on a 
large input data set. At the end of the grid execution, the Y array will contain the scan 
results for individual sections, called scan blocks, in Fig. 8.8. Each result value in a 
scan block only contains the accumulated values of all preceding elements within the 
same scan block. These scan blocks need to be combined into the final result; i.e., we 
need to write and launch another kernel that adds the sum of all elements in preced-
ing scan blocks to each element of a scan block.

Fig. 8.9 shows an example of the hierarchical scan approach in Fig. 8.8. A total 
of 16 input elements are divided into four scan blocks. We can use the Kogge–Stone  
kernel, the Brent–Kung kernel, or the three-phase kernel to process the individual 
scan blocks. The kernel treats the four scan blocks as independent input data sets. 
After the scan kernel terminates operation, each Y element contains the scan result 
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An example of hierarchical scan.
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within its scan block. To illustrate, scan block 1 has inputs 0, 4, 1, 2. The scan ker-
nel produces the scan result for this section: 0, 4, 5, 7. These results do not include 
contributions from any of the elements in scan block 0. In order to produce the final 
result for this scan block, the sum of all elements in scan block 0—i.e., 2+1+3+1 = 
7–should be added to every result element of scan block 1.

Another illustration is as follows: The inputs in scan block 2 are 0, 3, 1, 2. The ker-
nel produces the scan result for this scan block: 0, 3, 4, 6. To produce the final results 
for this scan block, the sum of all elements in both scan block 0 and scan block 1, 
2+1+3+1+0+4+1+2 = 14, should be added to every result element of scan block 2.

The last output element of each scan block yields the sum of all input elements of 
the scan block. These values are 7, 7, 6, and 11 in Fig. 8.9. The second step of the hier-
archical scan algorithm in Fig. 8.8 gathers the last result elements from each scan block 
into an array and performs a scan on these output elements. This step is also illustrated 
in Fig. 8.9, where the last scan output elements of all collected into a new array S.

This procedure can be carried out by changing the code at the end of the scan 
kernel so that the last thread of each block writes its result into an S array by using its 
blockIdx.x as index. A scan operation is then performed on S to produce the output 
values 7, 14, 20, 31. Each of these second-level scan output values is an accumulated 
sum from the starting location X[0] to the end of each scan block. The output value in 
S[0]=7 is the accumulated sum from X[0] to the end of scan block 0, which is X[3]. 
The output value in S[1]=14 is the accumulated sum, from X[0] to the end of scan 
block 1, which is X[7].1

Therefore, the output values in the S array yield the scan results at “strategic” 
locations of the original scan problem. In Fig. 8.9, the output values in S[0], S[1], 
S[2], and S[3] provide the final scan results for the original problem at positions 
X[3], X[7], X[11], and X[15]. These outcomes can be used to bring the partial results 
in each scan block to their final values. This brings us to the last step of the hierarchi-
cal scan algorithm in Fig. 8.8. The second-level scan output values are added to the 
values of their corresponding scan blocks.

To illustrate, in Fig. 8.9, the value of S[0] (value 7) will be added to Y[0], Y[1], 
Y[2], Y[3] of thread block 1, thereby completing the results in these positions. The 
final results in these positions are 7, 11, 12, 14 as S[0] contains the sum of the values 
of the original input X[0] through X[3]. These final results are 14, 17, 18, and 20. 
The value of S[1] (14) will be added to Y[8], Y[9], Y[10], Y[11], thereby completing 
the results in these positions. The value of S[2] (20) will be added to Y[12], Y[13], 
Y[14], Y[15]. Finally, the value of S[3] is the sum of all elements of the original 
input, which is also the final result in Y[15].

Readers who are familiar with computer arithmetic algorithms should recognize 
that the hierarchical scan algorithm is quite similar to the carry look-ahead in the 

1 While the second step of Figure 8.9 is logically the same as the second step of Figure 8.7. The main 
difference is that Figure 8.9 involves threads from different thread blocks. As a result, the last element 
of each section needs to be collected into a global memory array so that they can be visible across 
thread blocks.
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hardware adders of modern processors. This similarity should be expected consider-
ing that the two parallel scan algorithms we have examined thus far are based on 
innovative hardware adder designs.

We can implement the hierarchical scan with three kernels. The first kernel is 
largely the same as the three-phase kernel. (We could just as easily use the Kogge–
Stone kernel or the Brent–Kung kernel.) We need to add a parameter S, which has 
the dimension of InputSize/SECTION_SIZE. At the end of the kernel, we add a 
conditional statement. The last thread in the block writes the output value of the last 
XY element in the scan block to the blockIdx.x position of S:

    __syncthreads();
    if (threadIdx.x == blockDim.x-1) {
      S[blockIdx.x] = XY[SECTION_SIZE – 1];
    }

The second kernel is simply one of the three parallel scan kernels, which takes S 
as input and writes S as output.

The third kernel takes the S and Y arrays as inputs and writes its output back into 
Y. Assuming that we launch the kernel with SECTION_SIZE threads in each block, 
each thread adds one of the S elements (selected by blockIdx.x-1) to one Y element:

    int i = blockIdx.x * blockDim.x + threadIdx.x;
    Y[i] += S[blockIdx.x-1];

The threads in a block add the sum of the previous scan block to the elements of 
their scan block. As an exercise, completing the details of each kernel and the host 
code is left to the reader.

8.7  SINGLE-PASS SCAN FOR MEMORY ACCESS EFFICIENCY
In the hierarchical scan mentioned in Section 8.6, the partially scanned results are 
stored into the global memory before the global scan kernel is launched and then 
reloaded back from the global memory by the third kernel. The latencies of these 
extra memory stores and loads do not overlap with the computation in the subsequent 
kernels. The latencies can also significantly influence the speed of the hierarchi-
cal scan algorithms. Multiple techniques [DGS 2008] [YLZ 2013] [MG 2016] have 
been proposed to avoid such a negative impact. A stream-based scan algorithm is 
discussed in this chapter. The reader is encouraged to read the references in order to 
understand the other techniques.

In the context of CUDA C programming, a stream-based scan algorithm (not to 
be confused with CUDA Streams, which will be introduced in chapter: Programming 
a Heterogeneous Computing Cluster) refers to a hierarchical scan algorithm where 
partial sum data are passed in one direction through the global memory between 
neighboring thread blocks. Stream-based scan builds on a key observation that the 
global scan step (middle part in Fig. 8.8) can be performed in a domino fashion. For 
example, in Fig. 8.9, Scan Block 0 can pass its partial sum value 7 to Scan Block 1 
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and then complete its job. Scan Block 1 receives the partial sum value 7 from Scan 
Block 0, sums up with its local partial sum value 7 to get 14, passes its partial sum 
value 14 to Scan Block 2, and then completes its final step.

In a stream-based scan, a single kernel can be written to perform all three steps 
of the hierarchical scan algorithm in Fig. 8.8. Thread block i first performs a scan 
on its scan block, using one of the three parallel algorithms in Sections 8.2–8.5. The 
block then waits for its left neighbor block i−1 to pass the sum value. Once the sum 
from block i−1 is received, the block generates and passes its sum value to its right 
neighbor block i+1. The block then moves on to add the sum value received from 
block i−1 in order to complete all the output values of the scan block.

During the first phase of the kernel, all blocks can execute in parallel. The blocks 
will be serialized during the data streaming phase. However, as soon as each block 
receives the sum value from its predecessor, the block can perform its final phase in 
parallel with all other blocks that have received the sum values from their predeces-
sors. As long as the sum values can be passed through the blocks quickly, there can 
be ample parallelism among blocks.

To make this stream-based scan work, adjacent (block) synchronization has been 
proposed in [YLZ 2013]. Adjacent synchronization is a customized synchronization 
to allow the adjacent thread blocks to synchronize and/or exchange data. In a scan, 
data are passed from Scan Block i−1 to Scan Block i, similar to a producer–consumer 
chain. On the producer side (Scan Block i−1), the flag is set to a particular value after 
the partial sum is stored to the memory, whereas on the consumer side (Scan Block i), 
the flag is checked to determine whether it is that particular value before the passed 
partial sum is loaded. As previously mentioned, the loaded value is added to the local 
sum and is then passed to the next block (Scan Block i+1). Adjacent synchronization 
can be implemented using atomic operations. The following code segment illustrates 
the use of atomic operations to implement adjacent synchronization.

    __shared__ float previous_sum;
    if (threadIdx.x == 0){
      // Wait for previous flag
      while (atomicAdd(&flags[bid], 0) == 0){;}
      // Read previous partial sum
      previous_sum = scan_value[bid];
      // Propagate partial sum
      scan_value[bid + 1] = previous_sum + local_sum;
      // Memory fence
      __threadfence();
      // Set flag
      atomicAdd(&flags[bid + 1], 1);
    }
    __syncthreads();

This code section is only executed by one leader thread in each block (e.g., thread 
with index 0). The rest of the threads will wait in __syncthreads() in the last line. 
In block bid, the leader thread repeatedly checks flags[bid], a global memory array, 
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until it is set. It then loads the partial sum from its predecessor by accessing the 
global memory array scan_value[bid] and stores the value into its local register vari-
able, previous_sum. It sums up with its local partial sum local sum and stores the 
result into the global memory array scan_value[bid+1]. The memory fence func-
tion __threadfence() ensures that the partial sum is completely stored to memory 
before the flag is set with atomicAdd(). The array scan_value must be declared as 
volatile to prevent the compiler from optimizing, reordering, or register-allocating 
the accesses to scan_value elements.

The atomic operations on the flags array and the accesses to the scan_value array 
could appear to incur global memory traffic; however, these operations are mostly per-
formed in the second-level caches of recent GPU architectures (more details in chap-
ter: Parallel Patterns: Parallel Histogram Computation). Any stores and loads to the 
global memory will likely be overlapped with the phase 1 and phase 3 computational 
activities of other blocks. Meanwhile, when executing the three-kernel scan algorithm 
in Section 8.5, the stores to and loads from the S array elements in the global memory 
are in a separate kernel and cannot be overlapped with phase 1 and phase 3.

Stream-based algorithms have one subtle issue. In GPUs, thread blocks may 
not always be scheduled linearly in accordance with their blockIdx values; Scan 
Block i may be scheduled and performed after Scan Block i+1. In this situation, the 
execution order arranged by the scheduler may contradict the order assumed by the 
adjacent synchronization code and cause performance loss or even a dead lock. For 
instance, the scheduler may schedule Scan Block i through Scan Block i+N before 
it schedules Scan Block i−1. If Scan Block i through Scan Block i+N occupies all 
streaming multiprocessors, Scan Block i−1 would not be able to start execution until 
at least one of them finishes execution. However, all of them are waiting for the sum 
value from Scan Block i−1. This scenario causes the system to deadlock.

To resolve this issue, multiple techniques [YLZ 2013] [GSO 2012] have been 
proposed. Here, we only discuss one particular method, dynamic block index assign-
ment; the rest is left as reference for readers. Dynamic block index assignment basi-
cally decouples the usage of the thread block index from the built-in blockIdx.x. In 
scan, the particular i of the Scan Block i is no longer tied to the value of blockIdx.x. 
Instead, it is calculated using the following code after the thread block is scheduled:

    __shared__ int sbid;
    if (threadIdx.x == 0)
      sbid = atomicAdd(DCounter, 1);
    __syncthreads();
    const int bid = sbid;

The leader thread increments atomically a global counter variable pointed by 
DCounter. The global counter stores the dynamic block index of the next block that 
is scheduled. The leader thread then stores the acquired dynamic block index value 
in a shared memory variable, sbid, so that it is accessible by all threads of the block 
after __syncthreads(). This process guarantees that all Scan Blocks are scheduled 
linearly and prevents a potential deadlock.
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8.8  SUMMARY
In this chapter, we studied scan as an important parallel computing pattern. Scan 
enables parallel allocation of resources to parties whose needs are not uniform. The 
process converts a seemingly sequential recursive computation into a parallel com-
putation, which helps reduce sequential bottlenecks in various applications. We show 
that a simple sequential scan algorithm performs only N additions for an input of N 
elements.

We first introduced a parallel Kogge–Stone scan algorithm that is fast and con-
ceptually simple but not work-efficient. As the data set size increases, the number 
of execution units needed for a parallel algorithm to break even with the simple 
sequential algorithm also increases. For an input of 1024 elements, the parallel algo-
rithm performs over nine times more additions than the sequential algorithm. The 
algorithm also requires at least nine times more execution resources to break even 
with the sequential algorithm. Thus, Kogge–Stone scan algorithms are typically used 
within modest-sized scan blocks.

We then presented a parallel Brent–Kung scan algorithm that is conceptually more 
complicated than the Kogge–Stone algorithm. Using a reduction tree phase and a distri-
bution tree phase, the algorithm performs only 2*N− 3 additions regardless of the size 
of the input data set. With its number of operations increasing linearly with the size of 
the input set, thus work-efficient algorithm is often referred to as data-scalable algorithm. 
Unfortunately, due to the nature of threads in a CUDA device, the resource consumption 
of a Brent–Kung kernel ends up very similar to that of a Kogge–Stone kernel. A three-
phase scan algorithm that employs corner turning and barrier synchronization proves to 
be effective in addressing the work-efficiency problem.

We also presented a hierarchical approach to extending the parallel scan algo-
rithms in order to manage arbitrary-sized input sets. Unfortunately, a straightforward, 
three-kernel implementation of the hierarchical scan algorithm incurs redundant 
global memory accesses whose latencies are not overlapped with computation. We 
show that one can use a stream-based hierarchical scan algorithm to enable a single-
pass, single kernel implementation and improve the global memory access efficiency 
of the hierarchical scan algorithm. However, this algorithm requires a carefully 
designed adjacent block synchronization using atomic operations, thread memory 
fence, and barrier synchronization. In addition, special care is needed to prevent 
deadlocks using dynamic block index assignment.

8.9  EXERCISES
1.	 Analyze the parallel scan kernel in Fig. 8.2. Show that control divergence only 

occurs in the first warp of each block for stride values up to half the warp size; 
i.e., for warp size 32, control divergence will occur to iterations for stride values 
1, 2, 4, 8, and 16.
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2.	 For the Brent–Kung scan kernel, assume that we have 2048 elements. How 
many additions will be performed in both the reduction tree phase and the 
inverse reduction tree phase?
a.	 (2048−1)*2
b.	 (1024−1)*2
c.	 1024*1024
d.	 10*1024

3.	 For the Kogge–Stone scan kernel based on reduction trees, assume that we have 
2048 elements. Which of the following gives the closest approximation of the 
number of additions that will be performed?
a.	 (2048−1)*2
b.	 (1024−1)*2
c.	 1024*1024
d.	 10*1024

4.	 Use the algorithm in Fig. 8.3 to complete an exclusive scan kernel.

5.	 Complete the host code and all three kernels for the hierarchical parallel scan 
algorithm in Fig. 8.9.

6.	 Analyze the hierarchical parallel scan algorithm and show that it is work-
efficient and the total number of additions is no more than 4*N−3.

7.	 Consider the following array: [4 6 7 1 2 8 5 2]. Perform a parallel inclusive 
prefix scan on the array by using the Kogge-Stone algorithm. Report the 
intermediate states of the array after each step.

8.	 Repeat the previous problem by using the work-efficient algorithm.

9.	 By using the two-level hierarchical scan discussed in Section 8.5, determine the 
largest possible dataset that can be handled if computing on a:
a.	 GeForce GTX 280?
b.	 Tesla C2050?
c.	 GeForce GTX 690?
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The parallel computation patterns that we have presented so far all allow the task of 
computing each output element to be assigned to a thread. Therefore, these patterns 
are amenable to the owner-computes rule, where every thread can write into their 
designated output element(s) without concern about interference from other threads. 
This chapter introduces the parallel histogram computation pattern, a frequently 
encountered application computing pattern where each output element can poten-
tially be updated by all threads. As such, one must take care to coordinate among 
threads as they update output elements and avoid any interference that corrupts the 
final results. In practice, there are many other important parallel computation patterns 
where output interference cannot be easily avoided. Therefore, the parallel histogram 
computation pattern provides an example with output interference in these patterns. 
We will first examine a baseline approach that uses atomic operations to serialize 
the updates to each element. This baseline approach is simple but inefficient, often 
resulting in disappointing execution speed. We will then present some widely used 
optimization techniques, most notably privatization, to significantly enhance execu-
tion speed while preserving correctness. The cost and benefit of these techniques 
depend on the underlying hardware as well as the characteristics of the input data. It 
is therefore important for a developer to understand the key ideas of these techniques 
in order to soundly reason about their applicability under different circumstances.
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9.1  BACKGROUND
A histogram is a display of the frequency of data items in successive numerical inter-
vals. In the most common form of histogram, the value intervals are plotted along 
the horizontal axis and the frequency of data items in each interval is represented as 
the height of a rectangle, or bar, rising from the horizontal axis. For example, a his-
togram can be used to show the frequency of alphabets in the phrase “programming 
massively parallel processors.” For simplicity, we assume that the input phrase is in 
all lowercase. By inspection, we see that there are four “a” letters, zero ‘b” letters, 
one “c” letter, and so on. We define each value interval as a continuous range of four 
alphabets. Thus, the first value interval is “a” through “d”, the second “e” through 
“h”, and so on. Fig. 9.1 shows the histogram that displays the frequency of letters in 
the phrase “programming massively parallel processors” according to our definition 
of value interval.

Histograms provide useful summaries of data sets. In our example, we can see 
that the phrase being represented consists of letters that are heavily concentrated in 
the middle intervals of the alphabet and very light in the later intervals. Such shape 
of the histogram is sometimes referred to as a feature of the data set, and provides a 
quick way to determine if there are significant phenomena in the data set. For exam-
ple, the shape of a histogram of the purchase categories and locations of a credit card 
account can be used to detect fraudulent usage. When the shape of the histogram 
deviates significantly from the norm, the system raises a flag of potential concern.

Many other application domains rely on histograms to summarize data sets for 
data analysis. One such area is computer vision. Histograms of different types of 
object images, such as faces versus cars, tend to exhibit different shapes. By divid-
ing an image into subareas and analyzing the histograms for these subareas, one 
can quickly identify the interesting subareas of an image that potentially contain the 
objects of interest. The process of computing histograms of image subareas is the 
basis of feature extraction in computer vision, where feature refers to patterns of 
interest in images. In practice, whenever there is a large volume of data that needs 
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FIGURE 9.1

A histogram representation of “programming massively parallel processors.”
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to be analyzed to distill interesting events (i.e., “Big Data”), histograms are likely 
used as a foundational computation. Credit card fraudulence detection and computer 
vision obviously meet this description. Other application domains with such needs 
include speech recognition, website purchase recommendations, and scientific data 
analysis such as correlating heavenly object movements in astrophysics.

Histograms can be easily computed in a sequential manner, as shown in  
Fig. 9.2. For simplicity, the function is only required to recognize lowercase letters. 
The C code assumes that the input data set comes in a char array data[] and the 
histogram will be generated into the int array histo[] (Line 1). The number of data 
items is specified in function parameter length. The for loop (Line 2 through Line 4) 
sequentially traverses the array, identifies the particular alphabet index into the index 
variable, and increments the histo[index/4] element associated with that interval. The 
calculation of the alphabet index relies on the fact that the input string is based on the 
standard ASCII code representation where the alphabet characters “a” through “z” 
are encoded in consecutive values according to the alphabet order.

Although one may not know the exact encoded value of each letter, one can 
assume that the encoded value of a letter is the encoded value of “a” plus the alphabet 
position difference between that letter and “a”. In the input, each character is stored 
in its encoded value. Thus, the expression data[i] – “a” (Line 3) derives the alphabet 
position of the letter with the position of “a” being 0. If the position value is greater 
than or equal to 0 and less than 26, the data character is indeed a lowercase alphabet 
letter (Line 4). Keep in mind that we defined the intervals such that each interval con-
tains four alphabet letters. Therefore, the interval index for the letter is its alphabet 
position value divided by 4. We use the interval index to increment the appropriate 
histo[] array element (Line 4).

The C code in Fig. 9.2 is quite simple and efficient. The data array elements are 
accessed sequentially in the for loop so the CPU cache lines are well used whenever 
they are fetched from the system DRAM. The histo[] array is so small that it fits well 
in the level-one (L1) data cache of the CPU, which ensures very fast updates to the 
histo[] elements. For most modern CPUs, one can expect execution speed of this 
code to be memory bound, i.e., limited by the rate at which the data[] elements can 
be brought from DRAM into the CPU cache.

1.  sequential_Histogram(char *data, int length, int *histo) {
2.     for (int i = 0; i < length; i++) {
3.         int alphabet_position = data[i] – ‘a’;
4.         if (alphabet_position >= 0 && alphabet_position < 26) {
5.              histo[alphabet_position/4]++
6.         }
7.     }
8.  }

FIGURE 9.2

A simple C function for calculating histogram for an input text string.
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9.2  USE OF ATOMIC OPERATIONS
A straightforward strategy for parallel histogram computation is dividing the input 
array into sections and having each thread process one of the sections. If we use P 
threads, each thread would be doing approximately 1/P of the original work. We 
will refer to this approach as “Strategy I” in our discussions. Using this strategy, we 
should be able to expect a speedup close to P. Fig. 9.3 illustrates this approach using 
our text example. To make the example fit in the picture, we reduce the input to the 
first 24 characters in the phrase. We assume that P = 4 and each thread processes a 
section of 6 characters. We show part of the workload of the four threads in Fig. 9.3.

Each thread iterates through its assigned section and increments the appropri-
ate interval counter for each character. Fig. 9.3 shows the actions taken by the four 
threads in the first iteration. Observe that threads 0, 1, and 2 all need to update the 
same counter (m-p), which is a conflict referred to as output interference. One must 
understand the concepts of race conditions and atomic operations in order to safely 
handle such output interferences in his/her parallel code.

An increment to an interval counter in the histo[] array is an update, or read-
modify-write, operation on a memory location. The operation involves reading the 
memory location (read), adding one to the read content (modify), and writing the 
new value back to the memory location (write). Read-modify-write is a common 
operation for safe coordination of collaborative activities across concurrent threads.

For example, when we make a flight reservation with an airline, we bring up the 
seat map and look for available seats (read), we pick a seat to reserve (modify), and 
change the seat status to unavailable in the seat map (write). A bad potential scenario 
can happen as follows:

●	 Two customers simultaneously bring up seat map of the same flight.
●	 Both customers pick the same seat, say 9C.
●	 Both customers change the status of seat 9C to unavailable in the seat map.

Thread 0

p r o g r a m m i n g m a s s i v e l y p a

0

a-d e-h i-l m-p q-t u-x y-z

1 0 3 0 0 0

Thread 1 Thread 2 Thread 3

FIGURE 9.3

Strategy I for parallelizing histogram computation.
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After the sequence, both customers logically conclude that they are now exclu-
sive owners of seat 9C. We can imagine that they will have an unpleasant situation 
when they board the flight and find out that one of them cannot take the reserved seat! 
Believe it or not, such unpleasant situations indeed happen in real life due to flaws in 
airline reservation software.

For another example, some stores allow customers to wait for service without 
standing in line. They ask each customer to take a number from one of the kiosks. 
There is a display that shows the number that will be served next. When a service 
agent becomes available, he/she asks the customer to present the ticket that matches 
the number, verify the ticket, and update the display number to the next higher num-
ber. Ideally, all customers will be served in the order they enter the store. An unde-
sirable outcome would be that two customers simultaneously sign in at two kiosks 
and both receive tickets with the same number. Once a service agent calls for that 
number, both customers will feel that they are the one who should receive service.

In both examples, undesirable outcomes are caused by a phenomenon called race 
condition, where the outcome of two or more simultaneous update operations var-
ies depending on the relative timing of the operations involved. Some outcomes are 
correct and some are incorrect. Fig. 9.4 illustrates a race condition when two threads 
attempt to update the same histo[] element in our text histogram example. Each row in  
Fig. 9.4 shows the activity during a time period, with time progressing from top to bottom.

Fig. 9.4(A) depicts a scenario where Thread 1 completes all three parts of its 
read-modify-write sequence during time periods 1 through 3 before Thread 2 starts 
its sequence at time period 4. The value in the parenthesis in front of each operation 
shows the value being written into the destination, assuming the value of histo[x] was 
initially 0. With this interleaving, the value of histo[x] afterwards is 2, exactly as one 
would expect. That is, both threads successfully incremented the histo[x] element. 
The element value starts with 0 and ends at 2 after the operations complete.

In Fig. 9.4(B), the read-modify-write sequences of the two threads overlap. Note 
that Thread 1 writes the new value into histo[x] at time period 4. When Thread 2 reads 
histo[x] at time period 3, it still has the value 0. As a result, the new value it calculates 
and eventually writes to histo[x] is 1 rather than 2. The problem is that Thread 2 read 
histo[x] too early, before Thread 1 completes its update. The net outcome is that the 
value of histo[x] afterwards is 1, which is incorrect. The update by Thread 1 is lost.

During parallel execution, threads can run in any order relative to each other. 
In our example, Thread 2 can easily start its update sequence ahead of Thread 1.  

Time

1 (0) Old ← histo[x]

(1) Old ← histo[x]

(1) New ← Old + 1

(0) Old ← histo[x]

(0) Old ← histo[x]

(1) New ← Old + 1

(1) New ← Old + 1(2) New ← Old + 1

(1) histo[x] ← New

(1) histo[x] ← New

(1) histo[x] ← New(2) histo[x] ← New
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Thread 1 Thread 2 Time Thread 1 Thread 2

(A) (B)

FIGURE 9.4

Race condition in updating a histo[] array element.
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Fig. 9.5 shows two such scenarios. In Fig. 9.5(A), Thread 2 completes its update 
before Thread 1 starts its. In Fig. 9.5(B), Thread 1 starts its update before Thread 
2 completes its. It should be obvious that the sequences in 9.5(A) result in correct 
outcome for histo[x] but those in 9.5(B) produce incorrect outcome.

The fact that the final value of histo[x] varies depending on the relative timing 
of the operations involved indicates that there is a race condition. We can eliminate 
such variations by preventing the interleaving of operation sequences of Thread 1 
and Thread 2. That is, we would like to allow the timings shown in Figs. 9.4(A) and 
9.5(A) while eliminating the possibilities shown in Figs. 9.4(B) and 9.5(B). Such 
timing constraints can be enforced with the use of atomic operations.

An atomic operation on a memory location is an operation that performs a read-mod-
ify-write sequence on the memory location in such a way that no other read-modify-write 
sequence to the location can overlap with it. That is, the read, modify, and write parts 
of the operation form an indivisible unit, hence the name atomic operation. In practice, 
atomic operations are realized with hardware support to lock out other threads from oper-
ating on the same location until the current operation is complete. In our example, such 
support eliminates the possibilities depicted in Figs. 9.4(B) and 9.5(B) since the trailing 
thread cannot start its update sequence until the leading thread completes its update.

It is important to remember that atomic operations do not force particular thread 
execution orderings. In our example, both orders shown in Fig. 9.4(A) and 9.5(B) are 
allowed by atomic operations. Thread 1 can run either ahead of or behind Thread 2. 
The rule being enforced is that if any one of the two threads begins an atomic opera-
tions to the same memory location, the trailing thread cannot perform any operations 
to the memory location until the leading thread completes its atomic operation. This 
effectively serializes the atomic operations being performed on a memory location.

Atomic operations are usually named according to the modification performed 
on the memory location. In our text histogram example, we are adding a value to the 
memory location so the atomic operation is called atomic add. Other types of atomic 
operations include subtraction, increment, decrement, minimum, maximum, logical 
and, logical or, etc.

A CUDA program can perform an atomic add operation on a memory location 
through a function call:

      int atomicAdd(int* address, int val);

Time
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(1) Old ← histo[x]

(1) New ← Old + 1
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(1) New ← Old + 1

(1) New ← Old + 1(2) New ← Old + 1

(1) histo[x] ← New
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FIGURE 9.5

Race condition scenarios where Thread 2 runs ahead of Thread 1.
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INTRINSIC FUNCTIONS
Modern processors often offer special instructions that either perform criti-
cal functionality (such as the atomic operations) or substantial performance 
enhancement (such as vector instructions). These instructions are typically 
exposed to the programmers as intrinsic functions, or simply instrinsics. From 
the programmer’s perspective, these are library functions. However, they are 
treated in a special way by compilers; each such call is translated into the cor-
responding special instruction. There is typically no function call in the final 
code, just the special instructions in line with the user code. All major modern 
compilers, such as Gnu C Compiler (gcc), Intel C Compiler and LLVM C 
Compiler support intrinsics.

The function is an intrinsic function that will be compiled into a hardware atomic 
operation instruction which reads the 32-bit word pointed to by the address argument 
in global or shared memory, adds val to the old content, and stores the result back to 
memory at the same address. The function returns the old value of the address.

Fig. 9.6 shows a CUDA kernel that performs parallel histogram computation based 
on Strategy I. Line 1 calculates a global thread index for each thread. Line 2 divides 
the total amount of data in the buffer by the total number of threads to determine the 
number of characters to be processed by each thread. The ceiling formula, introduced 
in Chapter 2, Data Parallel Computing, is used to ensure that all contents of the input 
buffer are processed. Note that the last few threads will likely process a section that is 
only partially filled. For example, if we have 1000 characters in the input buffer and 
256 threads, we would assign sections of (1000 − 1)/256 + 1 = 4 elements to each of 
the first 250 threads. The last 6 threads will process empty sections.

Line 3 calculates the starting point of the section to be processed by each thread 
using the global thread index calculated in Line 1. In the example above, the starting 
point of the section to be processed by thread i would be i*4 since each section con-
sists of 4 elements. That is, the starting point of thread 0 is 0, thread 8 is 32, and so on.

The for loop starting in line 4 is very similar to the one we have in Fig. 9.2. This 
is because each thread essentially executes the sequential histogram computation on 
its assigned section. There are two noteworthy differences. First, the calculation of 
the alphabet position is guarded by an if-condition. This test ensures that only the 
threads whose index into the buffer is within bounds will access the buffer. It is to 
prevent the threads that receive partially filled or empty sections from making out-
of-bound memory accesses.

Finally, the increment expression (histo[alphabet_position/4]++) in Fig. 9.2 
becomes an atomicAdd() function call in Line 6 of Fig. 9.6. The address of the loca-
tion to be updated, &(histo[alphabet_position/4]), is the first argument. The value 
to be added to the location, 1, is the second argument. This ensures that any simultane-
ous updates to any histo[] array element by different threads are properly serialized.
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9.3  BLOCK VERSUS INTERLEAVED PARTITIONING
In Strategy I, we partition the elements of buffer[] into sections of continuous ele-
ments, or blocks, and assign each block to a thread. This partitioning strategy is often 
referred to as block partitioning. Partitioning data into continuous blocks is an intui-
tive and conceptually simple approach. On a CPU, where parallel execution typically 
involves a small number of threads, block partitioning is often the best performing 
strategy since the sequential access pattern by each thread makes good use of cache 
lines. Since each CPU cache typically supports only a small number of threads, there 
is little interference in cache usage by different threads. The data in cache lines, once 
brought in for a thread, can be expected to remain for the subsequent accesses.

As we learned in Chapter 5, Performance Considerations, the large number of 
simultaneously active threads in an SM typically cause too much interference in the 
caches that one cannot expect a data in a cache line to remain available for all the 
sequential accesses by a thread under Strategy I. Rather, we need to make sure that 
threads in a warp access consecutive locations to enable memory coalescing. This 
means that we need to adjust our strategy for partitioning buffer[].

Fig. 9.7 shows the desirable access pattern for memory coalescing for our text 
histogram example. During the first iteration, the four threads access characters 0 
through 3 (“prog”), as shown in Fig. 11.7(A). With memory coalescing, all the ele-
ments will be fetched with only one DRAM access. During the second iteration, the 
four threads access characters “ramm” in one coalesced memory access. Obviously, 
this is a toy example. In reality, there will be many more threads. There is a subtle 
relationship between the number of characters processed by a thread in each iteration 
and performance. To fully utilize the bandwidth between the caches and SMs each 
thread should process four characters in each iteration.

Now that we understand the desired access pattern, we can derive the partitioning 
strategy to solve this problem. Instead of the block partitioning strategy, we will use 

__global__ void histo_kernel(unsigned char *buffer, long size, unsigned int *histo)
{
1.    int i = threadIdx.x + blockIdx.x * blockDim.x; 
2.    int section_size = (size-1)  / (blockDim.x * gridDim.x) +1; 
3.    int start = i*section_size; 

// All threads handle blockDim.x * gridDim.x 
// consecutive elements

4.   for (k = 0; k < section_size; k++) { 
5. if (start+k < size) { 
6. int alphabet_position = buffer[start+k] – ‘a’; 
7.   if (alphabet_position >= 0 && alpha_position < 26) atomicAdd(&(histo[alphabet_position/4]), 1);

}
}

}

FIGURE 9.6

A CUDA kernel for calculation histogram based on Strategy I.
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an interleaved partitioning strategy where each thread will process elements that are 
separated by the elements processed by all threads during one iteration. In Fig. 9.7, 
the partition to be processed by thread 0 would be elements 0 (“p”), 4 (“r”), 8 (“i”), 
12 (“m”), 16 (“i”), and 20 (“y”). Thread 1 would process elements 1 (“r”), 5 (“a”), 9 
(“n”), and 13 (“a”), 17 (“v”), and 21 (“_”). It should be clear why this is called inter-
leaved partitioning: the partition to be processed by different threads are interleaved 
with each other.

Fig. 9.8 shows a revised kernel based on Strategy II. It implements interleaved 
portioning in Line 2 by calculating a stride value, which is the total number threads 
launched during kernel invocation (blockDim.x*gridDim.x). In the first iteration of 
the while loop, each thread index the input buffer using its global thread index: Thread 
0 accesses element 0, Thread 1 accesses element 1, Thread 2 accesses element 2, etc. 
Thus, all threads jointly process the first blockDim.x*gridDim.x elements of the 
input buffer. In the second iteration, all threads add blockDim.x*gridDim.x to their 
indices and jointly process the next section of blockDim.x*gridDim.x elements.

The for- loop controls the iterations for each thread. When the index of a thread 
exceeds the valid range of the input buffer (i is greater than or equal to size), the 
thread has completed processing its partition and will exit the loop. Since the size of 
the buffer may not be a multiple of the total number of threads, some of the threads 
may not participate in the processing of the last section. So some threads will execute 
one fewer for- loop iteration than others.

Thanks to the coalesced memory accesses, the version in Fig. 9.8 will likely exe-
cute several times faster than that in Fig. 9.6. However, there is still plenty of room 
for improvement, as we will show in the rest of this chapter. It is interesting that the 
code in Fig. 9.8 is actually simpler even though interleaved partitioning is concep-
tually more complicated than block partitioning. This is often true in performance 
optimization. While an optimization may be conceptually complicated, its imple-
mentation can be quite simple.

9.4  LATENCY VERSUS THROUGHPUT OF ATOMIC 
OPERATIONS
The atomic operation used in the kernels of Figs. 9.6 and 9.8 ensures the correctness 
of updates by serializing any simultaneous updates to a location. As we all know, 

a-d
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Thread 0

p r o g r a m m i n g m a s s i v e l y p a p r o g r a m m i n g m a s s i v e l y p a

Thread 1 Thread 2 Thread 3 Thread 0 Thread 1 Thread 2 Thread 3

1 0 4 2 0 0110 2 1 0 0
e-h i-l m-p q-t u-x y-z a-d e-h i-l m-p q-t u-x y-z

FIGURE 9.7

Desirable access pattern to the input buffer for memory coalescing—Strategy II.
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serializing any portion of a massively parallel program can drastically increase 
the execution time and reduce the execution speed of the program. Therefore, it 
is important that such serialized operations account for as little execution time as 
possible.

As we learned in Chapter 5, Performance Considerations, the access latency to 
data in DRAMs can take hundreds of clock cycles. In Chapter 3, Scalable Parallel 
Execution, we learned that GPUs use zero-cycle context switching to tolerate such 
latency. As long as we have many threads whose memory access latencies can over-
lap with each other, the execution speed is limited by the throughput of the memory 
system. Thus it is important that GPUs make full use of DRAM bursts, banks, and 
channels to achieve very high memory access throughput.

At this point, It should be clear to the reader that the key to high memory access 
throughput is the assumption that many DRAM accesses can be simultaneously in 
progress. Unfortunately, this assumption breaks down when many atomic operations 
update the same memory location. In this case, the read-modify-write sequence of a 
trailing thread cannot start until the read-modify-write sequence of a leading thread 
is complete. As shown in Fig. 9.9, the execution of atomic operations to the same 
memory location proceeds such that only one is in progress during any unit of time. 
The duration of each atomic operation is approximately the latency of a memory read 
(the left section of the atomic operation time) plus the latency of a memory write (the 
right section of the atomic operation time). The length of these time sections of each 
read-modify-write operation, usually hundreds of clock cycles, defines the minimal 
amount time hat must be dedicated to servicing each atomic operation and thus limits 
the throughput, or the rate at which atomic operations can be performed.

For example, assume a memory system with 64-bit Double Data Rate DRAM 
interface, 8 channels, 1 GHz clock frequency, and typical access latency of 200 cycles. 
The peak access throughput of the memory system is 8 (bytes/transfer)*2 (transfers 

__global__ void histo_kernel(unsigned char *buffer, long size, unsigned int *histo)

{

1.  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; 

// All threads handle blockDim.x * gridDim.x consecutive elements in each iteration

2.   for (unsigned int i = tid;  i < size; i += blockDim.x*gridDim.x ) { 

3.       int alphabet_position = buffer[i] – ‘a’; 

4.       if (alphabet_position >= 0 && alpha_position < 26) atomicAdd(&(histo[alphabet_position/4]), 1);
}

}

FIGURE 9.8

A CUDA kernel for calculating histogram based on Strategy II.
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per clock per channel)*1G (clocks per second)*8 (Channels) = 128 GB/second. 
Assuming each data accessed is 4 bytes, the system has a peak access throughput of 
32G data elements per second.

However, when performing atomic operations on a particular memory location, 
the highest throughput one can achieve is one atomic operation every 400 cycles (200 
cycles for the read and 200 cycles for the write). This translates into a time-based 
throughput of 1/400 atomics/clock*1G (clocks/second) = 2.5 M atomics/second.  
This is dramatically lower than most users expect from a GPU memory system.

In practice, not all atomic operations will be performed on a single memory loca-
tion. In our text histogram example, the histogram has 7 intervals. If the input charac-
ters are uniformly distributed in the alphabet, the atomic operations evenly distributed 
among the histo[] elements. This would boost the throughput to 7*2.5 M = 17.5 M 
atomic operations per second. In reality, the boost factor tends to be much lower than 
the number of intervals in the histogram because the characters tend to have biased 
distribution in the alphabet. For example, in Fig. 9.1, we see that characters in the 
example phrase are heavily biased towards the m-p and q-t intervals. The heavy con-
tention traffic to update these intervals will likely reduce the achievable throughput 
to much less than 17.5 M atomic operations per second.

For the kernels of Figs. 9.6 and 9.8, low throughput of atomic operations will 
have significant negative impact on the execution speed. To put things into perspec-
tive, assume for simplicity that the achieved throughput of the atomic operations is 
17.5 M atomic operations per second. We see that the kernel in Fig. 9.8 performs 
approximately six arithmetic operations (−, > =, <, /, +, +) with each atomic 
operation. Thus the maximal arithmetic execution throughput of the kernel will be 
6*17.5 M = 105 M arithmetic operations per second. This is only a tiny fraction of 
the typical peak throughput of 1,000,000 M or more arithmetic operations per second 
on modern GPUs! This type of insight has motivated several categories of optimiza-
tions to improve the speed of parallel histogram computation as well as other types 
of computation using atomic operations.

Atomic Operations on DRAM

DRAM load delay DRAM store delay DRAM load delay 

Transfer delay

Atomic operation N Atomic operation N+1

Time

DRAM store delay 

FIGURE 9.9

Throughput of atomic operation is determined by the memory access latency.
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9.5  ATOMIC OPERATION IN CACHE MEMORY
A key insight from the previous section is that long latency of memory access trans-
lates into low throughput in executing atomic operations on heavily contended loca-
tions. With this insight, an obvious approach to improving the throughput of atomic 
operations is to reduce the access latency to the heavily contended locations. Cache 
memories are the primary tool for reducing memory access latency.

Recent GPUs allow atomic operation to be performed in the last level cache, which 
is shared among all SMs. During an atomic operation, if the updated variable is found 
in the last level cache, it is updated in the cache. If it cannot be found in the last level 
cache, it triggers a cache miss and is brought into the cache where it is updated. Since 
the variables updated by atomic operations tend to be heavily accessed by many threads, 
these variables tend to remain in the cache once they are brought in from DRAM. Since 
the access time to the last level cache is in tens of cycles rather than hundreds of cycles, 
the throughput of atomic operations is improved by at least an order of magnitude by 
just allowing them to be performed in the last level cache. This was evident in the big 
throughput improvement of atomic operations from the Tesla generation to the Fermi 
generation, where the atomic operations are first supported in the last level (L2) cache. 
However, the improved throughput is still insufficient for many applications.

9.6  PRIVATIZATION
The latency for accessing memory can be dramatically reduced by placing data 
in the shared memory. Shared memory is private to each SM and has very short 
access latency (a few cycles). Recall that this reduced latency directly translates into 
increase throughput of atomic operations. The problem is that due to the private 
nature of shared memory, the updates by threads in one thread block are no longer 
visible to threads in other blocks. The programmer must explicitly deal with this lack 
of visibility of histogram updates across thread blocks.

In general, a technique referred to as privatization is commonly used to address 
the output interference problem in parallel computing. The idea is to replicate highly 
contended output data structures into private copies so that each thread (or each sub-
set of threads) can update its private copy. The benefit is that the private copies can be 
accessed with much less contention and often at much lower latency. These private 
copies can dramatically increase the throughput for updating the data structures. The 
downside is that the private copies need to be merged into the original data structure 
after the computation completes. One must carefully balance between the level of 
contention and the merging cost. Therefore, in massively parallel systems, privatiza-
tion is typically done for subsets of threads rather than individual threads.

In our text histogram example, we can create a private histogram for each thread 
block. Under this scheme, a few hundred threads would work on a copy of the his-
togram stored in short-latency shared memory, as opposed to tens of thousands of 
threads pounding on a histogram stored in medium latency second level cache or 
long latency DRAM. The combined effect of fewer contending threads and shorter 
access latency can result in orders of magnitude of increase in update throughput.
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Fig. 9.10 shows a privatized histogram kernel. Line 2 allocates a shared memory 
array histo_s[] whose dimension is set during kernel launch. In the for - loop at Line 
3, all threads in the thread block cooperatively initialize all the bins of their private copy 
of the histogram. The barrier synchronization in Line 5 ensures that all bins of the pri-
vate histogram have been properly initialized before any thread starts to update them.

The for loop at Lines 6–7 is identical to that in Fig. 9.8, except that the atomic 
operation is performed on the shared memory histo_s[]. The barrier synchroniza-
tion in Line 8 ensures that all threads in the thread block complete their updates 
before merging the private copy into the original histogram.

Finally, the for loop at Lines 9–10 cooperatively merges the private histogram 
values into the original version. Note that atomic add operation is used to update 
the original histogram elements. This is because multiple thread blocks can simul-
taneously update the same histogram elements and must be properly serialized with 
atomic operations. Note that both for loops in Fig. 9.10 are written so that the kernel 
can handle histograms of arbitrary number of bins.

9.7  AGGREGATION
Some data sets have a large concentration of identical data values in localized areas. 
For example, in pictures of the sky, there can be large patches of pixels of identi-
cal value. Such high concentration of identical values causes heavy contention and 
reduced throughput of parallel histogram computation.

__global__ void histogram_privatized_kernel(unsigned char* input, unsigned int* bins,
    unsigned int num_elements, unsigned int num_bins) {

1.    unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;

       // Privatized bins
2.    extern __shared__ unsigned int histo_s[];
3.    for(unsigned int binIdx = threadIdx.x; binIdx < num_bins; binIdx +=blockDim.x) {
4.        histo_s[binIdx] = 0u;
       }
5.    __syncthreads();

        // Histogram
6.    For (unsigned int i = tid; i < num_elements; i += blockDim.x*gridDim.x) {
          int alphabet_position = buffer[i] – “a”;
7.       if (alphabet_position >= 0 && alpha_position < 26) atomicAdd(&(histo_s[alphabet_position/4]), 1);
       }
8.    __syncthreads();

    // Commit to global memory
9.    for(unsigned int binIdx = threadIdx.x; binIdx < num_bins; binIdx += blockDim.x) {
10.       atomicAdd(&(histo[binIdx]), histo_s[binIdx]);
       }
}

FIGURE 9.10

A privatized text histogram kernel.
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For such data sets, a simple and yet effective optimization is for each thread to 
aggregate consecutive updates into a single update if they are updating the same 
element of the histogram [Merrill 2015]. Such aggregation reduces the number of 
atomic operations to the highly contended histogram elements, thus improving the 
effective throughput of the computation.

Fig. 9.11 shows an aggregated text histogram kernel. Each thread declares three 
additional register variables curr_index, prev_index and accumulator. The accu-
mulator keeps track of the number of updates aggregated thus far and prev_index 
tracks the index of the histogram element whose updates has been aggregated. Each 

__global__ void histogram_privatized_kernel(unsigned char* input, unsigned int* bins, 
    unsigned int num_elements, unsigned int num_bins) { 
 
1.    unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x; 
 
    // Privatized bins 
2.    extern __shared__ unsigned int histo_s[]; 
3.    for(unsigned int binIdx = threadIdx.x; binIdx < num_bins; binIdx +=blockDim.x) { 
4.        histo_s[binIdx] = 0u; 
       } 
5.    __syncthreads(); 
 
6.    unsigned int prev_index = -1; 
7.    unsigned int accumulator = 0; 
     
8.    for(unsigned int i = tid; i < num_elements; i += blockDim.x*gridDim.x) { 
9.       int alphabet_position = buffer[i] – “a”; 
10.     if (alphabet_position >= 0 && alpha_position < 26) { 
11.              unsigned int curr_index = alphabet_position/4; 
12.              if (curr_index != prev_index) { 
13.                  if (accumulator >= 0) atomicAdd(&(histo_s[alphabet_position/4]), accumulator);
14.                  accumulator = 1;
15.                  prev_index = curr_index; 
                   } 
16.              else { 
17.                  accumulator++; 

} 
             } 
         } 
18.    __syncthreads(); 
 
    // Commit to global memory 
19.    for(unsigned int binIdx = threadIdx.x; binIdx < num_bins; binIdx += blockDim.x) { 
20.         atomicAdd(&(histo[binIdx]), histo_s[binIdx]); 
         } 
} 

FIGURE 9.11

An aggregated text histogram kernel.
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thread initializes the prev_index to −1 (Line 6) so that no alphabet input will match 
it. The accumulator is initialized to zero (Line 7), indicating that no updates have been 
aggregated.

When an alphabet data is found, the thread compares the index of the histogram 
element to be updated (curr_index) with the index of the one currently being aggre-
gated (prev_index). If the index is different, the streak of aggregated updates to the 
histogram element has ended (Line 12). The thread uses atomic operation to add the 
accumulator value to the histogram element whose index is tracked by prev_index. 
This effectively flushes out the total contribution of the previous streak of aggregated 
updates. If the curr_index matches the prev_index, the thread simply adds one to 
the accumulator (Line 17), extending the streak of aggregated updates by one.

One thing to keep in mind is that the aggregated kernel requires more statements and 
variables. Thus, if the contention rate is low, an aggregated kernel may execute at lower 
speed than the simple kernel. However, if the data distribution leads to heavy contention 
in atomic operation execution, aggregation results in significant performance gains.

9.8  SUMMARY
Histogramming is a very important computation for analyzing large data sets. It also 
represents an important class of parallel computation patterns where the output location 
of each thread is data-dependent, which makes it infeasible to apply owner-computes 
rule. It is therefore a natural vehicle for introducing the practical use of atomic opera-
tions that ensure the integrity of read-modify-write operations to the same memory 
location by multiple threads. Unfortunately, as we explained in this chapter, atomic 
operations have much lower throughput than simpler memory read or write operations 
because their throughput is approximately the inverse of two times the memory latency. 
Thus, in the presence of heavy contention, histogram computation can have surpris-
ingly low computation throughput. Privatization is introduced as an important optimi-
zation technique that systematically reduces contention and enables the use of local 
memory such as the shared memory, which supports low latency and thus improved 
throughput. In fact, supporting very fast atomic operations among threads in a block is 
an essential use case of the shared memory. For data sets that cause heavy contention, 
aggregation can also lead to significantly higher execution speed.

9.9  EXERCISES

1.	 Assume that each atomic operation in a DRAM system has a total latency of 
100 ns. What is the maximal throughput we can get for atomic operations on 
the same global memory variable?
a.	 100 G atomic operations per second
b.	 1 G atomic operations per second
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c.	 0.01 G atomic operations per second
d.	 0.0001 G atomic operations per second

2.	 For a processor that supports atomic operations in L2 cache, assume that each 
atomic operation takes 4 ns to complete in L2 cache and 100 ns to complete 
in DRAM. Assume that 90% of the atomic operations hit in L2 cache. What 
is the approximate throughput for atomic operations on the same global 
memory variable?
a.	 0.225 G atomic operations per second
b.	 2.75 G atomic operations per second
c.	 0.0735 G atomic operations per second
d.	 100 G atomic operations per second

3.	 In question 1, assume that a kernel performs 5 floating-point operations per 
atomic operation. What is the maximal floating-point throughput of the kernel 
execution as limited by the throughput of the atomic operations?
a.	 500 GFLOPS
b.	 5 GFLOPS
c.	 0.05 GFLOPS
d.	 0.0005 GFLOPS

4.	 In Question 1, assume that we privatize the global memory variable into 
shared memory variables in the kernel and the shared memory access latency 
is 1 ns. All original global memory atomic operations are converted into 
shared memory atomic operation. For simplicity, assume that the additional 
global memory atomic operations for accumulating privatized variable into 
the global variable adds 10% to the total execution time. Assume that a 
kernel performs 5 floating-point operations per atomic operation. What is the 
maximal floating-point throughput of the kernel execution as limited by the 
throughput of the atomic operations?
a.	 4500 GFLOPS
b.	 45 GFLOPS
c.	 4.5 GFLOPS
d.	 0.45 GFLOPS

5.	 To perform an atomic add operation to add the value of an integer variable 
Partial to a global memory integer variable Total, which one of the following 
statements should be used?
a.	 atomicAdd(Total, 1)
b.	 atomicAdd(&Total, &Partial)
c.	 atomicAdd(Total, &Partial)
d.	 atomicAdd(&Total, Partial)

REFERENCE
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Our next parallel pattern is sparse matrix computation. In a sparse matrix, the major-
ity of the elements are zeros. Many important real-world problems involve sparse 
matrix computation. Storing and processing these zero elements are wasteful in 
terms of memory capacity, memory bandwidth, time, and energy. To address these 
problems, several sparse matrix storage formats and their corresponding process-
ing methods have been proposed and widely used in the field. These approaches 
employ a compaction technique to avoid storing or processing zero elements at 
the cost of introducing a certain degree of irregularity into the data representation. 
Unfortunately, such irregularity can lead to underutilization of memory bandwidth, 
control flow divergence, and load imbalance in parallel computing. Striking a good 
balance between compaction and regularization is important. Some storage formats 
achieve a high level of compaction at high levels of irregularity, whereas others attain 
a modest level of compaction while keeping the representation more regular. The 
parallel computation performance of their corresponding methods depends heavily 
on the distribution of nonzero elements in the sparse matrices. Understanding the 
wealth of work in sparse matrix storage formats and their corresponding parallel 
algorithms provides a parallel programmer an overview for addressing compaction 
and regularization challenges in solving related problems.



216 CHAPTER 10  Parallel patterns: sparse matrix computation

10.1  BACKGROUND
A sparse matrix is a matrix where the majority of the elements are zeros. Sparse 
matrices arise in many science, engineering, and financial modeling problems. As 
seen in Chapter 6, Numerical Considerations, matrices can be used to represent the 
coefficients in a linear system of equations. Each row of the matrix represents one 
equation of the linear system. In various science and engineering problems, the large 
number of variables and equations involved are sparsely coupled; i.e., each equation 
involves only a small number of variables. This point is illustrated in Fig. 10.1, where 
each column of the matrix corresponds to the coefficients for a variable: column 0 for 
x0, column 1 for x1, etc. For instance, the fact that row 0 has nonzero elements in col-
umns 0 and 2 indicates that variables x0 and x2 are involved in equation 0. It should 
be clear that none of the variables are present in equation 1, variables x1, x2 and x3 
are present in equation 2, and finally variables x0 and x3 are present in equation 3.

Sparse matrices are typically stored in a format, or a representation, that avoids 
storing zero elements. We will start with the Compressed Sparse Row (CSR) stor-
age format, which is illustrated in Fig. 10.2. CSR stores only nonzero values in a 
one-dimensional data storage, shown as data[] in Fig. 10.2. Array data[] stores 
all nonzero values in the sparse matrix in Fig. 10.1. The nonzero elements of Row 
0 (3 and 1) are stored first, followed by the nonzero elements of Row 1 (none), the 
nonzero elements of Row 2 (2, 4, 1), and the nonzero elements of Row 3 (1, 1). The 
format compresses away all the zero elements.

With the compressed format, we need to input two sets of markers to preserve the 
structure of the original sparse matrix in the compressed representation. The first set 
of markers forms a column index array, col_index[], in Fig. 10.2. This array gives 
the column index of every nonzero value in the original sparse matrix. Since we have 
squeezed away the nonzero elements of each row, we need to use these markers to 

Row 0 3 0 1 0

Row 1 0 0 0 0

Row 2 0 2 4 1

Row 3 1 0 0 1

FIGURE 10.1

A simple sparse matrix example.

Row 0 Row 2 Row 3
Nonzero values data[7] { 3, 1, 2, 4, 1, 1, 1 }
Column indices col_index[7] { 0, 2, 1, 2, 3, 0, 3 }
Row Pointers row_ptr[5] { 0,   2,   2,   5,   7   }

FIGURE 10.2

Example of Compressed Sparse Row (CSR) format.
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remember the location of the remaining elements in the original rows of the sparse 
matrix; e.g., values 3 and 1 came from columns 0 and 2 of row 0 in the original 
sparse matrix. The col_index[0] and col_index[1] elements are assigned to store 
the column indices for these two elements. For another example, values 2, 4, and 
1 came from columns 1, 2, and 3 of row 2 in the original sparse matrix. Therefore, 
col_index[2], col_index[3], and col_index[4] store indices 1, 2, and 3.

The second set of markers indicates the starting location of every row in the com-
pressed format as the size of each row varies after the zero elements are removed. 
The starting location of each row in the compressed storage can no longer be identi-
fied using indexing based on the fixed row size. Fig. 10.2 shows a row_ptr[] array 
whose elements are the indices for the beginning locations of each row; row_ptr[0] 
indicates that Row 0 starts at location 0 of the data[] array, row_ptr[1] indicates 
that Row 1 starts at location 2, etc. Both row_ptr[1] and row_ptr[2] have a value  
of 2, implying that none of the elements of Row 1 is stored in the compressed format. 
This statement makes sense since Row 1 in Fig. 10.1 consists entirely of zero values. 
In addition, row_ptr[4] stores the starting location of a nonexistent “Row 4”. This 
choice is for convenience, as some algorithms need to use the starting location of 
the next row to delineate the end of the current row. This extra marker provides a 
convenient way to locate the ending location of Row 3.

As discussed in Chapter 6, Numerical Considerations, matrices are often used in 
solving a linear system of N equations of N variables in the form A*X+Y=0, where A 
is an N × N matrix, X is a vector of N variables, and Y is a vector of N constant val-
ues. The objective is to solve for the X variable that will satisfy all the equations. An 
intuitive approach is to inverse the matrix such that X=A-1*(-Y). This technique can 
be used for matrices of moderate size through methods such as Gaussian elimination, 
as illustrated in Chapter 6, Numerical Considerations. While these methods can be 
used theoretically to solve equations represented in sparse matrices, the sheer size of 
numerous sparse matrices can overwhelm this intuitive approach. Furthermore, an 
inversed sparse matrix is often much larger than the original because the inversion 
process tends to generate a large number of additional nonzero elements called fill-
ins. As a result, it is often impractical to compute and store the inversed matrix in 
solving real-world problems.

Instead, linear systems of equations represented in sparse matrices can be better 
solved with an iterative approach. When the sparse matrix A is positive–-definite (i.e., 
xTAx > 0 for all nonzero vectors x in Rn), the conjugate gradient method can be used 
to iteratively solve the corresponding linear system with guaranteed convergence to 
a solution [HS 1952]. The conjugate gradient methods predicts a solution for X and 
performs A*X+Y. If the result is not close to a 0 vector, a gradient vector formula can 
be used to refine the predicted X and another iteration of A*X+Y performed.

The most time-consuming aspect of such iterative approaches is the evalua-
tion of A*X+Y, which is a sparse matrix–vector multiplication and accumulation.  
Fig. 10.3 illustrates matrix–vector multiplication and accumulation, where A is a sparse 
matrix. The dark squares in A represent nonzero elements. By contrast, both X and Y 
are typically dense vectors; i.e., most of the elements of X and Y hold nonzero values. 
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Owing to its importance, standardized library function interfaces have been created to 
perform this operation referred to as Sparse Matrix–Vector (SpMV) multiplication and 
accumulation. We will use SpMV to illustrate the important tradeoffs between differ-
ent storage formats in parallel sparse matrix computation.

A sequential implementation of SpMV based on the CSR format is quite straight-
forward, as shown in Fig. 10.4. We assume that the code has access to (1) num_rows, 
a function argument that specifies the number of rows in the sparse matrix, (2) a 
floating point data array of A elements (via the data[] input parameter), two float-
ing point x[] and y[] arrays of X and Y elements, and two integer row_ptr and 
col_index arrays, as described in Fig. 10.2. Only seven lines of code exist. Line 1 
is a loop that iterates through all rows of the matrix, with each iteration calculating a 
dot product of the current row and the vector x.

In each row, Line 2 first initializes the dot product to zero. It then sets up the range 
of data[] array elements that belong to the current row. The starting and ending loca-
tions can be loaded from the row_ptr[] array, as illustrated in Fig. 10.5 for the small 
sparse matrix in Fig. 10.1. For row=0, row_ptr[row] is 0 and row_ptr[row+1] is 2. 
The two elements from Row 0 reside in data[0] and data[1]. That is, row_ptr[row] 
gives the starting position of the current row and row_ptr[row+1] gives the starting 
position of the next row, which is one after the ending position of the current row. 
This process is reflected in the loop in Line 5, where the loop index iterates from the 
position given by row_ptr[row] to the position given by row_ptr[row+1]-1.

×

A X

+

Y Y

FIGURE 10.3

An example of matrix–vector multiplication and accumulation.

1.   for (int row = 0; row < num_rows; row++) {
2.     float dot = 0;
3. int row_start = row_ptr[row];
4.     int row_end =   row_ptr[row+1];
5.     for (int elem = row_start; elem < row_end; elem++) {
6.         dot += data[elem] * x[col_index[elem]];

}
7.     y[row] += dot;

}

FIGURE 10.4

A sequential loop that implements SpMV based on the CSR format.
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The loop body in Line 6 calculates the dot product for the current row. For each 
element, the loop body uses the loop index elem to access the matrix A element in 
data[elem]. The code also uses elem to retrieve the column index for the element from 
col_index[elem]. This column index is then used to access the appropriate x element 
for multiplication. To illustrate, the elements in data[0] and data[1] come from  
column 0 (col_index[0]=0) and column 2 (col_index[1]=2), respectively. Thus, the 
inner loop will perform the dot product for row 0 as data[0]*x[0]+data[1]*x[2]. 
The reader is encouraged to perform the dot product for other rows as an exercise.

CSR completely removes all zero elements from the storage. It incurs storage 
overhead by introducing the col_index and row_ptr arrays. In our example where 
the number of zero elements is not much larger than the number of nonzero elements, 
the storage overhead is greater than the space saved by not storing the zero elements. 
However, for sparse matrices where the vast majority of elements are zeros, the over-
head introduced is far smaller than the space saved by not storing zeros. For instance, 
in a sparse matrix where only 1% of the elements are nonzero values, the total stor-
age for the CSR representation, including the overhead, would be around 2% of the 
space required to store both zero and nonzero elements.

Removing all zero elements from the storage also eliminates the need to fetch 
these zero elements from memory or to perform useless multiplication operations 
on these zero elements. This method can significantly reduce the consumption of 
memory bandwidth and computational resources.

Any SpMV computation code will reflect the storage format assumed. Therefore, 
we will add the storage format to the name of a code to clarify the combination used. 
The SpMV code in Fig. 10.4 will be referred to as sequential SpMV/CSR. With a 
good understanding of sequential SpMV/CSR, we are now ready to discuss parallel 
sparse computation.

10.2  PARALLEL SPMV USING CSR
The dot product calculation for each row of the sparse matrix is independent  
of the dot product for other rows; i.e., all iterations of the outer loop (Line 1) in  
Fig. 10.4 are logically independent of each other. We can easily convert this sequential 

row_ptr

data

col_index

0 2 2 5 7

3 1 2 4 1 1 1

0 2 1 2 3 0 3

FIGURE 10.5

Illustration of the sequential SpMV loop when operating on the sparse matrix example in  
Fig. 10.1.
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SpMV/CSR into a parallel CUDA kernel by assigning each iteration of the outer loop 
to a thread. Each thread calculates the inner product for a row of the matrix, which is 
illustrated in Fig. 10.6, where Thread 0 calculates the dot product for row 0, Thread 
1 for row 1, and so on.

A real-world sparse matrix application usually consists of thousands to millions 
of rows, each of which contains tens to hundreds of nonzero elements. The mapping 
in Fig. 10.6 seems appropriate, showing multiple threads, with each of them having a 
substantial amount of work. We present a parallel SpMV/CSR in Fig. 10.7.

It should be clear that the kernel appears almost identical to the sequential SpMV/
CSR loop. The outermost loop construct has been removed and is replaced by the 
thread grid. In Line 2, the row index assigned to a thread is calculated as the familiar 
expression blockIdx.x*blockDim.x + threadIdx.x. With the need to manage any 
arbitrary number of rows, Line 3 checks whether the row index of a thread exceeds 
the number of rows. This method handles the situation where the number of rows is 
not a multiple of the thread block size.

Despite its simplicity, the parallel SpMV/CSR kernel has two major shortcom-
ings. First the kernel does not make coalesced memory accesses. As shown in  

Thread 0 3 0 1 0

Thread 1 0 0 0 0

Thread 2 0 2 4 1

Thread 3 1 0 0 1

FIGURE 10.6

Example of mapping threads to rows in parallel SpMV/CSR.

1.  __global__ void SpMV_CSR(int num_rows, float *data, int *col_index,
      int *row_ptr, float *x, float *y) {

2.    int row = blockIdx.x * blockDim.x + threadIdx.x;

3.    if (row < num_rows) {
4.      float dot = 0;
5.      int row_start = row_ptr[row];
6.      int row_end =   row_ptr[row+1];
7.      for (int elem = row_start; elem < row_end; elem++) { 
8.        dot += data[elem] * x[col_index[elem]];
        }
9.      y[row] += dot;
      }

    }

FIGURE 10.7

A parallel SpMV/CSR kernel.



22110.3  Padding and transposition

Fig. 10.5, adjacent threads will be making simultaneous nonadjacent memory accesses. 
In our example, threads 0, 1, 2, and 3 will access data[0], none, data[2], and data[5] 
in the first iteration of their dot product loop. The same threads will then access 
data[1], none, data[3], and data[6] in the second iteration, and so on. Thus, the 
parallel SpMV/CSR kernel in Fig. 10.7 fails to efficiently use the memory bandwidth.

The second shortcoming of the SpMV/CSR kernel is its potential to incur sig-
nificant control flow divergence in all warps. The number of iterations performed 
by a thread in the dot product loop depends on the number of nonzero elements in 
the row assigned to the thread. Since the distribution of nonzero elements among 
rows can be random, adjacent rows can have varying numbers of nonzero elements. 
Consequently, a widespread control flow divergence can occur in most or even all 
warps.

Both the execution efficiency and memory bandwidth efficiency of the paral-
lel SpMV kernel depends on the distribution of the input data matrix. This behav-
ior somehow differs from those of most of the kernels we have thus far studied. 
However, such data-dependent performance behavior is commonly observed in real-
world applications. Such occurrence justifies the importance of parallel SpMV as 
a parallel pattern. Although simple, parallel SpMV depicts an important behavior 
in many complex parallel applications. We will discuss three important techniques 
in the next sections to address the noncoalesced memory accesses and control flow 
divergence in the parallel SpMV/CSR kernel.

10.3  PADDING AND TRANSPOSITION
The problems of noncoalesced memory accesses and control divergence can be 
addressed by applying data padding and transposition on the sparse matrix data. 
These ideas were used in the ELL storage format, whose name came from the sparse 
matrix package in ELLPACK, a package for solving elliptic boundary value prob-
lems [RB 1984]. A simple way to understand the ELL format is to start with the CSR 
format, as is illustrated in Fig. 10.8.

From a CSR representation, we first determine the rows with the maximal number 
of nonzero elements. We then add dummy (zero) elements to all other rows after the 
nonzero elements for them to be of the same length as the maximal rows, thereby 
generating a rectangular matrix. For our small sparse matrix example, we determine 
that row 2 has the maximal number of elements. We then add one zero element to 
row 0, three zero elements to row 1, and one zero element to row 3 for the rows to be  
of equal lengths. These additional zero elements appear as squares with an * in  
Fig. 10.8, thereby generating a rectangular matrix. Note that the col_index array also 
needs to be padded the same way to preserve their correspondence to the data values.

We can now lay the padded matrix out in the column major order; i.e., we will 
place all elements of column 0 in consecutive memory locations, followed by all 
elements of column 1, and so on. This method is equivalent to transposing the rec-
tangular matrix in the row major order used by the C language. In terms of our 
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small example, after transposition, data[0] through data[3] contain 3, *, 2, 1, the 
0th elements of all rows, as illustrated in Fig. 10.9, bottom portion. Similarly, col_
index[0] through col_index[3] contain the column positions of the 0th elements of 
all rows. We no longer need row_ptr since the beginning of row i has been simplified 
to data[i]. With the padded elements, it is also very easy to move from the current 
element of row i to the next element by simply adding the number of rows in the 
original matrix to the index. To illustrate, the 0th element of row 2 is in data[2], 
and the next element is in data[2+4]=data[6], where 4 is the number of rows in the 
original matrix in our small example.

Using the ELL format, we show a parallel SpMV/ELL kernel in Fig. 10.10. The 
kernel receives slightly different arguments. The kernel no longer needs the row_ptr; 
instead, it needs an argument, num_elem, to determine the number of elements in 
each row after padding. Recall that num_elem is the maximal number of nonzero ele-
ments among all rows in the original sparse matrix.

CSR with padding

* *

*

*

*

*

* * *

*
Transposed

FIGURE 10.8

ELL storage format.

Thread 0T
hread 0

T
hread 1

T
hread 2

T
hread 3

Thread 1

Thread 2

Thread 3
Iteration 0

Data

Index

Values Columns

3 1

11

*

***

* * * * *3 2 1 1 4 1 1

* * * * *0 1 0 2 2 3 3

*

2 4 1

0 2

30

*

***

*

1 2 3

FIGURE 10.9

More details of our small example in ELL.
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A first observation is that the kernel code of SpMV/ELL kernel is simpler than 
that of SpMV/CSR. With padding, all rows are now of the same length. In the dot 
product loop in Line 5, all threads can simply loop through the number of elements 
given by num_elem. Consequently, control flow divergence no longer occurs in warps: 
all threads now iterate exactly the same number of times in the dot product loop. In 
the case where a dummy element is used in a multiplication and accumulation step, 
it will not affect the final result because its value is 0.

A second observation is that in the dot product loop body, each thread accesses its 
0th element in data[row], and in general, its ith element in data[row+i*num_rows]. 
As we have seen in Fig. 10.9, by arranging the elements in the column major order, 
all adjacent threads are now accessing adjacent memory locations, enabling memory 
coalescing, thereby using memory bandwidth more efficiently.

By eliminating control flow divergence and enabling memory coalescing, SpMV/
ELL should run faster than SPMV/CSR. Furthermore, SpMV/ELL is simpler, mak-
ing SpMV/ELL an all-around winning approach. Unfortunately, SpMV/ELL has 
a potential downside. In situations where one or a small number of rows have an 
exceedingly large number of nonzero elements, the ELL format will result in exces-
sive number of padded elements. These padded elements will require storage space, 
need to be fetched, and perform calculations despite their lack of influence on the 
final result. They consume memory storage, memory bandwidth, and execution 
cycles. Consider our sample matrix: in the ELL format, we have replaced a 4× 4 
matrix with a 4× 3 matrix, and with the overhead from the column indices we are 
storing more data than contained in the original 4× 4 matrix.

To illustrate, a 1000× 1000 sparse matrix has 1% of its elements of nonzero value. 
On average, each row has 10 nonzero elements. With the overhead, the size of a CSR 
representation would be about 2% of the uncompressed total size. Assume that one 
of the rows has 200 nonzero values while all other rows have less than 10. Using the 
ELL format, we would pad all other rows to 200 elements. This method makes the 
ELL representation about 40% of the uncompressed total size and 20 times larger 
than the CSR representation. The excessively long row will extend the runtime of 

1.  __global__ void SpMV_ELL(int num_rows, float *data, int *col_index,
      int num_elem, float *x, float *y) {

2.    int row = blockIdx.x * blockDim.x + threadIdx.x;
3.    if (row < num_rows) {
4.      float dot = 0;
5.      for (int i = 0; i < num_elem; i++) {
6.        dot += data[row+i*num_rows] * x[col_index[row+i*num_rows]];
        }
7.      y[row] += dot;
      }
    }

FIGURE 10.10

A parallel SpMV/ELL kernel.
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only one of the warps of the SpMV/CSR kernel, whereas the padding will extend 
the runtime of all warps of the SpMV/ELL kernel. With numerous padded dummy 
elements, an SpMV/ELL kernel can run more slowly compared with an SpMV/CSR 
kernel. This inadequacy requires a method to control the number of padded elements 
when we convert from the CSR format to the ELL format.

10.4  USING A HYBRID APPROACH TO REGULATE PADDING
The root of the problem with excessive padding in the ELL representation is that one 
or a small number of rows have an exceedingly large number of nonzero elements. If 
we have a mechanism to “take away” some elements from these rows, we can reduce 
the number of padded elements in ELL. The Coordinate (COO) format provides such 
a mechanism.

The COO format is illustrated in Fig. 10.11, where each nonzero element is 
stored with both its column index and row index. We have both the col_index and 
row_index arrays to accompany the data array. To illustrate, A[0,0] of our small 
example is now stored with both its column index (0 in col_index[0]) and its row 
index (0 in row_index[0]). With the COO format, one can look at any element in 
the storage and know where the element came from in the original sparse matrix. As 
in the case of the ELL format, row_ptr is unnecessary because each element self-
identifies its column and row positions.

Although the COO format involves additional storage cost for the row_index array, 
it has the additional benefit of flexibility. The elements in a COO format can be arbi-
trarily reordered without losing any information provided that the data, col_index, 
and row_index arrays are reordered in the same manner, as illustrated in Fig. 10.12.

In Fig. 10.12, we have reordered the elements of data, col_index, and row_
index. Currently, data[0] contains an element from row 3 and column 0 of the 
original sparse matrix. We have also shifted the row index and column index values 
along with the data value; thus, we can correctly identify the location of this element 
location in the original sparse matrix. The reader may ask why we would want to 
reorder these elements. Such reordering would disturb the locality and sequential 
patterns necessary for the efficient use of memory bandwidth.

The answer lies in an important use case for the COO format. It can be used 
to curb the length of rows in the CSR format or the ELL format. First, we make 
an important observation. In the COO format, we can process the elements in 
any desired order. For each element in data[i], we can simply perform a y[row_
index[i]]+=data[i]*x[col_index[i]] operation. The correct y element identified 
by row_index[i] will receive the correct contribution from the product of data[i] 
and x[col_index]. If this operation is performed for all elements of data, the cor-
rect final answer will be obtained regardless of the order in which these elements are 
processed.

Before converting a sparse matrix from the CSR format to the ELL format, we 
can remove some elements from rows with exceedingly large numbers of nonzero 
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elements and place them into a separate COO storage. We can use SpMV/ELL on 
the remaining elements. With excess elements removed from the extra-long rows, the 
number of padded elements for other rows can be significantly reduced. We can then 
use a SpMV/COO to finish the job. This approach of employing two formats to col-
laboratively complete a computation is often referred to as a hybrid method.

A hybrid ELL and COO method for SpMV using our small sparse matrix is shown 
in Fig. 10.13. Row 2 has the largest number of nonzero elements. We remove the last 
nonzero element of row 2 from the ELL representation and move it into a separate 
COO representation. By removing the last element of row 2, we reduce the maximal 
number of nonzero elements among all rows in the small sparse matrix from 3 to 2. 
As shown in Fig. 10.13, the number of padded elements is reduced from 5 to 2. More 
importantly, all of the threads only need to perform 2 rather than 3 iterations, which 
can accelerate the parallel execution of the SpMV/ELL kernel by 50%.

A typical way of using an ELL–COO hybrid method is for the host to convert the 
format from one similar to the CSR format into the ELL format. During conversion, 
the host removes some nonzero elements from the rows with exceedingly large num-
ber of nonzero elements. The host places these elements into a COO representation 
and then transfers the ELL representation of the data to a device. When the device 
completes the SpMV/ELL kernel, it transfers the resulting y values back to the host. 
These values are missing the contributions from the elements in the COO representa-
tion. The host performs a sequential SpMV/COO kernel on the COO elements and 
finishes their contributions to the y element values.

The user may question whether the additional work performed by the host to sep-
arate COO elements from an ELL format could incur excessive overhead. It depends. 
In situations where a sparse matrix is only used in one SpMV calculation, this extra 
work can indeed incur a significant large overhead. However, in a number of real-
work applications, the SpMV is performed on the same sparse kernel repeatedly in 
an iterative solver. In each iteration of the solver, the x and y vectors vary; however, 

Row 0
Nonzero values   data[7] { 3, 1, 2, 4, 1, 1, 1 } 

0, 2, 1, 2, 3, 0, 3 } 
0, 0, 2, 2, 2, 3, 3 } 

Column indices   col_index[7] { 
Row indices   row_index[7] { 

Row 2 Row 3

FIGURE 10.11

Example of Coordinate (COO) format.

Nonzero values data[7] { 1 1, 2, 4, 3, 1 1 }

Column indices col_index[7] { 0 2, 1, 2, 0, 3, 3 }

Row indices row_index[7] { 3 0, 2, 2, 0, 2, 3 }

FIGURE 10.12

Reordering the Coordinate (COO) format.
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the sparse matrix remains the same because its elements correspond to the coeffi-
cients of the linear system of equations being solved, and these coefficients remain 
the same from iteration to iteration. Thus, the work done to produce both the hybrid 
ELL and COO representations can be amortized across many iterations. We will 
return to this point in the next section.

In our small example, the device finishes the SpMV/ELL kernel on the ELL por-
tion of the data. The y values are then transferred back to the host, which then adds 
the contribution of the COO element with the operation y[2]+=data[0]*x[col_
index[0]]=1*x[3]. Note that in general, the COO format includes multiple nonzero 
elements. Thus, we expect the host code to be a loop, as shown in Fig. 10.14.

The loop is extremely simple. It iterates through all the data elements and per-
forms the multiply-and-accumulate operation on the appropriate x and y elements by 
using the accompanying col_index and row_index elements. We will not present a 
parallel SpMV/COO kernel. It can be easily constructed using each thread to process 
a portion of the data elements and to use an atomic operation in order to accumulate 
the results into y elements. The reason is that the threads are no longer mapped to 
a particular row. Many rows will likely be missing from the COO representation; 
only the rows that have exceedingly large numbers of nonzero elements will have 
elements in the COO representation. Therefore, it is better for each thread to take a 
portion of the data element and use an atomic operation in order to ensure that none 
of the threads will trample the contribution of other threads.

The hybrid SpMV/ELL–COO method illustrates a productive use of both CPUs 
and GPUs in a heterogeneous computing system. The CPU can readily perform 

values col index

Thread 0 3 1 0 2

Thread 1 * * * *

Thread 2 2 4 1 2

Thread 3 1 1 0 3

row_index

data

col_index 3

1

2

COOELL

T
hread 0

T
hread 1

T
hread 2

3 * 2 1 1 * 4 1

0 * 1 0 2 * 2 3

data

index

Iteration 0

T
hread 3

FIGURE 10.13

Our small example in ELL and COO hybrid.

1.    for (int i = 0; i < num_elem; row++)
2.      y[row_index[i]] += data[i] * x[col_index[i]];

FIGURE 10.14

A sequential loop that implements SpMV/COO.
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SpMV/COO by using its large cache memory. The GPU can quickly perform SpMV/
ELL by using its coalesced memory accesses and large number of hardware execu-
tion units. The removal of some elements from the ELL format is a regularization 
technique: it reduces the disparity between long and short rows and improves the 
workload uniformity of all threads. Such enhanced uniformity provides certain ben-
efits, including less control divergence in an SpMV/CSR kernel or less padding in an 
SpMV/ELL kernel.

10.5  SORTING AND PARTITIONING FOR REGULARIZATION
While COO helps regulate the amount of padding in an ELL representation, we can fur-
ther reduce the padding overhead by sorting and partitioning the rows of a sparse matrix. 
The idea is to sort the rows according to their length, e.g., from the longest to the shortest, 
as illustrated in our small sparse matrix in Fig. 10.15. Since the sorted matrix looks largely 
like a triangular matrix, the format is often referred to as the Jagged Diagonal Storage 
(JDS) format. As we sort the rows, we typically maintain an additional jds_row_index 
array that preserves the original index of the row. For CSR, this array is similar to the 
row_ptr array in that both arrays have one element for each row of the matrix. Whenever 
we exchange two rows during sorting, we also exchange the corresponding elements of 
the jds_row_index array, thereby keeping track of the original position of all rows.

Once a sparse matrix is in the JDS format, we can partition the matrix into sec-
tions of rows. Since the rows have been sorted, all rows in a section will likely have 
similar numbers of nonzero elements. As shown in Fig. 10.15, the small matrix can 
be divided into three sections: the first section consists of one row with three ele-
ments, and the second section consists of two rows with two elements each. The 
third section consists of one row without any element. We can then generate an ELL 
representation for each section. Within each section, we only need to pad the rows 
to match the row with the maximal number of elements in that section. This method 
would reduce the number of padded elements. In our example, we do not even need 
to pad within any of the three sections. We can then transpose each section indepen-
dently and launch a separate kernel on each section. In fact, we do not even need to 
launch a kernel for the section of rows with no nonzero elements.

Fig. 10.16 shows a JDS–ELL representation of our small sparse matrix, which 
assumes similar sorting and partitioning results found in Fig. 10.15. The first section 
has only one row so that the transposed layout is the same as the original one. The 
second section is a 2 × 2 matrix and has been transposed. The third section consists of 
Row 1, which has no nonzero element. This lack of nonzero elements is reflected in the 
fact that its starting location and the starting position of the next section are identical.

An SpMV/JDS kernel will not be presented in this chapter. Either an SpMV/CSR 
kernel on each section of the CSR or an SpMV/ELL kernel on each section of the 
ELL after padding may be used to represent the kernel. The host code required to 
create a JDS representation and to launch SpMV kernels on each section of the JDS 
representation is left as an exercise.
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Note that we want each section to have a large number of rows so that its kernel 
launch will be worthwhile. In extreme cases where a very small number of rows have 
extremely large numbers of nonzero elements, the COO hybrid with JDS can still be 
used to allow more rows in each section.

Once again, the reader should ask whether sorting rows will lead to incorrect solu-
tions to the linear system of equations. Recall that we can freely reorder equations of 
a linear system without changing the solution. Provided that the y elements are reor-
dered along with the rows, we are effectively reordering the equations. Therefore, we 
will obtain the correct solution. The only extra step is to reorder the final solution 
back to the original order by using the jds_row_index array.

Whether sorting will incur a significant overhead, the answer is similar to what 
we saw in the hybrid method. Provided that the SpMV/JDS kernel is used in an 
iterative solver, such sorting and reordering of the final solution x elements can be 
performed, and the cost can be amortized among many iterations of the solver.

In relatively recent devices, the memory coalescing hardware has relaxed the 
address alignment requirement, allowing the simple transposition of a JDS-CSR rep-
resentation. The jds_section_ptr array does not need to be adjusted after trans-
position. This further eliminates the need to pad rows in each section. As memory 
bandwidth becomes increasingly the limiting factor of performance, eliminating the 

CSR JDS

FIGURE 10.15

Sorting rows according to their length.

Nonzero values  data[7] { 2, 4, 1, 3, 1, 1, 1 }

Column indices  col_index[7] { 1, 2, 3, 0, 2, 0, 3 }

JDS row indices  Jds_row_index[4] { 2, 0, 3, 1 }

Section pointers  Jds_section_ptr[4] { 0, 3, 7, 7 }

2 4 1 3 1 1 1

1 2 3 0 0 2 3

FIGURE 10.16

JDS format and sectioned ELL.
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need to store and fetch padded elements can be a significant advantage. Indeed, we 
have observed that while sectioned JDS–ELL tends to exhibit the best performance 
on older CUDA devices, transposed JDS-CSR tends to exhibit the best performance 
on Fermi and Kepler.

We would like to make an additional remark on the performance of sparse matrix 
computation compared with dense matrix computation. In general, the FLOPS 
achieved by either CPUs or GPUs is much lower for sparse matrix computation than 
for dense matrix computation. This finding is particularly true for SpMV, where there 
is no data reuse in the sparse matrix. The CGMA value (see Chapter 4: Memory and 
Data Locality) is essentially 1, limiting the attainable FLOPS to a small fraction of 
the peak performance. The various formats are important for CPUs and GPUs since 
both are limited by memory bandwidth when performing SpMV. Many have been 
surprised by the low FLOPS of this type of computation on both CPUs and GPUs. 
After reading this chapter, one should no longer be surprised.

10.6  SUMMARY
In this chapter, we presented sparse matrix computation as an important parallel 
pattern. Sparse matrices are important in a number of real-world applications that 
involve modeling complex phenomena. Furthermore, sparse matrix computation is a 
simple example demonstrating data-dependent performance behavior of many large 
real-world applications. Owing to the large number of zero elements, compaction 
techniques are used to reduce the amount of storage, memory accesses, and computa-
tion performed on these zero elements. Unlike most other kernels presented thus far 
in this book, the SpMV kernels are sensitive to the distribution of data, specifically 
the nonzero elements in sparse matrices. Not only can the performance of each ker-
nel vary significantly across matrices; their relative merit can change significantly as 
well. Using this pattern, we introduce the concept of regularization applying hybrid 
methods and sorting/partitioning. These regularization techniques are used in many 
real-world applications. Interestingly, some of the regularization techniques re-intro-
duce zero elements into the compacted representations. We use hybrid methods to 
mitigate the pathological cases where we could introduce too many zero elements. 
Readers are referred to [Bell 2009] and encouraged to experiment with different 
sparse data sets to gain additional insights into the data-dependent performance 
behavior of the various SpMV kernels presented in this chapter.

10.7  EXERCISES

1.	 Complete the host code to produce the hybrid ELL–COO format, launch 
the ELL kernel on the device, and complete the contributions of the COO 
elements.
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2.	 Complete the host code for creating JDS–ELL and launch one kernel for each 
section of the representation.

3.	 Consider the following sparse matrix:
1  0  7  0
0  0  8  0
0  4  3  0
2  0  0  1

Represent the matrix in each of the following formats: (a) COO, (b) CSR, 
and (c) ELL.

4.	 Given a sparse matrix of integers with m rows, n columns, and z nonzeros, 
how many integers are needed to represent the matrix in (a) COO, (b) CSR, 
and (c) ELL. If the information provided is insufficient, indicate the missing 
information.
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Our next parallel pattern is an ordered merge operation, which takes two ordered 
lists and generates a combined, ordered sort. Ordered merge operations can be used 
as a building block of sorting algorithms. Sorting is an important, classic problem 
in computer science with enormous number of applications. Ordered merge opera-
tions also form the basis of modern map-reduce frameworks. They are good exam-
ples for the divide-and-concur approach to parallelization. This chapter presents a 
parallel ordered merge algorithm where the input data for each thread are dynami-
cally determined. The dynamic nature of the data accesses makes it challenging to 
exploit locality for improved memory access efficiency and performance. We present 
increasingly sophisticated buffer management schemes to achieving increasing lev-
els of memory access efficiency.

11.1  BACKGROUND
An ordered merge function takes two sorted lists A and B and merges them into a 
single sorted list C. For the purpose of this chapter, we assume that the sorted lists 
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are stored in arrays. We further assume that each element in such an array has a key. 
An order relation denoted by ≤ is defined on the keys. For example, the keys may be 
simply integer values and ≤ may be defined as the conventional less than or equal to 
relation between these integer values. In the simplest case, the keys are the elements.

Suppose that we have two elements e1 and e2 whose keys are k1 and k2 respec-
tively. In a sorted list based on the relation ≤, if e1 appears before e2, then k1≤k2.  
Fig. 11.1 shows a simple example of a sorted list vs. an unsorted list. In this example,  
the elements are integer values, the keys are the elements and the elements are  
sorted according to the conventional mathematical ≤ relation between integers.

The upper array in Fig. 11.1 contains a sorted list because whenever an element 
appears before another element, the former always has a numerical value that is less 
than or equal to the latter. On the contrary, the lower list contains an unsorted list: ele-
ment 0 (numerical value 12) appears before element 1 (numerical value 7) whereas 
the numerical value of element 0 is greater than (not less than or equal to) that of 
element 1.

We are now ready for a more detailed definition of the merge function. A merge 
function based on an ordering relation R takes two sorted input arrays A and B hav-
ing m and n elements respectively, where m and n do not have be to equal. Both array 
A and array B are sorted based on the ordering relation R. The function produces an 
output sorted array C having m + n elements. Array C consists of all the input ele-
ments from arrays A and B, and is sorted by the ordering relation R.

Fig. 11.2 shows the operation of a simple merge function based on the conven-
tional numerical ordering relation. A has five elements (m = 5) and B has four ele-
ments (n = 4). The merge function generates C with all its nine elements (m + n) 

1

12 7 8 10 7 10 9 1 10

7 7 8 9 10 10 10 12 Sorted
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Examples of sorted versus unsorted lists.
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Example of a merge operation.



23311.2  A sequential merge algorithm

from A and B. These elements must be sorted. The arrows in Fig. 11.2 show how ele-
ments of A and B should be placed into C in order to complete the merge operation. 
Here we assume that whenever the numerical values are equal between an element 
of A and an element of B, the element of A should appear first in the output list C.

The merge operation is the core of merge sort, an important parallelizable sort 
algorithm. A parallel merge sort function divides up the input list into multiple sec-
tions and distributes them to parallel threads. The threads sort the individual section(s) 
and then cooperatively merge the sorted sections. Such divide-and-concur approach 
allows efficient parallelization of sorting.

In modern map-reduce distributed computing frameworks such as Hadoop, the 
computation is distributed to a massive number of compute nodes. The reduce pro-
cess assembles the result of these compute nodes into the final result. Many applica-
tions require that the results be sorted according to an ordering relation. These results 
are typically assembled using the merge operation in a reduction tree pattern. As a 
result, efficient merge operations are critical to the efficiency of these frameworks.

11.2  A SEQUENTIAL MERGE ALGORITHM
The merge operation can be implemented with a fairly straightforward sequential 
algorithm. Fig. 11.3 shows a sequential merge function.

The sequential function in Fig. 11.3 consists of two main parts. The first part, 
on the left side, consists of a while-loop (line 5) that visits the A and B list elements 
in order. The loop starts with the first elements: A[0] and B[0]. Every iteration fills 
one position in the output array C; either one element of A or one element of B will 

void merge_sequential(int ∗A, int m, int ∗B,

int n, int ∗C) {
1 if (i == m) {12

for (; j < n; j++) {13

C[k++] = B[j];14

}15

} else {16

for (; i <m; i++) {17

C[k++] = A[i];18

}

}

19

20
}21

int i = 0; //index into A

//done with A[] handle remaining B[]

//done with B[], handle remaining A[]

int j = 0; //index into B

int k = 0; //index into C

// handle the start of A[] and B[]

2

3

4

while ((i < m) && (j < n)) {5

if (A[i] <= B[j]) {6

C[k++] = A[i++];7

} else {8

C[k++] = B[j++];9

}10

}11

FIGURE 11.3

A sequential merge function.
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be selected for the position (lines 6–10). The loop uses i and j to identify the A and 
B elements currently under consideration; i and j are both 0 when the execution first 
enters the loop. The loop further uses k to identify the current position to be filled in 
the output list array C. In each iteration, if element A[i] is less than or equal to B[j], 
the value of A[i] is assigned to C[k]. In this case, the execution increments both i and 
k before going to the next iteration. Otherwise, the value of B[j] is assigned to C[k]. 
In this case, the execution increments both j and k before going to the next iteration.

The execution exits the while-loop when it reaches either the end of array A or 
the end of array B. The execution moves on to the second part, which is on the right 
Fig. 11.3. If array A is the one that has been completely visited, as indicated by the 
fact that i is equal to m, then the code uses a for-loop to copy the remaining elements 
of array B to the remaining positions of array C (lines 13–15). Otherwise, array B is 
the one that was completely visited, as indicated by the fact that j is equal to n. In 
this case, a for-loop is used to copy the remaining elements of A to the remaining 
positions of C (lines 17-19).

We can illustrate the operation of the sequential merge function using the simple 
example from Fig. 11.2. During the first three (0 − 2) iterations of the while-loop, 
A[0], A[1], and B[0] are assigned to C[0], C[1], and C[2]. The execution continues 
until the end of iteration 5. At this point, list A is completely visited and the execution 
exits the while- loop. A total of six C positions have been filled by A[0] through A[4] 
and B[0]. The for-loop in the else part of the if-construct is used to copy the remain-
ing B elements—B[1]–B[3] into the remaining C positions.

The sequential merge function visits every input element from both A and B 
once and writes into each C position once. Its algorithm complexity is O(m + n) 
and its execution time is linearly proportional to the total number of elements to be 
merged. Any work-efficient parallel algorithm will need to maintain this level of 
work-efficiency.

11.3  A PARALLELIZATION APPROACH
Siebert et al. [ST 2012] proposed an approach to parallelizing the merge operation. 
In their approach, each thread first calculates the range of output positions (output 
range) that it is going to produce, and uses that range as the input to a co-rank function 
to identify the corresponding input ranges that will be merged to produce the output 
range. Once the input and output ranges are determined, each thread can indepen-
dently access its two input subarrays and one output subarray. Such independence 
allows each thread to perform the sequential merge function on their subarrays to do 
the merge in parallel. It should be clear that the key to the proposed parallelization 
approach is the co-rank function. We will now formulate the co-rank function.

Let A and B be two input arrays with m and n elements respectively. We assume 
that both input arrays are sorted according to an ordering relation. The index of each 
array starts from 0. Let C be the sorted output array generated by merging A and B. 
Obviously, C has m+n elements. We can make the following observation:
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Observation 1: For any k such that 0≤k<m+n, there is either (case 1) an i such that 
0 ≤ i<m and C[k] receives its value from A[i], or (case 2) a j such that 0≤j<n and 
C[k] receives its value from B[j] in the merge process.

Fig. 11.4 shows the two cases of observation (1). In the first case, the C element in 
question comes from array A. For example, in Fig. 11.4a, C[4] (value 9) receives its val-
ues from A[3]. In this case, k=4 and i=3. We can see that the prefix subarray C[0]-C[3] 
of C[4] (the subarray of 4 elements that precedes C[4]) is the result of merging the pre-
fix subarray A[0]-A[2] of A[3] (the subarray of 3 elements that precedes A[3]) and the 
prefix subarray B[0] of B[1] (the subarray of 4 − 3 = 1 element that precedes B[1]). 
The general formula is that subarray C[0]-C[k-1] (k elements) is the result of merging 
A[0]-A[i-1] (of i elements) and B[0]-B[k-i-1] (k-i elements).

In the second case, the C element in question comes from array B. For example, in 
Fig. 11.4b, C[6] receives its value from B[1]. In this case, k=6 and j=1. The prefix 
subarray C[0]-C[5] of C[6] (the subarray of 6 elements that precedes C[6]) is the 
result of merging the prefix subarray A[0]-A[4] (the subarray of 5 elements preced-
ing A[5]) and B[0] (the subarray of 1 element that precedes B[1]). The general for-
mula for this case is that subarray C[0]-C[k-1] (k elements) is the results of merging 
A[0]-A[k-j-1] (k-j elements) and B[0]-B[j-1] (j elements).

In the first case, we find i and derive j as k-i. In the second case, we find j and 
derive i as k-j. We can take advantage of the symmetry and summarize the two cases 
into one observation:
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FIGURE 11.4

Examples of observation (1). (A) shows case 1 and (B) shows case 2.
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Observation 2: For any k such that 0≤k<m+n, we can find i and j such that k=i+j, 
0≤i<m and 0≤j<n and the subarray C[0]-C[k-1] is the result of merging subarray 
A[0]-A[i-1] and subarray B[0]-B[j-1].

Siebert et al. also proved that i and j, which define the prefix subarrays of A and 
B needed to produce the prefix subarray of C of length k, are unique. For an element 
C[k], the index k is referred to as its rank. The unique indices i and j are referred to 
as its co-ranks. For example, in Fig. 11.4a, the rank and co-rank of C[4] are 4, 3, and 
1. For another example, the rank and co-rank of C[6] is 6, 5, and 1.

The concept of co-rank gives us a path to parallelizing the merge function. We can 
divide the work among threads by dividing the output array into subarrays and assign 
the generation of one subarray to each thread. Once the assignment is done, the rank 
of output elements to be generated by each thread is known. Each thread then uses 
the co-rank function to determine the subarrays of the input arrays that it needs to 
merge into its output subarray.

Note that the main difference between the parallelization of the merge function 
versus the parallelization of our previous patterns such as histogram is that the range 
of input to be used by each thread cannot be determined with a simple rule. The 
range of input elements to be used by each thread is a function of the input values. 
This makes the parallelized merge operation an interesting and challenging parallel 
computation pattern.

11.4  CO-RANK FUNCTION IMPLEMENTATION
We define the co-rank function as a function that takes the rank (k) of a C array ele-
ment and information about the two input arrays and returns the i co-rank value:

int co_rank(int k, int * A, int m, int * B, int n)

where k is the rank of the C element in question, A is a pointer to the input A array, m is 
the size of the A array, B is a pointer to the input B array, and n is the size of the input 
B array. The caller can then derive the j co-rank value as k-i.

Before we study the implementation details of the co-rank function, it is benefi-
cial to first learn about the ways a parallel merge function will use it. Such use of the 
co-rank function is illustrated in Fig. 11.5, where we use two threads to perform the 
merge operation. We assume that thread 0 generates C[0]-C[3] and thread 1 gener-
ates C[4]-C[8].

Thread 0 calls the co-rank function with parameters (4, A, 5, B, 4). The goal of 
the co-rank function for thread 0 is to identify the co-rank values i0 = 3 and j0 = 1. That 
is, the prefix subarray of C[4] is to be generated by merging the prefix subarrays of A[3] 
(A[0]-A[2]) and B[1] (B[0]). Intuitively, we are looking for a total of 4 elements from 
A and B that will fill the first 4 elements of the output array. By visual inspection, we see 
that the choice of i0 = 3 and j0 = 1 meets our need. Thread 0 will take A[0]-A[2] and 
B[0] to We leave out A[3] (value 9) and B[1] (value 10), which is correct since they are 
both larger than the four elements we include (1, 7, 8 from A and 7 from B).
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If we changed the value of i0 to 2, we need to set the j0 value to 2 so that we can 
still have a total of 4 elements. However, this means that we would include B[1] 
whose value is 10. This value is larger than A[2] (value 8) that would be left out for 
this choice. Such a change would make the resulting C array not properly sorted. On 
the other hand, if we changed the value of i0 to 4, we need to set the j0 value to 0 to 
keep the total number of elements at 4. However, this would mean that we include 
A[4] (value 10), which is larger than B[0] (value 7) that we would incorrectly leave 
out when generating the output subarray of thread 0. These two examples point to a 
search algorithm can quickly identify the value.

Thread 1 calls the co-rank function with parameters (9, A, 5, B, 4). From Fig. 
11.4, we see that the co-rank function should produce co-rank values i1 = 5 and j1 = 
4. Note that the input subarrays to be used by thread 1 are actually defined by the co-
rank values of thread 0 and those of thread 1: A[3]-A[4] and B[1]-B[3]. That is, the 
starting index of the A subarray for thread 1 is actually thread 0’s co-rank i value. The 
starting index of the B subarray for thread 1 is thread 0’s co-rank j value. In general, 
the input subarrays to be used by thread t are defined by the co-rank values for thread 
(t − 1) and thread t: A[i_(t-1)]-A[i_t-1] and B[j_(t-1)]-B[j_t-1].

One important point is that the amount of search work can vary dramatically 
among threads for large input arrays. The threads that generate the beginning sec-
tions of the output array may need to search through only a small number of A and B 
elements. On the other hand, the high-numbered threads may need to search through 
a large number of A or B elements. It is therefore very important to minimize the 
latency for searching through a large number of elements. Since both input arrays are 
sorted, we can use a binary search or even a higher radix search to reduce the com-
putational complexity from O(N) to O(log(N)). Fig. 11.5 shows a co-rank function 
based on binary search.

The co-rank function uses two pairs of marker variables to delineate the range of 
A array indices and the range of B array indices being considered for the co-rank val-
ues. Variables i_low and j_low are the smallest possible co-rank values that could be 
generated by the function. Variables i and j are the candidate co-rank return values 
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FIGURE 11.5

Example of co-rank function execution.
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being considered in the current iteration. Line 2 initializes i to its largest possible 
value. If the k value is greater than m, line 2 initializes i to m, since the co-rank i value 
cannot be larger than the size of the A array. Otherwise, line 2 initializes i to k, since i 
cannot be larger than k. The co-rank j value is initialized as k-i (line 3). Throughout 
the execution, the co-rank function maintains this important invariant relation. The 
sum of the i and j variable is always equal to the value of the input variable k (the 
rank value).

The initialization of the i_low and j_low variables (lines 4 and 5) requires a little 
more explanation. These variables allow us to limit the scope of the search and make 
it faster. Functionally, we could set both values to zero and let the rest of the execu-
tion elevate them to more accurate values. This indeed makes sense when the k value 
is smaller than m and n. However, when k is larger than n, we know that the i value 
cannot be less than k-n. The reason is that the most number of C[k] prefix subarray 
elements that can come from the B array is n. Therefore, a minimal of k − n elements 
must come from A. Therefore, the i value can never be smaller than k − n; we may 
as well set i_low to k − n.

The same argument shows that the j_low value cannot be less than k-m, which is 
the least number of elements of B that must be used in the merge process and thus 
the lower bound of the final co-rank j value.

We will use the example in Fig. 11.7 to illustrate the operation of the co-rank func-
tion in Fig. 11.6. The example assumes that three threads are used to merge arrays 
A and B into C. Each thread is responsible for generating an output subarray of three 
elements. We will first trace through the binary search steps of the co-rank function 
for thread 0 which is responsible for generating C[0]-C[2]. The reader should be able 
to determine that thread 0 calls the co-rank function with parameters (3, A, 5, B, 4).

As shown in Fig. 11.6, line 2 of the co-rank function initializes i to 3, which is the 
k value since k is smaller than m (value 5) in this example. Also, i_low is set 0. The 
i and i_low values define the section of A array that is currently being searched to 
determine the final co-rank i value. Thus, only 0, 1, 2, and 3 are being considered for 
the co-rank i value. Similarly, the j and j_low values are set to 0 and 0.

1 int co_rank(int k, int∗ A, int m, int∗ B, int n) { 13 i = i - delta;

14 } else if (j > 0 && i < m && B[j-1] >= A[i]) {

15 delta = ((j - j_low +1) >> 1);

i_low = i;16

i = i + delta;17

j = j - delta;18

} else {19

active = false;20

}21

}22

return i;23

}24

2

3

int i= k<m ? k : m;  //i = min(k,m)

int j = k- i;

4 int i_low = 0>(k-n) ? 0 : k-n;  //i_low = max(0, k-n)

5 int j_low = 0>(k-m) ? 0 : k-m;  //i_low = max(0, k-m)

6 int delta;

7 bool active = true;

8 while(active)    {

9 if (i > 0 && j < n && A[i-1] > B[j]) {

10 delta = ((i - i_low +1) >> 1);  // ceil(i-i_low)/2)

11 j_low = j;

12 j = j + delta;

FIGURE 11.6

A co-rank function based on binary search.
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The main body of the co-rank function is a while-loop (line 8) that iteratively 
zooms into the final co-rank i and j values. The goal is to find a pair of i and j that 
result in A[i-1] ≤ B[j] and B[j-1] < A[i]. The intuition is that we choose the 
i and j values so none of the values in the A subarray used for generating a output 
subarray (referred to as the current A subarray) should be greater than any elements 
in the B subarray used for generating the next output subarray (referred to as the next 
B subarray). Note that the largest A element in the current subarray could be equal to 
the smallest element in the next B subarray since the A elements take precedence in 
placement into the output array whenever a tie occurs between an A element and a B 
element in our definition of the merge process.

In Fig. 11.6, the first if-construction in the while-loop (line 9) tests if the current i 
value is too high. If so, it will adjust the marker values so that it reduces the search range 
for i by about half toward the smaller end. This is done by reducing the i value by about 
half the difference between i and i_low. In Fig. 11.7, for iteration 0 of the while-loop, 
the if-construct finds that the i value (3) is too high since A[i − 1], whose value is 8, 
is greater than B[j], whose value is 7. The next few statements proceed to reduce the 
search range for i by reducing its value by delta = (3-0+1)>>1 = 2 (lines 10 and 13) 
while keeping the i_low value unchanged. Therefore, the i_low and i values for the 
next iteration will be 0 and 1.

The code also makes the search range for j to be comparable to that of i and shifts 
it to above the current j location. This is done by assigning the current j value to 
j_low (line 11) and adding the delta value to j (line 12). In our example, the j_low 
and j values for the next iteration will be 0 and 2 (Fig. 11.8).

During iteration 1 of the while-loop, the i and j values are 1 and 2. The if -con-
struct (line 9) finds the i value to be acceptable since A[i − 1] is A[0], whose value 
is 1 while B[j] is B[2] whose value is 10, so A[i − 1] is less than B[j]. Thus, the 
condition of the first if-construct fails and the body of the if-construct is skipped. 
However, the j value is found to be too high during this iteration since B[j − 1] is 
B[1] (line 14), whose value is 10 while A[i] is A[1], whose value is 7. So the second 
if-construct will adjust the markers for the next iteration so that the search range for 
j will be reduced by about half toward the lower values. This is done by subtracting 
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FIGURE 11.7

Iteration 0 of the co-rank function operation example for thread 0.
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delta= (j-j_low+1)>>1=1 from j (lines 15 and 18). As a result, the j_low and j 
values for the next iteration will be 0 and 1. It also makes the next search range for i  
the same size as that for j but shifts it up by delta locations. This is done by assign-
ing the current i value to i_low (line 16) and adding the delta value to i (line 17). 
Therefore, the i_low and i values for the next iteration will be 1 and 2.

During iteration 2, the i and j values are 2 and 1. Both if -constructs (lines 9 and 
14) will find both i and j values acceptable. For the first if-construct, A[i − 1] is A[1] 
(value 7) and B[j] is B[1] (value 10) so the condition A[i-1] ≤ B[j] is satisfied. 
For the second if-construct, B[j − 1] is B[0] (value 7) and A[i] is A[2] (value 8) so 
the condition B[j-1] < A[i] is satisfied. The co-rank function exits the while-loop 
(lines 20 and 8) and returns the final i value 2 as the co-rank i value (line 23). The 
caller thread can derive the final co-rank j value as k-i=3 − 2 = 1. An inspection of 
Fig. 11.9 confirms that co-rank values of 2 and 1 indeed identify the correct A and B 
input subarrays for thread 0.
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FIGURE 11.8

Iteration 1 of the co-rank function operation example for thread 0.
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FIGURE 11.9

Iteration 2 of the co-rank function operation example for thread 0.
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The reader should repeat the same process for thread 2 as an exercise. Also, note 
that if the input streams are much longer, the delta values will be reduced by half in 
each step so the algorithm is of log2(N) complexity where N is the maximal of the 
two input array sizes.

11.5  A BASIC PARALLEL MERGE KERNEL
For the rest of this chapter, we assume that the input A and B arrays reside in the global 
memory. Further assume that a kernel is launched to merge the two input arrays to pro-
duce an output array C in the global memory. Fig. 11.10 shows a basic kernel that is a 
straightforward implementation of the parallel merge function described in Section 11.3.

As we can see, the kernel is fairly simple. It first divides the work among threads 
by calculating the starting point of the output subarray to be produced by the current 
thread (k_curr) and of the next thread (k_next). Keep in mind that the total num-
ber of output elements may not be a multiple of the number of threads. Each thread 
then makes two calls to the co-rank function. The first call uses k_curr as the rank 
parameter to get the co-rank values of the first (lowest-indexed) element of the output 
subarray that the current thread is to generate. These returned co-rank values give the 
lowest-indexed input A and B array elements that belong in the input subarray to be 
used by the thread. That is, the i_curr and j_curr values mark the beginning of the 
input subarrays for the thread. Therefore, &A[i_curr] and &B[j_curr] are the point-
ers to the beginning of the input subarrays to be used by the current thread.

The second call uses k_next as the rank parameter to get the co-rank values for 
the next thread. These co-rank values mark the positions of the lowest-indexed input 

{

int tid= blockIdx.x*blockDim.x + threadIdx.x;

int k_curr = tid*ceil((m+n)/(blockDim.x*gridDim.x); // start index of output

int k_next = min((tid+1) * ceil((m+n)/(blockDim.x*gridDim.x)), m+n); // end index of output

int i_curr= co_rank(k_curr, A, m, B, n);

int i_next = co_rank(k_next, A, m, B, n);

int j_curr = k_curr -i_curr;

int j_next = k_next-i_next;

/* All threads call the sequential merge function */

merge_sequential(&A[i_curr], i_next-i_curr, &B[j_curr], j_next-j_curr, &C[k_curr] );

}

—global—void merge_basic_kernel(int* A, int m, int* B, int n, int* C)

FIGURE 11.10

A basic merge kernel.



242 CHAPTER 11  Parallel patterns: merge sort

array elements to be used by the next thread. Therefore, i_next-i_curr and j_next-
j_curr give m and n, the sizes of the subarrays of A and B to be used by the current 
thread. The pointer to the beginning of the output subarray to be produced by the cur-
rent thread is &C[k_curr]. The final step of the kernel is to call the merge_sequential 
function (Fig. 11.3) with these parameters.

The execution of the basic merge kernel can be illustrated with the example in 
Fig. 11.9. The k_curr values for the three threads (threads 0, 1, and 2) will be 0, 3, 
and 6. We will focus on the execution of thread 1 whose k_curr value will be 3. The 
i_curr and j_curr values returned from the two co-rank function calls are 2 and 1. 
The k_next value for thread 1 will be 6. The call to the co-rank function gives the 
i_next and j_next values of 5 and 1. Thread 1 then calls the merge function with 
parameters (&A[2], 3, &B[1], 0, &C[3]). Note that the 0 value for parameter n 
indicates that none of the three elements of the output subarray for thread 1 should 
come from array B. This is indeed the case in Fig. 11.9: output elements C[3]-C[5] 
come from A[2]-A[4].

While the basic merge kernel is quite simple and elegant, it falls short in memory 
access efficiency. First, it is clear that when executing the merge_sequential function, 
adjacent threads in a warp are not accessing adjacent memory locations when they 
read and write the input and output subarray elements. For the example in Fig. 11.9, 
during the first iteration of the merge_sequential function execution, the three adja-
cent threads would read A[0], A[2], and B[0]. They will then write to C[0], C[3], 
and C[6]. Thus, their memory accesses are not coalesced, resulting in poor utiliza-
tion of memory bandwidth.

Second, the threads also need to access A and B elements from the global memory 
when they execute the co-rank function. Since we are doing a binary search, the 
access patterns are somewhat irregular and will unlikely be coalesced. As a result, 
these accesses can further reduce the efficiency of utilizing the memory bandwidth. 
It would be helpful if we can reduce the number accesses to the global memory by 
the co-rank function.

11.6  A TILED MERGE KERNEL
As we have seen in Chapter 4, Memory and data locality, we can use shared memory 
to change the memory access patterns of the merge kernel into ones that can be 
coalesced. The key observation is that the input A and B subarrays to be used by the 
adjacent threads are adjacent to each other in memory. Essentially, all threads in 
a block will collectively use larger, block-level subarrays of A and B to generate a 
larger, block-level subarray of C. We can call the co-rank function for the entire block 
to get the starting and ending locations for the block-level A and B subarrays. Using 
these block-level co-rank values, all threads in the block can cooperatively load the 
elements of the block-level A and B subarrays into the shared memory in a coalesced 
pattern.
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Fig. 11.11 shows the block-level design of a tiled merge kernel. In this example, 
we assume that three blocks will be used for the merge operation. At the bottom of 
the figure, we show that C is partitioned into three block-level subarrays. We deline-
ate these partitions with gray vertical bars. Based on the partition, each block calls 
the co-rank functions to partition the input array into subarrays to be used for each 
block. We also delineate the input partitions with gray vertical bars. Note that the 
input partitions can vary significantly in size according to the actual data element val-
ues in the input arrays. For example, input A subarray is significantly larger than input 
B subarray for thread 0. On the other hand, input subarray A is significantly smaller 
than input B subarray for thread 1. Obviously, the combined size of the two input 
subarrays must always be equal to the size of the output subarray for each thread.

We will declare two shared memory arrays A_S and B_S for each block. Due to the 
limited shared memory size, A_S and B_S may not be able to cover the entire input 
subarrays for the block. Therefore, we will take an iterative approach. Assume that 
the A_S and B_S arrays can each hold x elements while each output subarray contains 
y elements. Each thread block will perform its operation in y/x iterations. During 
iteration, all threads in a block will cooperatively load x elements from the block’s 
input A subarray and x elements from its input B subarray.

The first iteration of each thread is illustrated in Fig. 11.11. We show that for each 
block, a light gray section of input A subarray is loaded into A_S. A light gray section 
of the input B subarray is loaded into B_S. With x A elements and x B elements in 
the shared memory, the thread block has enough input elements to generate at least 
x output array elements. All threads are guaranteed to have all the input subarray 
elements they need for the iteration. One might ask why loading a total of 2x input 
elements can only guarantee the generation of x output elements. The reason is that 
in the worst case, all elements of the current output section may all come from one 
of the input sections. This uncertainty of input usage makes the tiling design for the 
merge kernel much more challenging than the previous patterns.

A

B

A_S
B_S

C
Output subarray for block 0 Output subarray for block 1 Output subarray for block 2

FIGURE 11.11

Design of a tiled merge kernel
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Fig. 11.11 also shows that threads in each block will use a portion of the A_S and a 
portion of the B_S in each iteration, shown as dark gray sections, to generate a section 
of x elements in their output C subarray. This process is illustrated with the dotted 
arrows going from the A_S and B_S dark gray sections to the C dark sections. Note 
that each thread block may well use a different portion of its A_S versus B_S sections. 
Some blocks may use more elements from A_S and others may use more from B_S. 
The actual portions used by each block depend on the input data element values.

Fig. 11.12 shows the first part of a tiled merge kernel. A comparison against Fig. 
11.10 shows remarkable similarity. This part is essentially the block-level version of 
the setup code for the thread-level basic merge kernel. Only one thread in the block 
needs to calculate the co-rank values for the rank values of the beginning output 
index of current block and that of the beginning output index of the next block. The 
values are placed into the shared memory so that they can be visible to all threads in 
the block. Having only one thread to call the co-rank function reduces the number of 
global memory accesses by the co-rank function and should improve the efficiency 
of the global memory. A barrier synchronization is used to ensure all threads wait 
until the block-level co-rank values are available in the shared memory A_S[0] and 
A_S[1] locations before they proceed to use the values.

{

/* shared memory allocation */

extern _shared_ int shareAB[];

int * A_S = &shareAB[0]; //shareA is first half of shareAB

int * B_S = &shareAB[tile_size];       //ShareB is second half of ShareAB

int C_curr  = blockIdx.x * ceil((m+n)/gridDim.x) ;          // starting point of the C subarray for current block

int C_next = min((blockIdx.x+1) * ceil((m+n)/gridDim.x), (m+n));     // starting point for next block

if (threadIdx.x ==0)

{

A_S[0] = co_rank(C_curr, A, m, B, n); // Make the block-level co-rank values visible to 

A_S[1] = co_rank(C_next, A, m, B, n); // other threads in the block

}

_syncthreads();

int A_curr  = A_S[0];

int A_next  = A_S[1];

int B_curr = C_curr – A_curr;

int B_next   = C_next – A_next;

_syncthreads();

_global_ void merge_tiled_kernel(int* A, int m, int* B, int n, int* C, int tile_size)

FIGURE 11.12

Part 1—identifying block-level output and input subarrays.
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Recall that since the input subarrays may be too large to fit into the shared mem-
ory, the kernel takes an iterative approach. The kernel receives a tile_size argu-
ment that specifies the number of A elements and B elements to be accommodated 
in the shared memory. For example, tile_size value 1024 means that 1024 A array 
elements and 1024 B array elements are to be accommodated in the shared memory. 
This means that each block will dedicate (1024 + 1024)*4 = 8192 bytes of shared 
memory to hold the A and B array elements.

As a simple example, assume that we would like to merge an A array of 33,000 
elements (m = 33,000) with a B array of 31,000 elements (n = 31,000). The total 
number of output C elements is 64,000. Further assume that we will use 16 blocks 
(gridDim.x = 16) and 128 threads in each block (blockDim.x = 128). Each block 
will generate 64,000/16 = 4,000 output C array elements.

If we assume that the tile_size value is 1024, the while-loop in Fig. 11.13 will 
need to take four iterations for each block to complete the generation of its 4000 
output elements.

During iteration 0 of the while-loop, the threads in each block will cooperatively 
load 1024 elements of A and 1024 elements of B into the shared memory. Since there are 
128 threads in a block, they can collectively load 128 elements in each iteration. So, the 
first for-loop in Fig. 11.13 will iterate eight times for all threads in a block to complete 

int B_consumed = 0;
while(counter < total_iteration)
{

/* loading tile-size A and B elements into shared memory */
for(int i=0; i<tile_size; i+=blockDim.x)
{

if( i + threadIdx.x < A_length – A_consumed)
{

A_S[i + threadIdx.x] = A[A_curr + A_consumed + i + threadIdx.x ];
}

}
for(int i=0; i<tile_size; i+=blockDim.x)
{

if(i + threadIdx.x  < B_length – B_consumed) 
{

B_S[i + threadIdx.x] = B[B_curr + B_consumed + i + threadIdx.x];
}

}
__syncthreads();

int counter = 0;                 //iteration counter
int C_length = C_next – C_curr;
int A_length = A_next –A_curr;
int B_length = B_next – B_curr;
int total_iteration = ceil((C_length)/tile_size); //total iteration
int C_completed = 0;
int A_consumed = 0;

FIGURE 11.13

Part 2—loading A and B elements into the shared memory.
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the loading of the 1024 A elements. The second for-loop will also iterate eight times to 
complete the loading of the 1024 B elements. Note that threads use their threadIdx.x 
values to select the element to load, so consecutive threads load consecutive elements. 
The memory accesses are coalesced. We will come back later and explain the if-con-
ditions and how the index expressions for loading the A and B elements are formulated.

Once the input tiles are in the shared memory, individual threads can divide up 
the input tiles and merge their portions in parallel. This is done by assigning a sec-
tion of the output to each thread and running the co-rank function to determine the 
sections of shared memory data that should be used for generating that output sec-
tion. The code in Fig. 11.14 completes this step. Keep in mind that this is a con-
tinuation of the while-loop that started in Fig. 11.13. During each iteration of the 
while-loop, threads in a block will generate a total of tile_size C elements using 
the data we loaded into shared memory. (The exception is the last iteration, which 
will be addressed later.) The co-rank function is run on the data in shared memory 
for individual threads. Each thread first calculates the starting position of its output 
range and that of the next thread, and then uses these starting positions as the inputs 
to the co-rank function to identify its input ranges.

Let us resume our running example. In each iteration of the while-loop, all threads 
in a block will be collectively generating 1024 output elements using the two input 
tiles of A and B elements in the shared memory. (Once again, we will deal with the 

int c_curr = threadIdx.x   *  (tile_size/blockDim.x);
int c_next = (threadIdx.x+1) * (tile_size/blockDim.x);
c_curr  = (c_curr <= C_length – C_completed) ? c_curr : C_length – C_completed;
c_next = (c_next <= C_length – C_completed) ? c_next : C_length – C_completed;
/* find co-rank for c_curr and c_next */
int a_curr = co_rank(c_curr, A_S, min(tile_size, A_length-A_consumed), 

B_S, min(tile_size, B_length-B_consumed));
int b_curr = c_curr – a_curr;
int a_next = co_rank(c_next, A_S, min(tile_size, A_length-A_consumed),

B_S, min(tile_size, B_length-B_consumed));
int b_next = c_next – a_next;

/* All threads call the sequential merge function */
merge_sequential (A_S+a_curr, a_next-a_curr, B_S+b_curr, b_next-b_curr,

C+C_curr+C_completed+c_curr);
/* Update the A and B elements that have been consumed thus far */
counter ++;
C_completed += tile_size;
A_consumed += co_rank(tile_size,  A_S, tile_size, B_S, tile_size);
B_consumed = C_completed – A_consumed;
_syncthreads();

}
}

FIGURE 11.14

Part 3—all threads merge their individual subarrays in parallel
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last iteration of the while-loop later.) The work is divided among 128 threads so each 
thread will be generating 8 output elements. While we know that each thread will 
consume a total of 8 input elements in the shared memory, we need to call the co-
rank function to find out the exact number of A elements versus B elements that each 
thread will consume. Some threads may use 3 A elements and 5 B elements. Others 
may use 6 A elements and 2 B elements, and so on.

Collectively, the total number of A elements and B elements used by all threads in a 
block for the iteration will add up to 1024 for our example. For example, if all threads 
in a block used 476 A elements, we know that they also used 1024 − 476 = 548 B ele-
ments. It may even be possible that all threads end up using 1024 A elements and 0 B 
elements. Keep in mind that a total of 2048 elements are loaded in the shared memory. 
Therefore, in each iteration of the while-loop, only half of the A and B elements that 
were loaded into the shared memory will be used by all the threads in the block.

Each thread will then call the sequential merge function to merge its portions of 
A and B elements (identified by the co-rank values) from the shared memory into its 
designated range of C elements.

We are now ready to examine more details of the kernel function. Recall that we 
skipped the explanation of the index expressions for loading the A and B elements 
from global memory into the shared memory. For each iteration of the while-loop, 
the starting point for loading the current tile in the A and B array depends on the total 
number of A and B elements that have been consumed by all threads of the block dur-
ing the previous iterations of the while-loop. Assume that we keep track of the total 
number of A elements consumed by all the previous iterations of the while-loop in 
variable A_consumed. We initialize A_consumed to 0 before entering the while-loop. 
During iteration 0, all blocks start their tiles from A[A_curr] since A_consumed is 0 
at the beginning of iteration 0. During each subsequent iteration of the while-loop, 
the tile of A elements will start at A[A_curr+A_consumed].

Figs. 11.11 and 11.15 illustrate the index calculation for iteration 1 of the while-
loop. In our running example in Fig. 11.11, we show the A_S elements that are con-
sumed by the block of threads during iteration 0 as the dark gray portion of the tile 
in A_S. During iteration 1, the tile to be loaded from the global memory for block 0 
should start at the location right after the section that contains the A elements con-
sumed in iteration 0. In Fig. 11.15, for each block, the section of A elements con-
sumed in iteration 0 is shown as the small white section at the beginning of the A 
subarray assigned to the block. Since the length of the small section is given by the 
value of A_consumed, the tile to be loaded for iteration 1 of the while-loop starts at 
A[A_curr+A_consumed]. Similarly, the tile to be loaded for iteration 1 of the while-
loop starts at B[B_curr+B_consumed].

Note in Fig. 11.14 that A_consumed and B_consumed are accumulated through 
the while-loop iterations. Therefore, at the beginning of each iteration, the tiles 
to be loaded for the iteration always start with A[A_curr+A_consumed] and 
B[B_curr+B_consumed].

During the last iterations of the while-loop, there may not be enough input A or 
B elements to fill the input tiles in the shared memory for some of the thread blocks. 
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For example, in Fig. 11.15, for thread block 2, the number of remaining A elements 
for iteration 1 is less than the tile size. An if-statement should be used to prevent the 
threads from attempting to load elements that are outside the input subarrays for 
the block. The first if-statement in Fig. 11.13 detects such attempts by checking if 
the index of the A_S element that a thread is trying to load exceeds the number of 
remaining A elements given by the value of the expression A_length-A_consumed. 
The if-statement ensures that the threads only load the elements that are within the 
remaining section of the A subarray. The same is done for the B elements.

With the if-statements and the index expressions, the tile loading process should 
work well as long as A_consumed and B_consumed give the total number of A and B 
elements consumed by the thread block in previous iterations of the while-loop. This 
brings us to the code at the end of the while-loop in Fig. 11.14. These statements 
update the total number of C elements generated by the while-loop iterations thus far. 
For all but the last iteration, each iteration generates additional tile_size C elements.

The next two statements update the total number of A and B elements consumed 
by the threads in the block. For all but the last iteration, the number of additional A 
elements consumed by the thread block is the returned value of

co_rank(tile_size, A_S, tile_size, B_S, tile_size)

As we mentioned before, the calculation of the number of elements consumed 
may not be correct at the end of the last iteration of the while-loop. There may not be 
a full tile of elements left for the final iteration. However, since the while-loop will 
not iterate any further, the A_consumed, B_consumed, and C_completed values will 
not be used so the incorrect results will not cause any harm. However, one should 
remember that if for any reason these values are needed after exiting the while-
loop, the three variables will not have the correct values. The values of A_length,  
B_length, and C_length should be used instead since all the elements in the designated 
subarrays to the thread block will have been consumed at the exit of the while-loop.
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FIGURE 11.15

Iteration 1 of the running example.
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The tiled kernel achieves substantial reduction in global memory accesses by the 
co-rank function and makes the global memory accesses coalesced. However, as is, 
the kernel has a significant deficiency. It only makes use of half of the data that is 
loaded into the shared memory. The unused data in the shared memory are simply 
reloaded in the next iteration. This wastes half of the memory bandwidth. In the next 
section, we will present a circular buffer scheme for managing the tiles of data ele-
ments in the shared memory, which allows the kernel to fully utilize all the A and B 
elements loaded into the shared memory. As we will see, this increased efficiency 
comes with a substantial increase in code complexity.

11.7  A CIRCULAR-BUFFER MERGE KERNEL
The design of the circular-buffer merge kernel, which will be referred to as merge_
circular_buffer_kernel, is largely the same as the merge_tiled_kernel kernel in 
the previous section. The main difference lies in the management of A and B elements 
in the shared memory to enable full utilization of all the elements loaded from the 
global memory. The overall structure of the merge_tiled_kernel is the same as that 
shown in Figs. 11.12–11.14, which assumes that the tiles of A and B elements always 
start at A_S[0] and B_S[0]. After each while-loop iteration, the kernel loads the 
next tile starting from A_S[0] and B_S[0]. The inefficiency of merge_tiled_kernel 
comes from the fact that part of the next tiles of elements are in the shared memory 
but we reload the entire tile from the global memory and write over these remaining 
elements from the previous iteration.

Fig. 11.16 shows the main idea of the circular-buffer merge kernel, called merge_
circular_buffer_kernel. We will continue to use the example from Figs. 11.11 
and 11.15. Two additional variables A_S_start and B_S_start are added to allow 
each iteration of the while-loop in Fig. 11.13 to start its A and B tiles at dynamically 
determined positions inside A_S[0] and B_S[0]. This added tracking allows each 
iteration of the while-loop to start the tiles with the remaining A and B elements from 
the previous iteration. Since there is no previous iteration when we first enter the 
while-loop, these two variables are initialized to 0 before entering the while-loop.

During iteration 0, since the values of A_S_start and B_S_start are both 0, the 
tiles will start with A_S[0] and B_S[0]. This is illustrated in Fig. 11.16A, where 
we show the tiles that will be loaded from the global memory (A and B) into the 
shared memory (A_S and B_S) as light gray sections. Once these tiles are loaded into 
the shared memory, merge_circular_buffer_kernel will proceed with the merge 
operation in the same way as the merge_tile kernel.

We also need to update the A_S_start and B_S_start variables for use in the next 
iteration by advancing the value of these variables by the number of A and B elements 
consumed from the shared memory during the current iteration. Keep in mind that 
the size each buffer is limited to tile_size. At some point, we will need to reuse 
the buffer locations at the beginning part of the A_S and B_S arrays. This is done by 
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checking if the new A_S_start and B_S_start values exceed the tile_size. If so, 
we subtract tile_size from them as shown in the if-statement below:

      A_S_start = A_S_start + A_S_consumed;
      if (A_S_start >= tile_size) A_S_start = A_S_start - tile_size;
      B_S_start = B_S_start + B_S_consumed;
      if (B_S_start >= tile_size) B_S_start = B_S_start - tile_size;

Fig. 11.16B illustrates the update of the A_S_start and B_S_start variables. 
At the end of iteration 0, a portion of the A tile and a portion of the B tile have been 
consumed. The consumed portions are shown as white sections in A_S and B_S in Fig. 
11.16B. We update the A_S_start and B_S_start values to the position immediately 
after the consumed sections in the shared memory.

Fig. 11.16C illustrates the operations for filling the A and B tiles at the begin-
ning of iteration 1 of the while-loop. A_S_consumed is a variable added to track the 
number of A elements used in the current iteration for use in filling the tile in the 
next iteration. At the beginning of each iteration, we need to load a section of up to 
A_S_consumed elements to fill up the A tile in the shared memory. Similarly, we need 
to load a section of up to B_S_consumed elements to fill up the B tile in the shared 
memory. The two sections loaded are shown as dark gray sections in Fig. 11.16C. 
Note that the tiles effectively “wrap around” in the A_S and B_S arrays since we are 
reusing the space of the A and B elements that were consumed during iteration 0.

Fig. 11.16D illustrates the updates to A_S_start and B_S_start at the end of iter-
ation 1. The sections of elements consumed during iteration 1 are shown as the white 
sections. Note that in A_S, the consumed section wraps around to beginning part of 
A_S. The value of the A_S_start variable is also wrapped around in the if-statement. 
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A circular buffer scheme for managing the shared memory tiles.
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It should be clear that we will need to adjust the code for loading and using the tiled 
elements to support this circular usage of the A_S and B_S arrays.

Part 1 of merge_circular_buffer_kernel is identical to that of merge_tiled_
kernel in Fig. 11.12 so we will not present it. Fig. 11.17 shows Part 2 of the circular 
buffer kernel. Refer to Fig. 11.13 for variable declarations that remain the same. New 
variables A_S_start, B_S_start, A_S_consumed, and B_S_consumed are initialized to 
0 before we enter the while-loop.

Note that the exit conditions of the two for-loops have been adjusted. Instead 
of always loading a full tile, as was the case in the merge kernel in Fig. 11.13, each 
for-loop in Fig. 11.13 is set up to only load the number of elements needed to refill 
the tiles, given by A_S_consumed. The section of the A elements to be loaded by a 
thread block in the ith for-loop iteration starts at global memory location A[A_curr 
+ A_consumed + i]. Thus, the A element to be loaded by a thread in the ith for-loop 
iteration is A[A_curr + A_consumed + i+ threadIdx.x]. The index for each thread 
to place its A element into the A_S array is A_S_start+(tile_size-A_S_consumed)+ 
i+threadIdx since the tile starts at A_S[A_S_start] and there are (tile_size-A_S_
consumed) elements remaining in the buffer from the previous iteration of the while-
loop. The if-statement checks if the index value is greater than or equal to tile_size. 
If so, it is wrapped back into the beginning part of the array by subtracting tile_size 

int A_S_start = 0;    
int B_S_start = 0;    
int A_S_consumed = tile_size;  //in the first iteration, fill the tile_size    
int B_S_consumed = tile_size;  //in the first iteration, fill the tile_size    
while(counter < total_iteration)    
{        

/* loading A_S_consumed elements into A_S */        
for(int i=0; i<A_S_consumed; i+=blockDim.x)        
{            

if( i + threadIdx.x < A_length – A_consumed && i + threadIdx.x < A_S_consumed)
{       

A_S[(A_S_start + i + threadIdx.x)%tile_size] = 
A[A_curr + A_consumed + i + threadIdx.x ];            

}        
}        
/* loading B_S_consumed elements into B_S */        
for(int i=0; i<B_S_consumed; i+=blockDim.x)        
{  

if(i + threadIdx.x  < B_length – B_consumed && i + threadIdx.x < B_S_consumed)
{                

B_S[(B_S_start + i + threadIdx.x)%tile_size] = 
B[B_curr + B_consumed + i + threadIdx.x];            

}        
}      

FIGURE 11.17

Part 2 of a circular-buffer merge kernel.
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from the index value. The same analysis applies to the for-loop for loading the B tile 
and is left as an exercise.

Using the A_S and B_S arrays as circular buffers also incurs additional complexity 
in the implementation of the co-rank and merge functions. Part of the additional com-
plexity could be reflected in the thread-level code that calls these functions. However, 
in general, it is better if one can efficiently handle the complexities inside the library 
functions to minimize the increased level of complexity in the user code. We show 
such an approach in Fig. 11.18. Fig. 11.18A shows the implementation of the circular 
buffer. A_S_start and B_S_start mark the beginning of the tile in the circular buffer. 
The tiles wrap around in the A_S and B_S arrays, shown as the light gray section to the 
left of A_S_start and B_S_start.

Keep in mind that the co-rank values are used for threads to identify the start-
ing position, ending position, and length of the input subarrays that they are to use. 
When we employ circular buffers, we could provide the co-rank values as the actual 
indices in the circular buffer. However, this would incur quite a bit of complexity in 
the merge_circular_buffer_kernel code. For example, the a_next value could be 
smaller than the a_curr value since the tile is wrapped around in the A_S array. Thus, 
one would need to test for the case and calculate the length of the section as a_next-
a_curr+tile_size. However, in other cases when a_next is larger than a_curr, the 
length of the section is simply a_next-a_curr.

Fig. 11.18B shows a simplified model for defining, deriving, and using the co-
rank values with the circular buffer. In this model, the tiles appear to be in continu-
ous sections starting at A_S_start and B_S_start. In the case of the B_S tile in Fig. 
11.18A, b_next is wrapped around and would be smaller than b_curr in the circular 
buffer. However, as shown in Fig. 11.18B, the simplified model provides the illusion 
that all elements are in a continuous section of up to tile_size elements and thus 
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FIGURE 11.18

A simplified model for the co-rank values when using a circular buffer.
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a_next is always larger than or equal to a_curr and b_next is always larger than or 
equal to b_curr. It is up to the implementation of the co_rank_circular and merge_
sequential_circular functions to map this simplified view of the co-rank values 
into the actual circular buffer indices so that they can carry out their functionalities 
correctly and efficiently.

The co_rank_circular and merge_sequential_circular functions have the 
same set of parameters as the original co_rank and merge functions except for three 
additional ones: A_S_start, B_S_start, and tile_size. These three additional 
parameters inform the functions where the current starting points of the buffers are 
and how big the buffers are. Fig. 11.19 shows the revised thread-level code based on 
the simplified model for the co-rank value using circular buffers. The only change to 
the code is that co_rank_circular and merge_sequential_circular functions are 
called instead of the co_rank and merge functions. This demonstrates that a well-
designed library interface can reduce the impact on the user code when employing 
sophisticated data structures.

Fig. 11.20 shows an implementation of the co-rank function that provides the 
simplified model for the co-rank values while correctly operated on circular buffers. 
It treats i, j, i_low, and j_low values in exactly the same way as the co-rank function 
in Fig. 11.6. The only change is that i, i-1, j, and j-1 are no longer used directly as 
indices when accessing the A_S and B_S arrays. They are used as offsets that are to 
be added to the values of A_S_start and B_S_start to form the index values i_cir, 
i_m_1_cir, j_cir, and j_m_1_cir. In each case, we need to test if the actual index 
values need to be wrapped around to the beginning part of the buffer. Note that we 
cannot simply use i_cir-1 to replace i-1, we need to form the final index value and 
check for the need to wrap it around. It should be clear that the simplified model 
also helps to keep the co-rank function code simple: all the manipulations of the i, 
j, i_low, j_low values remain the same; they do not need to deal with the circular 
nature of the buffers.

Fig. 11.21 shows an implementation of the merge_sequential_circular func-
tion. Similar to the co_rank_circular function, the logic of the code remains 
essentially unchanged from the original merge function. The only change is in the 
way i and j are used to access the A and B elements. Since the merge_sequen-
tial_circular function will only be called by the thread-level code of merge_cir-
cular_buffer_kernel, the A and B elements accessed will be in the A_S and B_S 
arrays. In all four places where i or j is used to access the A or B elements, we need 
to form the i_cir or j_cir and test if the index value needs to be wrapped around 
to the beginning part of the array. Otherwise, the code is the same as the merge 
function in Fig. 11.3.

Although we did not list all parts of merge_circular_buffer_kernel, the reader 
should be able to put it all together based on the parts that we discussed. The use of 
tiling and circular buffers adds quite a bit of complexity. In particular, each thread 
uses quite a few more registers to keep track of the starting point and remaining 
number of elements in the buffers. All these additional usages can potentially reduce 
the occupancy, or the number of thread-blocks that can be assigned to each of the 
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streaming multiprocessors when the kernel is executed. However, since the merge 
operation is memory bandwidth bound, the computational and register resources are 
likely underutilized. Thus, increasing the number of registers used and address cal-
culations to conserve memory bandwidth are a reasonable tradeoff.

int c_curr  = threadIdx.x   *  (tile_size/blockDim.x);        

int c_next = (threadIdx.x+1) * (tile_size/blockDim.x);

c_curr  = (c_curr <= C_length-C_completed) ? c_curr : C_length-C_completed;

c_next = (c_next <= C_length-C_completed) ? c_next : C_length-C_completed;

/* find co-rank for c_curr and c_next */

int a_curr = co_rank_circular(c_curr,

A_S, min(tile_size, A_length-A_consumed),

B_S, min(tile_size, B_length-B_consumed),

A_S_start, B_S_start, tile_size);

int b_curr = c_curr -a_curr;

int a_next = co_rank_circular(c_next,

A_S, min(tile_size, A_length-A_consumed),

B_S, min(tile_size, B_length-B_consumed),

A_S_start, B_S_start, tile_size);

int b_next = c_next – a_next;

/* All threads call the circular-buffer version of the sequential merge function */

merge_sequetial_circular( A_S, a_next-a_curr,

B_S, b_next-b_curr, C+C_curr+C_completed+c_curr,

A_S_start+a_curr, B_S_start+b_curr, tile_size);

/* Figure out the work has been done */
counter ++;

A_S_consumed = co_rank_circular(min(tile_size,C_length-C_completed),

A_S, min(tile_size, A_length-A_consumed),

B_S, min(tile_size, B_length-B_consumed),

A_S_start, B_S_start, tile_size);

B_S_consumed = min(tile_size, C_length-C_completed) -A_S_consumed;

A_consumed+= A_S_consumed;

C_completed += min(tile_size, C_length-C_completed);

B_consumed = C_completed -A_consumed;

A_S_start = A_S_start + A_S_consumed;

if (A_S_start >= tile_size) A_S_start = A_S_start -tile_size;

B_S_start = B_S_start + B_S_consumed;

if (B_S_start >= tile_size) B_S_start = B_S_start -tile_size;  

__syncthreads();

}
}

FIGURE 11.19

Part 3 of a circular-buffer merge kernel.
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int co_rank_circular(int k, int* A, intm, int* B, int n, 
int A_S_start, int B_S_start, inttile_size)

{

inti= k<m ? k : m;  //i = min (k,m)

int j = k-i;

int i_low = 0>(k-n) ? 0 : k-n;  //i_low = max(0, k-n)

int j_low = 0>(k-m) ? 0: k-m; //i_low = max(0,k-m)

int delta;

bool active = true;

while(active)

{

int i_cir = (A_S_start+i> = tile_size) ? 
A_S_start+i-tile_size : A_S_start+i;

int i_m_1_cir = (A_S_start+i-1 > = tile_size)?

A_S_start+i-1-tile_size: A_S_start+i-1;

int j_cir = (B_S_start+j> = tile_size) ? 
B_S_start+j-tile_size : B_S_start+j;

int j_m_1_cir = (B_S_start+i-1 >= tile_size)?

B_S_start+j-1-tile_size: B_S_start+j-1;

if (i > 0 && j < n && A[i_m_1_cir] > B[j_cir]) {

delta = ((i-i_low +1) >> 1) ; // ceil(i-i_low)/2) 

j_low = j;

i = i - delta; 

j = j + delta;

} else if (j > 0 && i < m && B[j_m_1_cir] >= A[i_cir]) {

delta = ((j - j_low +1) >> 1) ; 

i_low = i;

i = i + delta; 

j = j - delta; 

} else {

active = false;

}

}

return i;

}

FIGURE 11.20

A co_rank_circular function that operates on circular buffers.

void merge_sequen�al_circular(int*A, intm, 
int*B, intn, int*C, intA_S_start, 
intB_S_start, in�le_size) 

{ 
int i = 0;  //virtual index into A 
int j = 0;  //virtual index into B 
int k = 0; //virtual index into C

while ((i < m) && (j < n)) { 
int i_cir= (A_S_start+ i>= �le_size)?

A_S_start+i-�le_size;  A_S_start+i;
int j_cir= (B_S_start+ j>= �le_size)?

B_S_start+j-�le_size;  B_S_start+j;
if (A[i_cir] <= B[j_cir]) {

C[k++] = A[i_cir]; i++;
} else { 

C[k++] = B[j_cir]; j++;
} 

}

if (i == m) { //done with A[] handle remaining B[] 
for (; j < n; j++) { 

int j_cir = (B_S_start + j>= �le_size)?
B_S_start+j-�le_size;  B_S_start+j;

C[k++] = B[j_cir]; 
} 

} else { //done with B[], handle remaining A[] 
for (; i <m; i++) { 

int i_cir = (A_S_start + i>= �le_size)?
A_S_start+i-�le_size;  A_S_start+i;

C[k++] = A[i_cir]; 
} 

}
}

FIGURE 11.21

Implementation of the merge_sequential_circular function.
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11.8  SUMMARY
In this chapter, we introduced the merge sort pattern whose parallelization requires 
each thread to dynamically identify its input ranges. The fact that the input ranges 
are data dependent also creates extra challenges when we use tiling technique to 
conserve memory bandwidth. As a result, we introduce the use of circular buffers to 
allow us to make full use of the memory data loaded. We showed that introducing a 
more complex data structure such as circular buffers can significantly increase the 
complexity of the code that uses these data structures. Thus, we introduce a simpli-
fied buffer access model for the code that manipulates and uses the indices to remain 
largely unchanged. The actual circular nature of the buffers is only exposed when 
these indices are used to access the elements in the buffer.

11.9  EXERCISES

1.	 Assume that we need to merge lists A and B. A = (1, 7, 8, 9, 10) and B = (7, 
10, 10, 12). What are the co-rank values for C[8]?

2.	 Complete the calculation of co-rank functions for Thread 1 and Thread 2 in 
the example shown in Fig. 11.7 through Fig. 11.9.
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Our final parallel pattern is graph search. A graph is a data structure that represents 
the relations between entities. The entities involved are represented as vertices and 
the relations are represented as edges. Many important real-world problems are natu-
rally formulated as large-scale graph problems and can benefit from massively paral-
lel computation. Prominent examples include social networks and driving direction 
services. Graphs are intrinsically related to sparse matrices. In fact, graph computa-
tion can be formulated in terms of sparse matrix operations. However, one can often 
improve the efficiency of graph computation by exploiting properties that are specific 
to the type of graph computation being performed. In this chapter, we will focus on 
graph search, a graph computation that underlies many real-world applications. Since 
graph search computation is about examining the vertex values, there is very little 
computation on these values once they are loaded from memory. As a result, the speed 
of graph search is typically limited by memory bandwidth. We will discuss graph data 
formats that help minimize the consumption of memory bandwidth. We will then 
introduce work queues, an important class of parallel data structures that supports 
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work-efficient iterative algorithms that require dynamic discovery and collection of 
the data to be processed. We will show that the privatization technique can be pro-
ductively used to minimize serialization when collecting data into the work queues.

12.1  BACKGROUND
A graph data structure represents the relation between entities. For example, in social 
media, the entities are users and the relations are connections between users. For 
another example, in map driving direction applications, the entities are locations 
and the relations are the roadways between them. Some relations are bi-directional, 
such as friend connections in a social network. Other relations are directional. For 
example, roads may be one-way streets. We will focus on directional relations; bi-
directional relations can be represented with two directional relations, one in each 
direction. A directional relation is represented as an arrowed edge going from a 
source vertex to a destination vertex.

Fig. 12.1 shows a simple graph with directional edges. We assign a unique num-
ber to each vertex. There is one edge going from vertex 0 to vertex 1 and one going 
from vertex 0 to vertex 2. For a driving direction application, we may need to find 
all the alternative routes that we could take going from the location represented by 
vertex 0 to that represented by vertex 5. By visual inspection, we see that there are 
three possible paths: 0→1→3→4→5, 0→1→4→5, and 0→2→5.

An intuitive representation of a graph is an adjacency matrix. We assign a unique 
number to each vertex. When there is an edge going from vertex i to vertex j, the 
value of element A[i][j] of the adjacency matrix is 1. Otherwise, it is 0. Fig. 12.2 
shows the adjacency matrix for the simple graph in Fig. 12.1. We see that A[1][3] 
and A[4][5] are 1 since there are edges going from vertex 1 to vertex 3. For clarity, 
we leave the 0 values out of the adjacency matrix. That is, if an element is empty, its 
value is 0.

If a graph with N vertices is fully connected, each vertex should have (N-1) out-
going edges. There should be a total of N(N-1) edges, since there is no edge going 
from a vertex to itself. For example, if our 9-vertex graph were fully connected, there 

3

1 4 8

5
2

0

7
6

FIGURE 12.1

A simple graph with directional edges.
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should be eight edges going out of each vertex. There should be a total of 72 edges. 
Obviously, our graph is much less connected; each vertex has three or fewer outgo-
ing edges. Such graph is referred to as being sparsely connected. That is, the average 
number of outgoing edges from each vertex is much smaller than N-1.

At this point, the reader has most likely made the correct observation that sparsely 
connected graphs can probably benefit from a sparse matrix representation. Indeed, 
many real-world graphs are sparsely connected. For example, in a social network 
such as Facebook, Twitter, or LinkedIn, the average number of connections for each 
user is much smaller than the total number of users. This makes the number of non-
zero elements in the adjacency matrix much smaller than the total number of ele-
ments. As we have seen in Chapter 10, Parallel patterns: sparse matrix computation, 
using a compressed representation such as Compressed Sparse Row (CSR) can dras-
tically reduce the amount of storage for and the number of wasted operations on the 
zero elements.

Fig. 12.3 shows a CSR representation of our simple graph example. We will refer 
to the row pointer array as the edges array. Recall that each row pointer gives the 
starting location for the non-zero elements in a row. For example, edges[3] = 7 gives 
the starting location of the non-zero elements in row 3 of the original adjacency 
matrix. Also, edges[4] = 9 gives the starting location of the non-zero elements in 
row 4 of the original matrix. Thus, we expect to find the non-zero data for row 3 in 
data[7] and data[8] and the column indices for these elements in destination[7] and 
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FIGURE 12.2

Adjacency matrix representation of the simple graph example.

Non-zero elements
data[15]

Column indices
destination[15]

Row pointers
edges[10]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 4 8 5

0 2 4 7 9 11 12 13 15 15

8 6 8 0 6

FIGURE 12.3

Sparse matrix (CSR) representation of adjacency matrix.
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destination[8]. These are the data and column indices for the two edges leaving ver-
tex 3. The reason we call the column index array destination is that the column index 
of an element in the adjacency matrix gives the destination of the represented edge. 
In our example, we see that the destination of the two edges for source vertex 3 are 
destination[7] = 4 and destination[8] = 8.

Obviously, the data array is unnecessary. Since the value of all its elements is 1, we 
really don’t need to store it. We can make the data implicit—whenever one of the non-
zero element values is used, we can just assume it is 1. That is, the existence of each 
column index in the destination array implies that an edge does exist. However, in some 
applications, the adjacency matrix may store additional information about the relation-
ship, such the distance between two locations or the date when two social network 
users became connected. In those applications, the data array will need to be used.

Sparse representation can lead to significant savings in storing the adjacency 
matrix. For our example, assuming that the data array can be eliminated, the CSR 
representation requires storage for 25 locations versus the 92=81 locations if we 
stored the entire adjacency matrix. For real-life problems where a very small fraction 
of the adjacency matrix elements are non-zero, the savings can be tremendous.

12.2  BREADTH-FIRST SEARCH
An important graph computation is breadth-first search (BFS). BFS is often used to 
discover the shortest number of edges that one needs to take in order to go from one 
vertex to another vertex of the graph. There are several forms of BFS. Each form 
derives a different type of result but one can typically derive the result of one form 
from that of another.

A simple form of BFS, given a vertex referred to as the source, label each vertex 
with the smallest number of edges that one needs to traverse in order to go from the 
source to the vertex.

Fig. 12.4(A) shows the desired BFS result with vertex 0 as the source. Through 
one edge, we can get to vertices 1 and 2. Thus, we mark these vertices as level 1. By 
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FIGURE 12.4

Breadth-first search results. (A) Vertex 0 is source, (B) vertex 2 is source.
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traversing another edge, we can get to vertices 3 (through vertex 1), 4 (through vertex 
1), 5 (through vertex 2), 6 (through vertex 2) and 7 (through vertex 2). Thus we mark 
these vertices as level 2. Finally, by traversing one more edge, we can get to vertex 8 
(through any of vertices 3, 4, or 6). Obviously, the BFS result with another vertex as 
the source, say vertex 2, would be quite different.

Fig. 12.4(B) shows the desired result of BFS with vertex 2 as the source. The level 
1 vertices are 5, 6, and 7. The level 2 vertices are 8 (through vertex 6) and 0 (through 
vertex 7). Only vertex 1 is at level 3 (through vertex 0). Finally, the level 4 vertices 
are 3 and 4 (both through vertex 1). It is interesting to note that the outcome is quite 
different for each vertex even though we moved the source to a vertex that is only one 
edge away from the original source.

Once we have all the vertices labeled, we can easily find a path from the source 
to any of the vertices in terms of the number of edges traveled. For example, in Fig. 
12.4(B), we see that vertex 1 is labeled as level 3. So we know that the smallest num-
ber of edges between the source (vertex 2) and vertex 1 is 3. If we need to find the 
path, we can simply start from the destination vertex and trace back to the source. At 
each step, we select the predecessor whose level is one less than the current vertex. 
If there are multiple predecessors with the same level, we can randomly pick one. 
Any one thus selected would give a sound solution. The fact that there are multiple 
predecessors to choose from means that there are multiple equally good solutions to 
the problem. In our example, we can find a shortest path from vertex 2 to vertex 1 by 
starting from vertex 1, choosing vertex 0, then vertex 7, and then vertex 2. Therefore 
a solution path is 2→7→0→1. This of course assumes that each vertex has a list of 
pointers to the source vertices of all the incoming edges so that one can find the pre-
decessors of a given vertex.

Fig. 12.5 shows an important application of BFS in computer-aided design 
(CAD). When designing an integrated circuit chip, there are many electronic com-
ponents that need to be connected to complete the design. The connectors of these 
components are called net terminals. Fig. 12.5(A) shows two such net terminals as 
red dots, one belongs to a component in the upper left part and the other belongs 
to another component in the lower right part of the chip. Assume that the design 

FIGURE 12.5

Maze routing in integrated circuits—an application for breadth-first search. (A) Breadth-
first search, (B) identifying a routing path.
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requires that these two net terminals be connected. This is done by running, or rout-
ing, a wire of a given width from the first net terminal to the second net terminal.

The routing software represents the chip as a grid of wiring blocks where each 
block can potentially serve as a piece of a wire. A wire can be formed by extending 
in either the horizontal or the vertical direction. For example, the black J-shape in the 
lower half of the chip consists of 21 wiring blocks and connects three net terminals. 
Once a wiring block is used as part of a wire, it can no longer be used as part of any 
other wires. Furthermore, it forms a blockage for wiring blocks around it. No wires 
can be extended from a used block’s lower neighbor to its upper neighbor, or from its 
left neighbor to its right neighbor, etc. Once a wire is formed, all other wires must be 
routed around it. Routing blocks can also be occupied by circuit components, which 
impose the same blockage constraint as when they are used as part of a wire. This 
is why the problem is called a maze routing problem. The previously formed circuit 
components and wires form a maze for the wires that are yet to be formed. The maze 
routing software finds a route for each additional wire given all the constraints from 
the previously formed components and wires.

The maze routing application represents the chip as a graph. The routing blocks 
are vertices. An edge from vertex i to vertex j indicates that one can extend a wire 
from block i to block j. Once a block is occupied by a wire or a component, it is 
either marked as a blockage vertex or taken away from the graph, depending on the 
design of the application. Fig. 12.5 shows that the application solves the maze rout-
ing problem with a BFS from the source net terminal to the destination net terminal. 
This is done by starting with the source vertex and labeling the vertices into levels. 
The immediate vertical or horizontal neighbors (a total of four) that are not blockages 
are marked as level 1. We see that all four neighbors of the source are reachable and 
will be marked as level 1. The neighbors of level 1 vertices that are neither blockages 
nor visited by the current search will be marked as level 2. The reader should verify 
that there are 4 level-1 vertices, 8 level-2 vertices, and 12 level-3 vertices, etc. in Fig. 
12.5(A). As we can see, the BFS essentially forms a wave front of vertices for each 
level. These wave fronts start small for level 1 but can grow very large very quickly 
in a few levels.

Fig. 12.5(B) shows that once the BFS is complete, we can form a wire by find-
ing a shortest path from the source to the destination. As we explained earlier in this 
chapter, this can be done by starting with the destination vertex and tracing back to 
the predecessors whose levels are one lower than the current vertex. Whenever there 
are multiple predecessors that have equivalent levels, there are multiple routes that 
are of the same length. One could design heuristics to choose the predecessor in such 
a way that minimizes the difficulty of constraints for wires that are yet to be formed.

12.3  A SEQUENTIAL BFS FUNCTION
We are now ready to write a sequential breadth-first function. We assume that the 
graph is represented in the CSR format shown in Fig. 12.3. The function receives the 
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index of the source vertex, the edges (edges) array, and the destination (dest) array 
for the graph. Furthermore, it receives a label array whose elements will be used to 
store the visit status information for the vertices.

Before the search, the label element for the source is initialized to 0, indicating 
that it is a level 0 vertex. All other label elements are initialized to -1, indicating that 
their associated vertices have not been visited. At the end of the search, all label 
array elements corresponding to vertices reachable from the source should be set to 
a positive level number. If the label array element of any vertex remains -1 after the 
search, it means that the vertex is unreachable from the source.

Fig. 12.6 shows a sequential implementation of the BFS function. It maintains 
two frontier arrays: one stores the frontier vertices discovered in the previous itera-
tion (previous frontier), and one stores the frontier vertices that are being discovered 
in the current iteration (current frontier). These arrays are declared as frontier[0]
[MAX_FRONTIER_SIZE] and frontier[1][MAX_FRONTIER_SIZE]. The roles of these 
two arrays alternate. During the first iteration, frontier[0] stores the current fron-
tier and frontier[1] stores the previous frontier, the source vertex. During the sec-
ond iteration, the two arrays exchange their roles: frontier[0] stores the previous 
frontier and frontier[1] stores the current frontier. That is, what is being assembled 
as the current in one iteration becomes the previous frontier in the next iteration. This 
way, one of the arrays holds the stable frontier formed during the previous iteration 
while the other one’s contents are being assembled. By switching the roles of these 
two arrays, we avoid the need for copying the contents from a current frontier array 
to a previous frontier array when we move to the next iteration. This technique is 
commonly called ping-pong buffering.

The function assumes that all label array elements are initialized to -1 by the 
caller. At the beginning of the function, the label[source] element is initialized 

FIGURE 12.6

A sequential breadth-first search function.
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to 0, indicating that the source is the level 0 vertex for the search. It maintains a 
pointer variable c_frontier to point to the beginning of the current frontier array 
and another pointer variable p_frontier to point to the beginning of the previous 
frontier array. At the beginning of the function, c_frontier is initialized so that it 
points to frontier[0] and p_frontier to frontier[1]. The function also maintains 
two tail indices. The p_frontier_tail variable indicates the number of elements 
that have been inserted into the previous frontier array. The c_frontier_tail vari-
able stores the index of position at which a newly discovered frontier vertex can be 
accommodated in the current frontier array. It also indicates the number of frontier 
vertices that have been inserted into the current frontier array thus far.

Before the first iteration, the source vertex is inserted into the previous frontier. 
The insert_frontier function will place the source into p_frontier[0] and incre-
ment the p_frontier_tail variable to 1. This makes the source the only vertex in the 
previous frontier array for processing in the first iteration.

Note that there is no easy way to determine the number of iterations that the 
while-loop will take before entering the while-loop. Even with the same number of 
vertices and edges, some graphs will have more levels and others will have fewer. In 
fact, some of the vertices are even unreachable from the source, making it inappropri-
ate to try to use a test such as “all vertices have been visited” as a termination condi-
tion. So, the only reliable way to detect that all levels have been discovered is when 
there is no new current frontier vertex being discovered in the current iteration. This 
condition is available as p_frontier_tail > 0 before entering the next iteration.

We will use the example in Fig. 12.4(B) to illustrate the design of the while-loop, 
which implements the iterative process for labeling the vertices. The outer for-loop 
iterates through all the vertices in the previous frontier array. For the first iteration, 
there is only one vertex in the previous frontier array, the source. In our example, 
it is vertex 2. This means that the outer for-loop will only iterate once for the first 
iteration of the while-loop. During this only iteration of the outer for-loop, we first 
assign the value of p_frontier[0] (which is 2) to c_vertex.

We will then identify all the edges that go from c_vertex to its neighbors. As we 
have shown in Fig. 12.3, these edges are in a dest array section that starts at index 
edges[c_vertex] and ends at the location edges[c_vertex+1]-1. In our example 
edges[2] has value 4 and edges[3]-1 has value 6. This means that the edges for 
vertex 2 can be found in dest[4], dest[5], and dest[6]. The inner for-loop will 
iterate through these three edges.

For each edge, the if-statement checks if the destination of the edge has been 
visited. If the label value of the destination is still -1, it has not been visited before 
and a new vertex has been discovered for the current frontier. The code inside the 
if-statement inserts the destination into the current frontier array. It marks the des-
tination as one level higher than the c_vertex. For our example, since vertex 2 is at 
level 0, the destination vertices dest[4] (vertex 5), dest[5] (vertex 6), and dest[6] 
(vertex 7) will all be labeled as level 1 at the end of the inner for-loop. This is indeed 
the correct result for these three vertices according to Fig. 12.4(B).
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In our example, since vertex 2 is the only one in the p_frontier array during the 
first iteration of the while-loop, the outer for-loop will not iterate beyond the first 
iteration, we are at the end of the first iteration of the while-loop. The c_frontier 
array contains the three new frontier vertices 5, 6, and 7. The code at the end of the 
while-loop swaps the roles of the two frontier arrays. It copies the value of c_fron-
tier_tail value (3) to p_frontier_tail, indicating that there are three vertices 
in the p_frontier array for the next iteration of the while-loop. It then resets the 
c_frontier_tail to 0, effectively empties the c_frontier array for use by the next 
while-loop iteration.

During the next iteration of the while-loop, the outer for-loop will iterate three 
iterations, one for each of the previous frontier vertices 5, 6, and 7. The inner for- 
loop instance for each of these three vertices are more interesting. The if-statement 
of the inner-loop iteration for vertex 5 will discover that the destination of the only 
edge leaving vertex 5, vertex 6, has been visited in the previous while-loop iteration; 
its label is 1. Thus, no further action will be taken for this edge. The reader should 
verify that one of the edges from vertex 7 requires action (to vertex 0) and the other 
one does not (to vertex 6).

12.4  A PARALLEL BFS FUNCTION
When it comes to parallelizing BFS, there are a few options. For example, Harish 
and Narayanan propose a parallelization where each thread is assigned to a vertex. 
During each iteration, all vertices are visited [HN 2007]. If any of the sources of the 
incoming edges of a vertex just become visited in the previous iteration, the vertex 
will be marked as visited in the current iteration. The amount of work done is propor-
tional to V*L where V is the total number of vertices in the graph and L is the number 
of levels of the search results. For large graphs, the number of levels can be quite high 
and the work efficiency of the algorithm can be very low, causing the parallel code to 
run slower than sequential code.

One can design a parallel BFS algorithm that has work efficiency comparable to 
the sequential algorithm. Luo et al. propose to parallelize each iteration of the while-
loop in Fig. 12.6 by having multiple threads to collaboratively process the previous 
frontier array and assemble the current frontier array [LWH 2010]. This effectively 
parallelizes the outer for-loop in Fig. 12.6. We will pursue this direction in the cur-
rent section. In the next section, we will examine optimization strategies to enhance 
the performance of kernels produced with this strategy.

A straightforward parallelization strategy to parallelize each iteration of the 
while-loop is to assign a section of the previous frontier array to each thread block. 
Fig. 12.7 shows a sketch of the changes that we need to make to the sequential 
BFS_sequential function so that it can properly launch a CUDA kernel to perform 
the main activities of each iteration of the while-loop in parallel. Basically, the func-
tion needs to allocate device global memory version of edges, dest, and label. The 
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pointers to these device global memory versions will be called edges_d, dest_d, and 
label_d. The contents of these arrays also need to be copied from host to device 
using cudaMemcpy.

The kernel in Fig. 12.8 declares an extra array visited (compared to the sequen-
tial code) to track whether a node has participated in a frontier. The reason for using 
this new array is that we will be using atomic operations on the elements of the array 
and it is much simpler if the value of each element is limited to 0 or 1. The label 
array elements need to track the level information, which makes it more complicated 
for atomic operations. It is more convenient to separate visit marking (visited) from 
the level of information (label).

The host code then allocates the frontier_d array in the device global memory. 
Note that there is no need for host to maintain a copy of the frontier array since it 
will be only accessed by the device. The c_frontier_d and p_frontier_d pointers 
will be pointing to either the first half or the second half of frontier_d. Initially, the 
host code initializes c_frontier_d to point to the first half and p_frontier_d to the 
second half. Their roles will swap at the end of each while-loop iteration. The host 
needs to also allocate the tail variables in the device global memory. The pointers to 
these variables will be c_frontier_tail_d and p_frontier_tail_d.

The host code then needs to launch a simple kernel to initialize all visited_d ele-
ments to 0 except source to 1, the c_frontier_tail_d variable to 0, p_frontier_d[0] 
to source, p_frontier_tail_d variable to l, and label[source] to 0. After all this 
work, the device is set up to execute the main activities of each while-loop iteration 
in parallel. Thus, the bulk of the code in the while-loop is replaced with a kernel 

FIGURE 12.7

A sketch of the BFS host code function.
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launch and a call to cudaMemcpy() to read the value of the total number of vertices 
in the newly discovered frontier. This value will be used to determine if the current 
iteration has made any progress and the while-loop should be allowed to continue.

A kernel based on this strategy is shown in Fig. 12.8. The threads divide the 
section in an interleaved manner to enable coalesced memory access to the p_fron-
tier array. This is shown as the statement that accesses p_frontier at the beginning 
of the kernel. As each thread processes a vertex in the p_frontier array, it inserts 
or writes the unvisited neighbors of the vertex into the c_frontier array. This is  
shown in the first for-loop in Fig. 12.8. Once all threads complete their process-
ing of the p_frontier array, the c_frontier array will contain all the vertices of 
the new frontier and will become the p_frontier array for the next iteration of the 
while-loop.

The for-loop that visits each neighbor of a thread’s assigned frontier vertex looks 
similar to the inner for-loop in Fig. 12.6. However, there is a slight but important dif-
ference in terms of their execution efficiency. Each of the outer for-loop iterations in 
Fig. 12.6 processes the neighbors for one frontier vertex. It is very possible that fron-
tier vertices have common neighbors. For example, in Fig. 12.4(A), vertices 3, 4, and 
6 are all in the level-2 frontier and they have a common neighbor vertex 8. The outer 
for-loop iterations in Fig. 12.6 are executed sequentially. In general, we are referring 
to the situation where two frontier vertices A and B have a common neighbor and the 

FIGURE 12.8

A parallel BFS kernel based on block-level privatized queues.
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neighbor has not been visited so far. Let us assume that the outer for-loop iteration 
that processes A is executed first. The neighbor will be marked as visited as a result 
of processing A. When B is processed in a later iteration, it will find the neighbor 
marked as visited so it will not mark it again. In our example, during the processing 
of level-2 frontier of Fig. 12.4(A), assume that vertex 3 is processed first. Vertex 8 
will be marked as visited (level 3) and will be inserted into the c_frontier array. 
When vertices 4 and 6 are subsequently processed, they will find vertex 8 already 
visited so they will not insert it into the c_frontier.

In the parallel kernel, the frontier vertices are processed by threads that execute 
in parallel. Since the global memory writes that are performed by a thread are not 
guaranteed to be visible by other threads until the kernel termination or memory 
fence, they will not see the marks made by each other. In our example, the threads 
that process vertices 3, 4, and 6 all execute in parallel. They may or may not be able 
to see the marks by each other. So, each of them will likely mark vertex 8 as level 3 
and insert it into the c_frontier. As a result, a vertex could appear multiple times 
in the c_frontier. This is harmless in terms of correctness. The threads that process 
these redundant copies of the frontier vertices will take the same actions and will not 
affect the final execution result. However, there could be a significant number of such 
redundant processing for large graphs.

In order to avoid generating redundant copies of frontier vertices, we use atomic 
operations to mark and check the visit status of vertices in Fig. 12.8. The kernel uses 
a visited array to track whether a vertex has been visited. Each thread first uses an 
atomic operation to check if each destination of its current vertex still needs to be 
visited. Keep in mind that the atomic operations performed by one thread-block are 
visible to all other thread-blocks. This way, if a vertex is the destination of multiple 
vertices in the current frontier, only one thread will succeed in the condition and the 
destination vertex will only be entered into the c_frontier array once.

There are three important considerations with respect to writing vertices into the 
c_frontier array. First, the vertices written by a thread during the current iteration 
of the while-loop will likely need to be processed by another thread in another block 
during the next iteration of the while-loop. Recall that a write to global memory by 
a thread is not guaranteed to be visible to threads in other blocks without a kernel 
termination/relaunch or a memory fence. As a result, we will terminate the kernel at 
the end of each while-loop iteration and relaunch the kernel for the next iteration of 
the while-loop.

Second, since the threads would be simultaneously inserting vertices into the 
c_frontier array, they need to use atomic operations when they perform read-
modify-write on the c_frontier_tail variable to ensure the integrity of updates to 
the variable.

Third, for each previous frontier vertex, a thread will likely write multiple verti-
ces into the c_frontier array. This would likely create a global memory write pat-
tern that cannot be coalesced. We will use a privatized buffer in the shared memory to 
assemble the contribution by the threads in a block, and have threads to write the con-
tents of the shared memory buffer into the global memory in a coalesced manner at 
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the end of the kernel. We will call this privatized buffer a block-level queue. We will 
also need to create a privatized c_frontier_tail_s variable in the shared memory 
for insertion into the block level queue.

In Fig. 12.8, the block-level queue is declared as a shared memory array c_
frontier_s. Insertion into c_frontier_s is made through the shared memory 
variable c_frontier_tail_s variable. Thread 0 initializes the value of c_frontier_
tail_s to 0 while all other threads wait for this initialization at the __syncthreads() 
barrier. In the first for-loop, each thread inserts a new found neighbor into the c_
frontier_s array. This is done by performing an atomic operation on the c_fron-
tier_tail_s variable and writing the neighbor into the c_frontier_s array location 
whose index is the old c_frontier_tail_s value returned by the atomic operation. 
In the case where the block-level queue overflows, the remaining entries are stored 
directly in the c_frontier array.

The total number of new frontier vertices found by all threads in the block is given 
by the final value of c_frontier_tail_s. We use the if-statement to identify thread 
0 to reserve a section in the global c_frontier array by performing an atomic opera-
tion on c_frontier_tail. The atomic operation will return the beginning index of 
the reserved section. It will increase the c_frontier_tail value by the total number 
of vertices to be written into the section. Thus, the next block will start its section at 
the location indexed by the new c_frontier_tail value. This is illustrated by the 
bottom part of Fig. 12.9.

The second for-loop in Fig. 12.8 implements the coalesced writes to the global 
c_frontier array. During each iteration, each thread will write one element of the 
c_frontier_s array into c_frontier array. We design the indexing scheme so that 
adjacent threads will write adjacent locations in the c_frontier array. All threads 
will iterate until they have collectively completed writing all the contents of the  
c_frontier_s array.

Shared Mem

Shared Mem

Shared Mem

Global Mem

b-queue

b-queue

g-queue

FIGURE 12.9

Block-level queue (b-queue) contents are copied into the global queue (g-queue) at the 
end of the kernel in a coalesced manner.
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Since the block-level queue is a performance optimization scheme, falling back 
to the global-queue will not affect correctness. It will likely reduce performance as 
a reasonable tradeoff.

12.5  OPTIMIZATIONS
While we have achieved parallel execution with the BFS_Bqueue kernel in Fig. 12.8, 
there are several areas of improvements as far as the performance and efficiency are 
concerned. We will go over each area in this section [MG 2012].

MEMORY BANDWIDTH
When a thread processes its assigned frontier vertex in the kernel of Fig. 12.8, it 
accesses two consecutive edges array elements in the global memory in the for-loop 
followed by a number of consecutive dest array locations in the global memory. 
It then accesses a sequence of label array elements that are more or less random, 
indexed by the dest elements values. This means that adjacent threads are not access-
ing adjacent global memory locations when accessing the edges, dest, and label 
arrays, thus these accesses are not coalesced. One should perform these accesses 
through the texture memory. We will leave it as an exercise.

Fig. 12.10 illustrates the global memory access pattern for processing the level-2 
frontier vertices in Fig. 12.4(B). The source of the search is vertex 2. The two level-2 
frontier vertices are 0 and 8. Let us assume that threads 0 and 1 will process these 
vertices. The access pattern to the p_frontier array is coalesced. The accesses to 
the edges array are clearly not coalesced, thread 0 and thread 1 access edges[0] 
and edges[8] first. They are not accessing consecutive locations. They then access 
edges[1] and edges[9]. Again, they are not accessing consecutive locations.

Label

Dest

Edges

p_frontier

0 –1 0 2 2 1 1 1

1 2 3 4 5 6 7 4 8 5

0 2 4

0 8

7 9 11 12 13 15 15

8 6 8 0 6

FIGURE 12.10

Memory access pattern for processing the level-2 frontier in Fig. 12.5.
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Based on the edges element values, thread 0 will access dest[0] and dest[1] 
whereas thread 1 will not make any further accesses since vertex 8 does not have any 
outgoing edges. One can easily imagine that if vertex 8 had any outgoing edges, they 
would not be in consecutive locations as the ones accessed by thread 0. Thread 0 will 
access the label array based on dest[0] and dest[1] values. In this example, as 
shown in Fig. 12.10, it happens to access label[1] and label[2]. In general, it could 
access locations that are of arbitrary distance away from each other, depending on the 
shape of the graph and the way the vertices are numbered. Obviously, the accesses to 
the label array are not coalesced in general. Therefore, accesses to the edges, dest, 
and label arrays should go through the texture memory.

HIERARCHICAL QUEUES
The block-level queue c_frontier_s in Figs. 12.8 and 12.9 is an example of a 
hierarchical queue design. In general, when we have a queue that receives inser-
tion requests from a large number of parallel threads, their atomic operations on the 
tail variable will likely cause excessive contention and therefore serialization among 
these threads. Giving each block its private queue significantly reduces the level of 
contention in queue insertion. The cost is the extra step at the end of the kernel, where 
the contents of the private queue need to be consolidated into the global queue.

As it turns out, even the block level queues can suffer heavy contention. This is 
because all threads in a warp are guaranteed to cause contention when they access 
their block-level queue. All threads in the same warp execute the same instruction at 
any point in time. So, all of them will execute the atomic operations at the same time 
and cause a very high level of contention. Such contention will effectively serialize 
the execution of the threads in a warp and drastically reduce the execution speed.

The contentions inside each warp can be addressed by adding another level 
of queues to the hierarchy, as shown in Fig. 12.11. We will call these warp-level 
queues (w-queues). The number of such warp-level queues is usually a power of two 

Shared memory Shared memory
w-queue

b-queue b-queue

g-queue

FIGURE 12.11

The design and consolidation process of w-queue, b-queue, and g-queue.
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and is a parameter that can be tuned. During kernel execution, we classify threads 
into the same number of classes as the number of warp-level queues using the least  
significant bits of their threadIdx.x values. The rationale is that we want to evenly 
distribute the atomic operations executed by threads in a warp to the warp-level 
queues.

For example, if we have four warp-level queues, we direct all threads according 
to the least significant two bits of threadIdx.x value. All threads whose two least 
significant bits of the threadIdx.x values are 00 will access warp-level queue 0. 
Assume that we have 64 threads in a block, the 16 threads which are directed to 
the warp-level queue 0 are 0, 4, 8, 12, …, 56, 60. In this case, there are two warps. 
In warp 1, 8 out of its 32 threads are directed to warp-level queue 0. These threads 
are 0, 4, 8, 12, 16, 20, 24, and 28. In warp 1, 8 of its 32 threads are also directed to 
warp-level queue 0. These threads are 32, 36, 40, 44, 48, 52, 56, and 60. The point is 
that whenever a warp executes an atomic operation, one fourth of its threads will be 
directed to warp-level queue 0. Similarly, the 16 threads which are directed to warp-
level queue 1 are 1, 5, 9, 13, …, 57, 61. Thus, one fourth of the threads of a warp will 
be directed to warp-level queue 1.

At the end of the kernel, we need to first consolidate the warp-level queue con-
tents into the block-level queue, as illustrated in Fig. 12.11. Note that it may be 
advantageous to use a different warp to copy each warp-level queue contents into the 
block-level queue. This part involves significant thread index manipulation and is left 
as an exercise. We can then consolidate the block-level queue contents into the global 
queue as shown in Fig. 12.8.

By increasing the number of warp-level queues, we can decrease the level of con-
tention to each warp-level queue. However, there is a cost of having more w-queues. 
As we increase the number of w-queues, the size of each w-queue becomes smaller. 
This increases the probability for one of the queues to overflow. The threads should 
check the overflow condition in a way similar to what we discussed for the block-
level queue and redirect any overflowing vertices to the block-level queue. In some 
cases, the thread may find the block-level queue in an overflow condition and thus 
need to redirect the vertex to the global queue. We leave the detailed implementation 
of the BFS kernel with three levels of queue as an exercise.

KERNEL LAUNCH OVERHEAD
In most graphs, the frontiers of the first several iterations of a BFS can be quite small. 
The frontier of the first iteration only has the neighbors of the source. The frontier of 
the next iteration has all the neighbors of the current frontier vertices. For these initial 
iterations, the kernel launch overhead may outweigh the benefit of parallelism. In gen-
eral, the size of the frontier grows by a factor that is the average number of out-going 
edges of vertices from one iteration to the next. One way to deal with these initial 
iterations is to prepare another kernel that is launched only with one thread block. 
The kernel uses only a block-level queue except for overflow. It implements the initial 
interations of the while-loop. Since the block-level queue is in the shared memory, we 
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can use __syncthreads() to ensure that during the next iteration, other threads in the 
block can use the queue entries prepared by each thread in the current iteration.

Once the frontier reaches a size that overflows the block-level queue, the kernel 
copies the block-level queue contents to the global queue and returns to the host 
code. The host code will launch the regular kernel in the subsequent iterations of 
the while-loop. The specialized kernel eliminates the kernel launch overhead for the 
initial iterations. We leave the specialized kernel as an exercise.

LOAD BALANCE
The amount of work to be done by each thread depends on the connectivity of the 
vertex assigned to it. In some graphs, such as social network graphs, some vertices 
(celebrities) may have several orders of magnitude more out-going edges than oth-
ers. When this happens, one or a few of the threads can take excessively long and 
slow down the execution of the entire thread grid. This is an extreme example of 
load imbalance in parallel computing. We can potentially address this by having 
the threads which encounter vertices that have extremely large number of out-going 
edges to launch a kernel and use many threads to process the problematic vertices. 
The mechanism that enables threads to launch new kernels without involving the 
host is called dynamic parallelism, which will be addressed in Chapter 13, CUDA 
dynamic parallelism.

12.6  SUMMARY
The graph search pattern is rich with several challenges. It is a memory bound com-
putation. It has a significant portion of irregular memory accesses. Its input set is 
dynamic and depends on the data. The collection of input data for each iteration 
requires a well-designed hierarchy of queues that are invaluable in many real applica-
tions. Its workload varies over time and requires careful design of the kernel and even 
some specialized kernels.

12.7  EXERCISES

1.	 Extend the BFS_Bqueue kernel to check and handle the overflows when 
threads insert new frontier vertices in the block-level queue.

2.	 Extend the BFS_Bqueue kernel to use texture memory to access the edges, 
dest, label array.

3.	 Extend the BFS_Bqueue kernel to implement the warp-level queue.

4.	 Write a BFS_small_frontier kernel to implement the first iterations of the 
search until the frontier grows beyond 1024 vertices.
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CUDA Dynamic Parallelism is an extension to the CUDA programming model enabling 
a CUDA kernel to create new thread grids by launching new kernels. Dynamic paral-
lelism is introduced with the Kepler architecture, first appearing in the GK110 chip. In 
previous CUDA systems, kernels can only be launched from the host code. Algorithms 
that involved recursion, irregular loop structures, time-space variation, or other constructs 
that do not fit a flat, single level of parallelism needed to be implemented with multiple 
kernel launches, which increase burden on the host, amount of host-device communica-
tion, and total execution time. In some cases, programmers resort to loop serialization 
and other awkward techniques to support these algorithmic needs at the cost of software 
maintainability. The dynamic parallelism support allows algorithms that dynamically dis-
cover new work to prepare and launch kernels without burdening the host or impacting 
software maintainability. This chapter describes the extended capabilities of the CUDA 
architecture which enable dynamic parallelism, including the modifications and additions 
to the CUDA programming model, as well as guidelines and best practices for exploiting 
this added capacity.

13.1  BACKGROUND
Many real-world applications employ algorithms that either have variation of work 
across space or dynamically varying amount of work performed over time. As we 
saw in Chapter 12 Parallel Patterns: Graph Search, in a graph search, the amount of 
work done when processing each frontier vertex can vary dramatically in graphs like 
social networks. For another example, Fig. 13.1 shows a turbulence simulation exam-
ple where the level of required modeling details varies across both space and time. 
As the combustion flow moves from left to right, the level of activities and intensity 
increases. The level of details required to model the right side of the model is much 
higher than that for the left side of the model. On one hand, using a fixed fine grid 
would incur too much work for no gain for the left side of the model. On the other 
hand, using a fixed coarse grid would sacrifice too much accuracy for the right side 
of the model. Ideally, one should use fine grids for the parts of the model that require 
more details and coarse grids for those that do not.

Previous CUDA systems require all kernels to be launched from host code. The 
amount of work done by a thread grid is pre-determined during kernel launch. With 
the SPMD programming style for the kernel code, it is tedious if not extremely dif-
ficult to have thread-blocks to use different grid spacing. This limitation favors the 
use of fixed grid system. In order to achieve the desired accuracy, such fixed grid 
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approach, as illustrated in the upper right portion of Fig. 13.1, typically needs to 
accommodate the most demanding parts of the model and perform unnecessary extra 
work in parts that do not require as much detail.

A more desirable approach is shown as the dynamic, variable grid in the lower 
right portion of Fig. 13.1. As the simulation algorithm detects fast changing simu-
lation quantities in some areas of the model, it refines the grid in those areas to 
achieve desired level of accuracy. Such refinement does not need to be done for 
the areas that do not exhibit such intensive activity. This way, the algorithm can 
dynamically direct more computation work to the areas of the model that benefit 
from the addition work.

Fig. 13.2 shows a conceptual comparison of behavior between a system without 
dynamic parallelism and one with dynamic parallelism with respect to the simula-
tion model in Fig. 13.1. Without dynamic parallelism, the host code must launch 
all kernels. If new work is discovered, such as refining the grid of an area of the 
model during the execution of a kernel, it needs to terminate itself, report back to 
the host code and have the host code to launch a new kernel. This is illustrated in  
Fig. 13.2(A), where the host launches a wave of kernels, receives information from 
these kernels after their termination, and launches the next level of kernels for any 
new work discovered by the completed kernels.

Initial Grid 

Statically assign conservative worst-
case grid

Dynamically provide more resolution
where accuracy is required

Dynamic Grid 

Fixed Grid 

FIGURE 13.1

Fixed versus dynamic grids for a turbulence simulation model.
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Fig. 13.2(B) shows that with dynamic parallelism, the threads that discover new 
work can just go ahead and launch kernels to do the work. In our example, when a 
thread discovers that an area of the model needs to be refined, it can launch a kernel to 
perform the computation step on the refined grid area without the overhead of terminat-
ing the kernel, reporting back to the host, and having the host to launch new kernels.

13.2  DYNAMIC PARALLELISM OVERVIEW
From the perspective of programmers, dynamic parallelism means that they can 
write a kernel launch statement in a kernel. In Fig. 13.3, the main function (host 
code) launches three kernels, A, B, and C. These are kernel launches in the original 
CUDA model. What is different is that one of the kernels, B, launches three kernels 
X, Y, and Z. This would have been illegal in previous CUDA systems.

The syntax for launching a kernel from a kernel is the same as that for launching 
a kernel from host code:

kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments])

●	 Dg is of type dim3 and specifies the dimensions and size of the grid.
●	 Db is of type dim3 and specifies the dimensions and size of each thread-block.
●	 Ns is of type size_t and specifies the number of bytes of shared memory that is 

dynamically allocated per thread-block for this call, which is in addition to the 
statically allocated shared memory. Ns is an optional argument that defaults to 0.

FIGURE 13.2

Kernel launch patterns for algorithms with dynamic work variation, with and without 
dynamic parallelism.
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●	 S is of type cudaStream_t and specifies the stream associated with this call. The 
stream must have been allocated in the same thread-block where the call is 
being made. S is an optional argument that defaults to 0. Streams are discussed 
in more detail in Chapter 18.

13.3  A SIMPLE EXAMPLE
In this section, we provide a simple example of coding in each of two styles – first, in 
the original CUDA style, and second, in the dynamic parallelism style. The example 
is based on a hypothetical parallel algorithm that does not compute useful results, but 
provides a conceptually simple computational pattern that recurs in many applica-
tions. It serves to illustrate the difference between the two styles and how one can 
use the dynamic parallelism style to extract more parallelism while reducing control 
flow divergence when the amount of work done by each thread in an algorithm can 
vary dynamically.

Fig. 13.4 shows a simple example kernel coded without dynamic parallelism. In 
this example, each thread of the kernel performs some computation (line 05) then 
loops over a list of data elements it is responsible for (line 07), and performs another 
computation for each data element (line 08).

This computation pattern recurs frequently in many applications. For example, 
in graph search, each thread could visit a vertex then loop over a list of neighboring 

GPU

__global__ void B(float *data)  
{ 
    do_stuff(data); 

X <<< ... >>> (data);

Y <<< ... >>> (data);
Z <<< ... >>> (data);
cudaDeviceSynchronize();

 do_more_stuff(data); 
} 

A

B

C

X

Y

Z

CPU
int main() { 
    float *data;     
    setup(data); 

    A <<< ... >>> (data); 

    B <<< ... >>> (data); 
    C <<< ... >>> (data); 

    cudaDeviceSynchronize(); 
    return 0; 
} 

FIGURE 13.3

A simple example of a kernel (B) launching three kernels (X, Y, and Z).
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vertices. The reader should find this kernel structure very similar to that of BFS_
Bqueue_kernel in Fig. 12.8. In sparse matrix computations, each thread could first 
identify the starting location of a row of non-zero elements and loop over the non-
zero values. In simulations such as the example in the beginning of the chapter, each 
thread could represent a coarse grid element and loop over finer grid elements.

There are two main problems with writing applications this way. First, if the work 
in the loop (lines 07-09) can be profitably performed in parallel, then we have missed 
out on an opportunity to extract more parallelism from the application. Second, if the 
number of iterations in the loop varies significantly between threads in the same warp, 
then the resulting control divergence can degrade the performance of the program.

Fig. 13.5 shows a version of the same program that uses dynamic parallelism. 
In this version, the original kernel is separated into two kernels, a parent kernel and 

Index

01    __global__ void kernel(unsigned  int* start, unsigned int* end,float* someData,

02        float* moreData) {

03

04 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

05 doSomeWork(someData[i]);

06

07    for(unsigned int j = start[i]; j < end[i]; ++j) {

08 doMoreWork(moreData[j]);

09 }

10

11    }

FIGURE 13.4

A simple example of a hypothetical parallel algorithm coded in CUDA without dynamic 
parallelism.

01    __global__ void kernel_parent(unsigned int* start, unsigned int* end,

02 float* someData, float* moreData) {

03

04 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

05 doSomeWork(someData[i]);

06

07 kernel_child <<< ceil((end[i]-start[i])/256.0) , 256 >>>

08            (start[i], end[i], moreData);

09

10    }

11

12    __global__ void kernel_child(unsigned int start, unsigned int end,

13        float* moreData) {

14

15 unsigned int j = start + blockIdx.x*blockDim.x + threadIdx.x;

16

17 if(j < end) {

18 doMoreWork(moreData[j]);

19 }

20

21    }

FIGURE 13.5

A revised example using CUDA dynamic parallelism.
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a child kernel. The parent kernel starts off the same as the original kernel, executed 
by a grid of threads referred to as the parent grid. Instead of executing the loop it 
launches a child kernel to continue the work (lines 07–08). The child kernel is then 
executed by another grid of threads called the child grid that performs the work that 
was originally performed inside the loop body (line 18).

Writing the program in this way addresses both problems that were mentioned about 
the original code. First, the loop iterations are now executed in parallel by the child 
kernel threads instead of serially by the original kernel thread. Thus, we have extracted 
more parallelism from the program. Second, each thread now executes a single loop iter-
ation which results in better load balance and eliminates control divergence. Although 
these two goals could have been achieved by the programmer by rewriting the kernels 
differently, such manual transformations can be awkward, complicated and error prone. 
Dynamic parallelism provides an easy way to express such computational patterns.

13.4  MEMORY DATA VISIBILITY
In the next three sections, we will briefly explain some important details that govern 
the execution behavior of programs that use dynamic parallelism. It is important for 
a programmer to understand these details in order to use dynamic parallelism confi-
dently. We will cover the rules for memory data visibility in this section. These rules 
specify how the data objects of a parent grid can be accessed by threads in a child 
grid. These rules are extensions to the data consistency rules between threads from 
the same grid vs. between threads from different grids in a non-dynamic-parallelism 
program. For example, the global memory data written by threads in a grid are not 
guaranteed to be visible to other threads until either an explicit memory fence or 
kernel termination. Such rules are extended in dynamic parallelism so that one can 
clearly understand how a parent and a child can make data values visible to each other.

GLOBAL MEMORY
A parent thread and its child grid can make their global memory data visible to 
each other, with weak consistency guarantees between child and parent. The memory 
views of the parent thread and the child grid are said to be consistent with each other 
if the effects of their memory operations are fully visible to each other. There are two 
points in the execution of a child grid when its view of memory is consistent with 
the parent thread:

1.	 When the child grid is created by a parent thread. That means that all global 
memory operations in the parent thread prior to invoking the child grid are visible 
to the child grid.

2.	 When the child grid completes as signaled by the completion of a synchronization 
API call in the parent thread. That means all memory operations of the child grid 
are visible to the parent after the parent has synchronized on the child grid’s 
completion (see Section 13.6 for details about synchronization).
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ZERO-COPY MEMORY
Zero-copy system memory has identical consistency guarantees as global memory, 
and follows the same semantics as detailed above. A kernel may not allocate or free 
zero-copy memory, however, but may use pointers passed in from the host code.

CONSTANT MEMORY
Constants may not be written to by a kernel, even between dynamic parallelism  
kernel launches. That is, the value of all __constant__ variables must be set from the 
host prior to launch of the first kernel. Constant memory variables are globally vis-
ible to all kernels, and so must remain constant for the lifetime of the entire dynamic 
parallelism launch tree invoked by the host code.

Taking the address of a constant memory object from within a thread has the 
same semantics as for non-dynamic-parallelism programs, and passing that pointer 
from parent to child or from a child to parent is fully supported.

LOCAL MEMORY
Local memory is private storage for a thread, and is not visible outside of that thread. 
It is illegal to pass a pointer to local memory as a launch argument when launching a 
child kernel. The result of dereferencing such a local memory pointer from a child is 
undefined. For example the following is illegal, with undefined behavior if x_array 
is accessed by any threads that execute the child_launch kernel:

int x_array[10];        // Creates x_array in parent’s local memory
child_launch<<< 1, 1 >>>(x_array);

It is sometimes difficult for a programmer to know when a variable is placed into 
local memory by the compiler. As a general rule, all storage passed to a child kernel 
should be allocated explicitly from the global-memory heap, either with malloc() or 
new() or by declaring __device__ storage at global scope. For example, Fig. 13.5(A) 
shows a valid kernel launch where a pointer to a global memory variable is passed as 
an argument into the child kernel. Fig. 13.5(B) shows an invalid code where a pointer 
to a local memory (auto) variable is passed into the child kernel.

The NVIDIA CUDA C compiler will issue a warning if it detects that a pointer 
to local memory is being passed as an argument to a kernel launch. However, such 
detections are not guaranteed (Figure 13.6).

__device__ int value;
__d evice__ void x() {

value = 5;
child<<< 1, 1 >>>(&value);

}

__device__ void y() {
int value = 5;
child<<< 1, 1 >>>(&value);

}

(A) Valid–“value” is global storage (B) Invalid–“value” is local storage

FIGURE 13.6

Passing a pointer as an argument to a child kernel.
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SHARED MEMORY
Shared memory is private storage for an executing thread-block, and data is not vis-
ible outside of that thread-block. Passing a pointer to a shared-memory variable to 
a child kernel either through memory or as an argument will result in undefined 
behavior.

TEXTURE MEMORY
Texture memory accesses (read-only) are performed on a memory region that may 
be aliased to the global memory region. Texture memory has identical consistency 
guarantees as global memory, and follows the same semantics. In particular, writes 
to memory prior to a child kernel launch are reflected in texture memory accesses of 
the child. Also, writes to memory by a child will be reflected in the texture memory 
accesses by a parent, after the parent synchronizes on the child’s completion.

Concurrent texture memory access and writes to global memory objects which 
alias the texture memory objects between a parent and its children or between multi-
ple children will result in undefined behavior.

13.5  CONFIGURATIONS AND MEMORY MANAGEMENT
Dynamic parallelism allows a CUDA thread to play the role of host code in launch-
ing kernels. There are two other types of major host code activities that support the 
kernel launch: configuring the device hardware and prepare the device memory for 
executing the kernel. A programmer also needs to understand how these activities are 
applied to the kernels launched by a CUDA thread.

LAUNCH ENVIRONMENT CONFIGURATION
A kernel launched with dynamic parallelism inherits all device configuration set-
tings from its parent kernel. Such configuration settings include shared memory and 
L1 cache size as returned from cudaDeviceGetCacheConfig() and device execution 
parameter limits as returned from cudaDeviceGetLimit(). For example, if a parent 
kernel is configured with 16K bytes of shared memory and 48K bytes of L1 cache, 
then the child kernel it launches will have identical configurations. Likewise, a par-
ent’s device limits such as stack size will be passed as-is to its children.

MEMORY ALLOCATION AND LIFETIME
Dynamic parallelism makes it possible to invoke cudaMalloc and cudaFree from 
kernels. However they have slightly modified semantics. Within the device envi-
ronment the total allocatable memory is limited to the device malloc() heap size, 
which may be smaller than the available unused device memory. Moreover, it is an 
error to invoke cudaFree from the host program on a pointer which was allocated 
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by cudaMalloc on the device, or to invoke cudaFree from the device program on a 
pointer which was allocated by cudaMalloc on the host. These limitations may be 
removed in future versions of CUDA.

cudaMalloc() on Host cudaMalloc() on Device

cudaFree() on Host Supported Not supported
cudaFree() on Device Not supported Supported
Allocation limit Free device memory cudaLimitMallocHeapSize

NESTING DEPTH
Kernels launched with dynamic parallelism may themselves launch other kernels, 
which may in turn launch other kernels, and so on. Each subordinate launch is con-
sidered a new “nesting level,” and the total number of levels is the “nesting depth” of 
the program. The maximum nesting depth is limited in hardware to 24.

In the presence of parent-child synchronization, there are additional constraints 
on nesting depth due to the amount of memory required by the system to store par-
ent kernel state. These constraints will be discussed in Section 13.6 when we discuss 
synchronization depth.

PENDING LAUNCH POOL CONFIGURATION
The pending launch pool is a buffer that tracks the kernels that are executing or wait-
ing to be executed. This pool is allocated a fixed amount of space, thereby support-
ing a fixed number of pending kernel launches (2048 by default). If this number is 
exceeded, a virtualized pool is used, but leads to significant slowdown which can be 
an order of magnitude or more. To avoid this slowdown, the programmer can increase 
the size of the fixed pool by executing the cudaDeviceSetLimit() API call from the 
host function to set the cudaLimitDevRuntimePendingLaunchCount configuration.

ERRORS AND LAUNCH FAILURES
Like CUDA API function calls in host code, any CUDA API function called within 
a kernel may return an error code. Any failed kernel launch due to reasons such as 
insufficient execution resources also appears to return with an error code. The last 
error code returned is also recorded and may be retrieved via the cudaGetLastEr-
ror() call. Errors are recorded on a per-thread basis, so that each thread can identify 
the most recent error that it has generated. The error code is of type cudaError_t, 
which is a 32-bit integer value.1

1 No notification of ECC errors is available to code within a CUDA kernel. ECC errors are only 
reported at the host side. Any ECC errors which arise during execution of a dynamic parallelism kernel 
will either generate an exception or continue execution (depending upon error and configuration).
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13.6  SYNCHRONIZATION, STREAMS, AND EVENTS
SYNCHRONIZATION
As with kernel launches from the host, kernel launches from the device are non-
blocking. If a parent thread wants to wait for a child kernel to complete before pro-
ceeding, it must perform synchronization explicitly.

One way for a parent thread to perform synchronization with its child kernels 
on the device is by invoking cudaDeviceSynchronize(). A thread that invokes this 
call will wait until all kernels launched by any thread in the thread-block have 
completed. However, this does not mean that all threads in the block will wait, so if 
a block-wide synchronization is desired, then cudaDeviceSynchronize() invoked 
by one thread in the block must also be followed by __syncthreads() invoked by all 
threads in the block. Synchronization can also be performed on streams within the 
same thread-block (which will be discussed shortly).

If a parent kernel launches other child kernels and does not explicitly synchronize 
on the completion of those kernels, then the runtime will perform the synchroniza-
tion implicitly before the parent kernel terminates. This ensures that the parent 
and child kernels are properly nested, and that no kernel completes before its children 
have completed. This implicit synchronization is illustrated in Fig. 13.7.

SYNCHRONIZATION DEPTH
If a parent kernel performs explicit synchronization on a child kernel, it may be 
swapped out of execution while waiting for the child kernel to complete. For this 

FIGURE 13.7

Completion sequence for parent and child grids.
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reason, memory needs to be allocated as a backing-store for the parent kernel state. 
Ancestors of the synchronizing parent kernel may also be swapped out. Thus the 
backing store needs to be large enough to fit the state of all kernels up to the deep-
est nesting level at which synchronization is performed. This deepest nesting level 
defines the synchronization depth.

Conservatively, the amount of memory allocated for the backing store for each 
level of the synchronization depth must be large enough to support storing state for 
the maximum number of live threads possible on the device. On current generation 
devices, this amounts to ~150  MB per level, which will be unavailable for program 
use even if it is not all consumed. The maximum synchronization depth is thus lim-
ited by the amount of memory allocated by the software for the backing store, and is 
likely to be a more important constraint than the maximum nesting depth stipulated 
by the hardware.

The default amount of memory reserved for the backing store is sufficient for a 
synchronization depth of two. However, the programmer can increase this amount 
using the cudaDeviceSetLimit() API call from the host function to set a larger value 
for the cudaLimitDevRuntimeSyncDepth configuration parameter.

STREAMS
Just like host code can use streams to execute kernels concurrently, kernel threads 
can also use streams when launching kernels with dynamic parallelism. Both named 
and unnamed (NULL) streams can be used.

The scope of a stream is private to the block in which the stream was created. In 
other words, streams created by a thread may be used by any thread within the same 
thread-block, but stream handles should not be passed to other blocks or child/parent 
kernels. Using a stream handle within a block that did not allocate it will result in 
undefined behavior. Streams created on the host have undefined behavior when used 
within any kernel, just as streams created by a parent grid have undefined behavior 
if used within a child grid.

When a stream is not specified to the kernel launch, the default NULL stream 
in the block is used by all threads. This means that all kernels launched in the same 
block will be serialized even if they were launched by different threads. However, it 
is often the case that kernels launched by different threads in a block can be executed 
concurrently, so programmers must be careful to explicitly use different streams in 
each thread if they wish to avoid the performance penalty from serialization.

Similar to host-side launch, work launched into separate streams may run concur-
rently, but actual concurrency is not guaranteed. Programs that require concurrency 
between child kernels in order to run correctly are ill-formed and will have undefined 
behavior. An unlimited number of named streams are supported per block, but the 
maximum concurrency supported by the platform is limited. If more streams are 
created than can support concurrent execution, some of these may serialize or alias 
with each other.
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The host-side NULL stream’s global-synchronization semantic is not supported 
under dynamic parallelism. To make this difference between the stream behavior on 
the host-side and the device side with dynamic parallelism explicit, all streams cre-
ated in a kernel must be created using the cudaStreamCreateWithFlags() API with 
the cudaStreamNonBlocking flag (an example is shown later in Fig. 13.10). Calls 
to cudaStreamCreate() from a kernel will fail with a compiler “unrecognized func-
tion call” error, so as to make clear the different stream semantic under dynamic 
parallelism.

The cudaStreamSynchronize() API is not available within a kernel, only cudaDe-
viceSynchronize() can be used to wait explicitly for launched work to complete. This 
is because the underlying system software implements only a block-wide synchroni-
zation call, and it is undesirable to offer an API with incomplete semantics (that is, 
the synchronization function guarantees that one stream synchronizes, but coinciden-
tally provides a full barrier as a side-effect). Streams created within a thread-block 
are implicitly synchronized when all threads in the thread-block exit execution.

EVENTS
Only the inter-stream synchronization capabilities of CUDA events are supported 
in kernel functions. Events within individual streams are currently not supported 
in kernel functions. This means that cudaStreamWaitEvent() is supported, but 
cudaEventSynchronize(), timing with cudaEventElapsedTime(), and event query via 
cudaEventQuery() are not. These may be supported in a future version.2

Event objects may be shared between the threads within a block that created them 
but are local to that block and should not be passed to child/parent kernels. Using an 
event handle within a block that did not allocate it will result in undefined behavior.

An unlimited number of events are supported per block, but these consume device 
memory. Owing to resource limitations, if too many events are created (exact number 
is implementation-dependent), then device-launched grids may attain less concur-
rency than might be expected. Correct execution is guaranteed, however.

13.7  A MORE COMPLEX EXAMPLE
We now show an example that is a more interesting and useful case of adaptive sub-
division of spline curves. This example illustrates a variable number of child kernel 
launches, according to the workload. The example is to calculate Bezier Curves [Wiki_
Bezier], which are frequently used in computer graphics to draw smooth, intuitive 
curves that are defined by a set of control points, which are typically defined by a user.

2 To ensure that this restriction is clearly seen by the user, dynamic parallelism cudaEvents must be 
created via cudaEventCreateWithFlags(), which currently only accepts the cudaEventDis-
ableTiming flag value when called from a kernel.
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Mathematically, a Bezier curve is defined by a set of control points P0 through Pn, 
where n is called its order (n=1 for linear, 2 for quadratic, 3 for cubic, etc.). The first 
and last control points are always the end points of the curve; however, the intermedi-
ate control points (if any) generally do not lie on the curve.

LINEAR BEZIER CURVES
Given two control points P0 and P1, a linear Bezier curve is simply a straight line 
connecting between those two points. The coordinates of the points on the curve is 
given by the following linear interpolation formula:

	 B( ) ( ) ( ) , [ , ]t t t t tP P P P P0 1 0 0 11 0 1∈

QUADRATIC BEZIER CURVES
A quadratic Bezier curve is defined by three control points P0, P1, and P2. The  
points on a quadratic curve are defined as a linear interpolation of corresponding 
points on the linear Bezier curves from P0 to P1 and from P1 to P2, respectively. The 
calculation of the coordinates of points on the curve is expressed in the following 
formula:

	 B( ) ( )[( ) ] [( ) ], [ , ],t t t t t t t t1 1 1 0 10 1 1 2P P P P ∈

which can be simplified into the following formula:
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BEZIER CURVE CALCULATION (WITHOUT DYNAMIC PARALLELISM)
Fig. 13.8 shows a CUDA C program that calculates the coordinates of points on a 
Bezier curve. The main function (line 48) initializes a set of control points to random 
values (line 513). In a real application, these control points are most likely inputs from 
a user or a file. The control points are part of the bLines_h array whose element type 
BezierLine is declared in line 07. The storage for the bLines_h array is allocated 
in line 50. The host code then allocates the corresponding device memory for the 
bLines_d array and copies the initialized data to bLines_d (lines 54–56). It then calls 
the computeBezierLine() kernel to calculate the coordinates of the Bezier curve.

The computeBezierLine() kernel starting at line 13 is designed to use a thread-
block to calculate the curve points for a set of three control points (of the quadratic 
Bezier formula). Each thread-block first computes a measure of the curvature of the 
curve defined by the three control points. Intuitively, the larger the curvature, the 

3 Function initializeBLines() can be found in Fig. A13.8 in Code Appendix at the end of the 
chapter.
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more the points it takes to draw a smooth quadratic Bezier curve for the three control 
points. This defines the amount of work to be done by each thread-block. This is 
reflected in lines 20 and 21, where the total number of points to be calculated by the 
current thread-block is proportional to the curvature value.

01    #include <stdio.h>
02    #include <cuda.h>
03
04    #define MAX_TESS_POINTS 32
05
06    //A structure containing all parameters needed to tessellate a Bezier line
07 struct BezierLine {
08        float2 CP[3];                      //Control points for the line
09        float2 vertexPos[MAX_TESS_POINTS]; //Vertex position array to tessellate into
10        int nVertices;                     //Number of tessellated vertices
11    };
12
13 __global__ void computeBezierLines(BezierLine *bLines, int nLines) {
14        int bidx = blockIdx.x;
15        if(bidx < nLines){
16            //Compute the curvature of the line
17 float curvature = computeCurvature(bLines);
18
19         //From the curvature, compute the number of tessellation points
20 int nTessPoints = min(max((int)(curvature*16.0f),4),32);
21 bLines[bidx].nVertices = nTessPoints;
22
23            //Loop through vertices to be tessellated, incrementing by blockDim.x
24 for(int inc = 0; inc < nTessPoints; inc += blockDim.x){
25 int idx = inc + threadIdx.x;  //Compute a unique index for this point
26 if(idx < nTessPoints){
27 float u = (float)idx/(float)(nTessPoints-1);  //Compute u from idx
28 float omu = 1.0f - u;   //pre-compute one minus u
29 float B3u[3]; //Compute quadratic Bezier coefficients
30 B3u[0] = omu*omu;
31 B3u[1] = 2.0f*u*omu;
32 B3u[2] = u*u;
33 float2 position = {0,0};  //Set position to zero
34 for(int i = 0; i < 3; i++){
35                        //Add the contribution of the i'th control point to position
36 position = position + B3u[i] * bLines[bidx].CP[i];
37                    }
38                    //Assign value of vertex position to the correct array element
39 bLines[bidx].vertexPos[idx] = position;
40                }
41            }
42        }
43    }
44
45 #define N_LINES 256
46 #define BLOCK_DIM 32
47
48 int main( int argc, char **argv ) {
49        //Allocate and initialize array of lines in host memory
50 BezierLine *bLines_h = new BezierLine[N_LINES];
51        initializeBLines(bLines_h);
52
53        //Allocate device memory for array of Bezier lines
54 BezierLine *bLines_d;
55 cudaMalloc((void**)&bLines_d, N_LINES*sizeof(BezierLine));
56 cudaMemcpy(bLines_d,bLines_h, N_LINES*sizeof(BezierLine), cudaMemcpyHostToDevice);
57
58        //Call the kernel to tessellate the lines
59 computeBezierLines<<<N_LINES, BLOCK_DIM>>>(bLines_d, N_LINES );
60
61        cudaFree(bLines_d); //Free the array of lines in device memory
62        delete[] bLines_h;  //Free the array of lines in host memory
63    }

FIGURE 13.8

Bezier curve calculation without dynamic parallelism (support code in Fig. A13.8).
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In the for-loop in line 24, all threads calculate a consecutive set of Bezier curve 
points in each iteration. The detailed calculation in the loop body is based on the 
formula we presented earlier. The key point is that the number of iterations taken by 
threads in a block can be very different from that taken by threads in another block. 
Depending on the scheduling policy, such variation of the amount of work done 
by each thread-block can result in decreased utilization of SMs and thus reduced 
performance.

BEZIER CURVE CALCULATION (WITH DYNAMIC PARALLELISM)
Fig. 13.9 shows a Bezier curve calculation code using dynamic parallelism. It 
breaks the computeBezierLine() kernel in Fig. 13.8 into two kernels. The first part,  
computeBezierLine_parent(), discovers the amount of work to be done for each con-
trol point. The second part, computeBezierLine_child(), performs the calculation.

With the new organization, the amount of work done for each set of control points 
by the computeBezierLines_parent() kernel is much smaller than the original  
computeBezierLines() kernel. Therefore, we use one thread to do this work in 
computeBezierLines_parent(), as opposed to using one block in computeBezier-
Lines(). In line 58, we only need to launch one thread per set of control points. This 
is reflected by dividing the N_LINES by BLOCK_DIM to form the number of blocks in 
the kernel launch configuration.

There are two key differences between the computeBezierLines_parent() ker-
nel and the computeBezierLines() kernel. First, the index used to access the control 
points is formed on a thread basis (line 08 in Fig. 13.9) rather than block basis (line 
14 in Fig. 13.8). This is because the work for each control point is done by a thread 
rather than a block, as we mentioned above. Second, the memory for storing the cal-
culated Bezier curve points is dynamically determined and allocated in line 15 in Fig. 
13.9. This allows the code to assign just enough memory to each set of control points 
in the BezierLine type. Note that in Fig. 13.8, each BezierLine element is declared 
with the maximal possible number of points. On the other hand, the declaration in 
Fig. 13.9 has only a pointer to a dynamically allocated storage. Allowing a kernel to 
call the cudaMalloc() function can lead to substantial reduction of memory usage 
for situations where the curvature of control points vary significantly.

Once a thread of the computeBezierLines_parent() kernel determines the amount 
of work needed by its set of control points, it launches the computeBezierLines_child() 
kernel to do the work (line 19 in Fig. 13.9). In our example, every thread from the parent 
grid creates a new grid for its assigned set of control points. This way, the work done 
by each thread-block is balanced. The amount of work done by each child grid varies.

After the computeBezierLines_parent() kernel terminates, the main function 
can copy the data back and draw the curve on an output device. It also calls a kernel 
to free all storage allocated to the vertices in the bLines_d data structure in parallel 
(line 61). This is necessary since the vertex storage was allocated on the device by the 
computeBezierLines_parent() kernel so it has to be freed by device code (Section 
13.5).
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01 struct BezierLine {
02        float2 CP[3];      //Control points for the line
03        float2 *vertexPos; //Vertex position array to tessellate into
04        int nVertices;     //Number of tessellated vertices
05    };
06    __global__ void computeBez ierLines_parent(BezierLine *bLines, int nLines) {
07        //Compute a unique index for each Bezier line
08 int lidx = threadIdx.x + blockDim.x*blockIdx.x;
09 if(lidx < nLines){
10            //Compute the curvature of the line
11           float curvature = computeCurvature(bLines);
12
13            //From the curvature, compute the number of tessellation points
14            bLines[lidx].nVertices = min(max((int)(curvature*16.0f),4),MAX_TESS_POINTS);
15 cudaMalloc((void**)&bLines[lidx].vertexPos,
16                bLines[lidx].nVertices*sizeof(float2));
17
18            //Call the child kernel to compute the tessellated points for each line
19 computeBezierLine_child<<<ceil((float)bLines[lidx].nVertices/32.0f), 32>>>
20            (lidx, bLines, bLines[lidx].nVertices);
21        }
22    }
23 __global__ void computeBezierLine_child(int lidx, BezierLine* bLines,
24        int nTessPoints) {
25 int idx = threadIdx.x + blockDim.x*blockIdx.x;//Compute idx unique to this vertex
26 if(idx < nTessPoints){
27 float u = (float)idx/(float)(nTessPoints-1);  //Compute u from idx
28            float omu = 1.0f - u;   //Pre-compute one minus u
29            float B3u[3];   //Compute quadratic Bezier coefficients
30            B3u[0] = omu*omu;
31            B3u[1] = 2.0f*u*omu;
32            B3u[2] = u*u;
33            float2 position = {0,0};  //Set position to zero
34            for(int i = 0; i < 3; i++) {
35                //Add the contribution of the i'th control point to position
36                position = position + B3u[i] * bLines[lidx].CP[i];
37            }
38            //Assign the value of the vertex position to the correct array element
39            bLines[lidx].vertexPos[idx] = position;
40        }
41    }
42    __global__ void freeVertexMem(BezierLine *bLines, int nLines) {
43        //Compute a unique index for each Bezier line
44        int lidx = threadIdx.x + blockDim.x*blockIdx.x;
45 if(lidx < nLines)
46 cudaFree(bLines[lidx].vertexPos);   //Free the vertex memory for this line
47    }
48 int main( int argc, char **argv ) {
49        //Allocate array of lines in host memory
50        BezierLine *bLines_h = new BezierLine[N_LINES];
51        initializeBLines(bLines_h);
52    
53        //Allocate device memory for array of Bezier lines
54        BezierLine *bLines_d;
55        cudaMalloc((void**)&bLines_d, N_LINES*sizeof(BezierLine));
56        cudaMemcpy(bLines_d,bLines_h, N_LINES*sizeof(Bezi erLine),cudaMemcpyHostToDevice);
57    
58 computeBezierLines_parent<<<ceil((float)N_LINES/(float)BLOCK_DIM), BLOCK_DIM>>>
59            (bLines_d, N_LINES);
60
61 freeVertexMem <<<ceil((float)N_LINES/(float)BLOCK_DIM), BLOCK_DIM>>>
62       (bLines_d, N_LINES);
63        cudaFree(bLines_d);   //Free the array of lines in device memory
64        delete[] bLines_h;    //Free the array of lines in host memory
65    }

FIGURE 13.9

Bezier calculation with dynamic parallelism (support code in Fig. A13.8).
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LAUNCH POOL SIZE
As explained in Section 13.6, the launch pool storage may be virtualized when the 
fixed-pool size is full. That is, all launched grids will still be queued successfully. 
However, using the virtualized pool has a higher cost than using the fixed-size pool. 
The Bezier curve calculation with dynamic parallelism helps us to illustrate this.

Since the default size of the fixed-size pool is 2048 (it can be queried with 
cudaDeviceGetLimit()), launching more than 2048 grids will require the use of 
the virtualized pool, when the fixed-size pool is full. That is, if N_LINES (defined in  
Fig. 13.8, line 45) is set to 4096, half of the launches will use the virtualized pool. 
This will incur a significant performance penalty. However, if the fixed-size pool is 
set to 4096, the execution time will be reduced by an order of magnitude.

As a general recommendation, the size of the fixed-size pool should be set to the 
number of launched grids (if it exceeds the default size). In the case of the Bezier 
curves example, we would use cudaDeviceSetLimit(cudaLimitDevRuntimePendi
ngLaunchCount, N_LINES) before launching the computeBezierLines_parent() 
kernel (line 58).

STREAMS
Named and unnamed (NULL) streams are offered by the device runtime, as men-
tioned in Section 13.6. One key consideration is that the default NULL stream is 
block-scope. This way, by default all launched grids within a thread-block will use 
the same stream, even if they are launched by different threads. As a consequence, 
these grids will execute sequentially.

The Bezier example launches as many grids as threads in the computeBezier-
Lines_parent() kernel (line 19 in Fig. 13.9). Moreover, since MAX_TESS_POINTS 
is equal to 32 (see Fig. 13.8, line 04) and the thread-block size in computeBezier-
Lines_child() is 32, the number of blocks per grid will be 1 for the computeBezi-
erLines_child() kernel. If the default NULL stream is used, all these grids with one 
single block will be serialized. Thus, using the default NULL stream when launching 
the computeBezierLines_child() kernel can result in a drastic reduction in paral-
lelism compared to the original, non-CDP kernel.

Given that N_LINES is 256 and BLOCK_DIM is 64, only four blocks are launched 
in computeBezierLines_parent(). Thus, only four default streams will be avail-
able for the computeBezierLines_child() kernel. Consequently, some streaming 
multiprocessors (SM) will remain unused on any GPU with more than four SMs. 
Since each grid in the same stream consists of only one thread-block and all grids 
in the same stream are serialized with respect to each other, each SM can also be 
underutilized.

If more concurrency is desired (with the aim of better utilizing all SM), named 
streams must be created and used in each thread. Fig. 13.10 shows the sequence of 
instructions that should replace line 19 in Fig. 13.9.
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Using the code in Fig. 13.10, kernels launched from the same thread-block will 
be in different streams and can run concurrently. This will better utilize all SMs in the 
situation described above, leading to a considerable reduction of the execution time.

13.8  A RECURSIVE EXAMPLE
Dynamic parallelism allows programmers to implement recursive algorithms. In this 
section, we illustrate the use of dynamic parallelism for implementing recursion with 
a quadtree [Quadtree 1974]. Quadtrees partition a two-dimensional space by recur-
sively subdividing it into four quadrants. Each quadrant is considered a node of the 
quadtree, and contains a number of points. If the number of points in a quadrant is 
greater than a fixed minimum, the quadrant will be subdivided into four more quad-
rants, that is, four child nodes.

Fig. 13.11 depicts an overview of how the construction of a quadtree can be 
implemented with dynamic parallelism. In this implementation one node (quadrant) 
is assigned to one thread-block. Initially (depth = 0), one thread-block is assigned 
the entire two-dimensional space (root node), which contains all points. It divides the 
space into four quadrants, and launches one thread-block for each quadrant (depth = 1).  
These child blocks will again subdivide their quadrants if they contain more points 
than a fixed minimum. In this example the minimum is two; thus, blocks 00 and 02 do 
not launch children. Blocks 01 and 03 launch a kernel with four blocks each.

As the flow graph in the right-hand side of Fig. 13.11 shows, a block first checks 
if the number of points in its quadrant is greater than the minimum required for further 
division and the maximum depth has not been reached. If either of the conditions fails, 
the work for the quadrant is complete and the block returns. Otherwise, the block com-
putes the center of the bounding box that surrounds its quadrant. The center is in the 
middle of four new quadrants. The number of points in each of them is counted. A four-
element scan operation is used to compute the offsets to the locations where the points 
will be stored. Then, the points are reordered, so that those points in the same quadrant 
are grouped together and placed into their section of the point storage. Finally, the block 
launches a child kernel with four thread-blocks, one for each of the four new quadrants.

cudaStream_t stream;
// Create non-blocking stream
cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);

//Call the child kernel to compute the tessellated points for each line
computeBezierLine_child<<<ceil((float)bLines[lidx].nVertices/32.0f), 32, 0, stream>>>

(lidx, bLines, bLines[lidx].nVertices);

// Destroy stream
cudaStreamDestroy(stream);

FIGURE 13.10

Child kernel launch with named streams.
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Fig. 13.12 continues the small example in Fig. 13.11 and illustrates in detail how the 
points are reordered at each level of depth. In this example, we assume that each quad-
rant must have a minimum of two points in order to be further divided. The algorithm 
uses two buffers to store the points and reorder them. The points should be in buffer 0 at 
the end of the algorithm. Thus, it might be necessary to swap the buffer contents before 
leaving, in case the points are in buffer 1 when the terminating condition is met.

In the initial kernel launch from the host code (for depth = 0), thread-block 0 is 
assigned all the points that reside in buffer 0, shown in Fig. 13.12(A). Block 0 further 

FIGURE 13.11

Quadtree example. Each thread-block is assigned to one quadrant. If the number of points 
in a quadrant is more than 2, the block launches 4 child blocks. Shadowed blocks are 
active blocks in each level of depth.
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Quadtree example. At each level of depth, a block groups all points in the same quadrant together.
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divides the quadrant into four child quadrants, groups together all points in the same 
child quadrant, and stores them in buffer 1, as shown in Fig. 13.12(B). Its four chil-
dren, block 00 to block 03, are assigned each of the four new quadrants, shown as 
marked ranges in Fig. 13.12(B). Blocks 00 and 02 will not launch children, since 
the number of points in their respective assigned quadrant is only 2. They swap their 
points to buffer 0. Blocks 01 and 03 reorder their points to group those in the same 
quadrant, and launch four child blocks each, as shown in Fig. 13.12(C). Blocks 010, 
011, 012, 013, 030, 031, and 032 do not launch children (they have 2 or fewer points) 
nor need to swap points (they are already in buffer 0). Only block 033 reorders its 
points, and launches four blocks, as shown in Fig. 13.12(D). Blocks 0330 to 0333 
will exit after swapping their points to buffer 0, which can be seen in Fig. 13.12(E).

The kernel code in Fig. 13.13 implements the flow graph from Fig. 13.11 in 
CUDA. The quadtree is implemented with a node array, where each element contains 
all the pertinent information for one node of the quadtree (definition in Fig. A13.14 

01    __global__ void build_quadtree_kernel  
02                  (Quadtree_node *nodes, Points *points, Parameters params) { 
03        __shared__ int smem[8]; // To store the number of points in each quadrant 
04   
05        // The current node 
06        Quadtree_node &node = nodes[blockIdx.x]; 
07        node.set_id(node.id() + blockIdx.x); 
08        int num_points = node.num_points(); // The number of points in the node 
09   
10        // Check the number of points and its depth 
11        bool exit = check_num_points_and_depth(node, points, num_points, params);  
12        if(exit) return; 
13   
14        // Compute the center of the bounding box of the points 
15        const Bounding_box &bbox = node.bounding_box();  
16        float2 center; 
17        bbox.compute_center(center); 
18   
19        // Range of points 
20        int range_begin = node.points_begin();  
21        int range_end   = node.points_end();  
22        const Points &in_points = points[params.point_selector]; // Input points 
23        Points &out_points = points[(params.point_selector+1) % 2]; // Output points 
24   
25        // Count the number of points in each child 
26        count_points_in_children(in_points, smem, range_begin, range_end, center);  
27   
28        // Scan the quadrants' results to know the reordering offset 
29        scan_for_offsets(node.points_begin(), smem);  
30   
31        // Move points 
32        reorder_points(out_points, in_points, smem, range_begin, range_end, center);  
33   
34        // Launch new blocks 
35        if (threadIdx.x == blockDim.x-1) { 
36            // The children 
37            Quadtree_node *children = &nodes[params.num_nodes_at_this_level];  
38   
39            // Prepare children launch 
40            prepare_children(children, node, bbox, smem); 
41   
42            // Launch 4 children. 
43            build_quadtree_kernel<<<4, blockDim.x, 8 *sizeof(int)>>>  
44                             (children, points, Parameters(params, true)); 
45        } 
46    } 

FIGURE 13.13

Quadtree with dynamic parallelism: recursive kernel (support code in Fig. A13.13).
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in Code Appendix). As the quadtree is constructed, new nodes will be created and 
placed into the array during the execution of the kernels. The kernel code assumes 
that the node parameter points to the next available location in the node array.

At each level of depth, every block starts by checking the number of points in 
its node (quadrant). Each point is a pair of floats representing x and y coordinates 
(definition in Fig. A13.13 in Code Appendix). If the number of points is less than or 
equal to the minimum or if the maximum depth is reached (line 11), the block will 
exit. Before exiting, the block carries out a buffer swap if necessary. This is done in 
the device function check_num_points_and_depth() shown in Fig. 13.14.

If the block doesn’t exit, the center of the bounding box is computed (line 17). 
A bounding box is defined by its top-left and bottom-right corners. The coordinates 
of the center are computed as the coordinates of the middle point between these 
two corner points. The definition of a bounding box (including function compute_
center()) is in Fig. A13.13 in the Code Appendix.

As the center defines the four quadrants, the number of points in each quad-
rant is counted (line 26). The device function count_points_in_children() can be 
found in Fig. 13.144. The threads of the block collaboratively go through the range 
of points, and update atomically the counters in shared memory for each quadrant.

The device function scan_for_offsets() is called then (line 29). As can be seen 
in Fig. 13.14, it performs a sequential scan on the four counters in shared memory. 
Then, it adds the global offset of the parent quadrant to these values to derive the 
starting offset for each quadrant’s group in the buffer.

Using the quadrants’ offsets, the points are reordered with reorder_points() 
(line 32). For simplicity, this device function (Fig. 13.14) uses an atomic operation 
on one of the four quadrant counters to derive the location for placing each point.

Finally, the last thread of the block (line 35) determines the next available loca-
tion in the node array (line 37), prepares the new node contents for the child quad-
rants (line 40), and launches one child kernel with four thread-blocks (line 43). The 
device function prepare_children() prepares the new node contents for the chil-
dren by setting the limits of the children’s bounding boxes and the range of points in 
each quadrant. The prepare_children() function can be found in Fig. 13.14.

The rest of the definitions and the main function can be found in Fig. A13.14 in 
the Code Appendix.

13.9  SUMMARY
CUDA dynamic parallelism extends the CUDA programming model to allow kernels 
to launch kernels. This allows each thread to dynamically discover work and launch 
new grids according to the amount of work discovered. It also supports dynamic 
allocation of device memory by threads. As we show in the Bezier Curve calculation 
example, these extensions can lead to better work balance across threads and blocks 

4 The device functions in Fig. 13.14 are simplified for clarity.
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001  // Check the number of points and its depth
002  __device__ bool check_num_points_and_depth(Quadtree_node &node, Points *points,
003                                              int num_points, Parameters params){
004      if(params.depth >= params.max_depth || num_points <= params.min_points_per_node) {
005      // Stop the recursion here. Make sure points[0] contains all the points
006      if(params.point_selector == 1) {
007   int it = node.points_begin(), end = node.points_end();
008          for (it += threadIdx.x ; it < end ; it += blockDim.x)
009          if(it < end)
010              points[0].set_point(it, points[1].get_point(it));
011      }
012      return true;
013      }
014      return false;
015  }
016
017  // Count the number of points in each quadrant
018  __device__ void count_points_in_children(const Points &in_points, int* smem,
019      int range_begin, int range_end, float2 center) {
020      // Initizalize shared memory
021      if(threadIdx.x < 4) smem[threadIdx.x] = 0;
022      __syncthreads();
023      // Compute the number of points
024      for(int iter=range_begin+threadIdx.x; iter<range_end; iter+=blockDim.x){
025          float2 p = in_points.get_point(iter); // Load the coordinates of the point
026          if(p.x < center.x && p.y >= center.y)
027              atomicAdd(&smem[0], 1); // Top-left point?
028          if(p.x >= center.x && p.y >= center.y)
029              atomicAdd(&smem[1], 1); // Top-right point?
030          if(p.x < center.x && p.y < center.y)
031              atomicAdd(&smem[2], 1); // Bottom-left point?
032          if(p.x >= center.x && p.y < center.y)
033              atomicAdd(&smem[3], 1); // Bottom-right point?
034 }
035      __syncthreads();
036  }
037
038  // Scan quadrants’ results to obtain reordering offset
039  __device__ void scan_for_offsets(int node_points_begin, int* smem){
040      int* smem2 = &smem[4];
041      if(threadIdx.x == 0){
042      for(int i = 0; i < 4; i++)
043          smem2[i] = i==0 ? 0 : smem2[i-1] + smem[i-1]; // Sequential scan
044      for(int i = 0; i < 4; i++)
045          smem2[i] += node_points_begin;  // Global offset
046      }
047      __syncthreads();
048  }
049
050  // Reorder points in order to group the points in each quadrant
051  __device__ void reorder_points(
052                  Points& out_points, const Points &in_points, int* smem,
053                  int range_begin, int range_end, float2 center){
054      int* smem2 = &smem[4];
055      // Reorder points
056      for(int iter=range_begin+threadIdx.x; iter<range_end; iter+=blockDim.x){
057          int dest;
058          float2 p = in_points.get_point(iter); // Load the coordinates of the point
059          if(p.x<center.x && p.y>=center.y)
060              dest=atomicAdd(&smem2[0],1); // Top-left point?
061          if(p.x>=center.x && p.y>=center.y)
062              dest=atomicAdd(&smem2[1],1); // Top-right point?
063          if(p.x<center.x && p.y<center.y)
064 dest=atomicAdd(&smem2[2],1); // Bottom-left point?
065          if(p.x>=center.x && p.y<center.y)
066              dest=atomicAdd(&smem2[3],1); // Bottom-right point?
067          // Move point
068          out_points.set_point(dest, p);
069 }
070      __syncthreads();
071  }

FIGURE 13.14

Quadtree with dynamic parallelism: device functions (support code in Fig. A13.14).
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072
073  // Prepare children launch
074  __device__ void prepare_children(Quadtree_node *children, Quadtree_node &node,
075                                      const Bounding_box &bbox, int *smem){
076      int child_offset = 4*node.id(); // The offsets of the children at their level
077
078      // Set IDs
079      children[child_offset+0].set_id(4*node.id()+ 0);
080      children[child_offset+1].set_id(4*node.id()+ 4);
081      children[child_offset+2].set_id(4*nod e.id()+ 8);
082      children[child_offset+3].set_id(4*node.id()+12);
083
084      // Points of the bounding-box
085      const float2 &p_min = bbox.get_min();
086      const float2 &p_max = bbox.get_max();
087
088      // Set the bounding boxes of the children
089      children[child_offset+0].set_bounding_box(
090          p_min.x , center.y, center.x, p_max.y);    // Top-left
091      children[child_offset+1].set_bounding_box(
092          center.x, center.y, p_max.x , p_max.y);    // Top-right
093      children[child_offset+2].set_bounding_box(
094          p_min.x , p_min.y , center.x, center.y);   // Bottom-left
095      children[child_offset+3].set_bounding_box(
096          center.x, p_min.y , p_max.x , center.y);   // Bottom-right
097
098      // Set the ranges of the children.
099      children[child_offset+0].set_range(node.points_begin(),   smem[4 + 0]);
100      children[child_offset+1].set_range(smem[4 + 0], smem[4 + 1]);
101      children[child_offset+2].set_range(smem[4 + 1], smem[4 + 2]);
102 children[child_offset+3].set_range(smem[4 + 2], smem[4 + 3]);
103  }

FIGURE 13.14

(Continued)

as well as more efficient memory usage. CUDA Dynamic Parallelism also helps pro-
grammers to implement recursive algorithms, as the quadtree example shows.

Besides ensuring better work balance, dynamic parallelism offers many advan-
tages in terms of programmability. However, it is important to keep in mind that 
launching grids with a very small number of threads could lead to severe underuti-
lization of the GPU resources. A general recommendation is launching child grids 
with a large number of thread-blocks, or at least thread-blocks with hundreds of 
threads, if the number of blocks is small.

Similarly, nested parallelism, which can be seen as a form of tree processing, will 
provide a higher performance when tree nodes are thick (that is, each node deploys 
many threads), and/or when the branch degree is large (that is, each parent node has 
many children). As the nesting depth is limited in hardware, only relatively shallow 
trees can be implemented efficiently.

13.10  EXERCISES

1.	 True or False: Parent and child grids have coherent access to global memory, 
with weak consistency between child and parent.

2.	 True or False: Zero-copy system memory has no coherence and consistency 
guarantees between parent and children.
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3.	 True or False: Parent kernels can define new __constant__ variables that will 
be inherited by child kernels.

4.	 True or False: Child kernels can inherit parent’s shared and local memories, 
and coherence is guaranteed.

5.	 Six (6) blocks of 256 threads run the following parent kernel:

  �  __global__ void parent_kernel(int *output, int *input,  
int *size) {

        // Thread index
        int idx = threadIdx.x + blockDim.x*blockIdx.x;
        // Number of child blocks
        int numBlocks = size[idx] / blockDim.x;
        // Launch child
    �    child_kernel<<< numBlocks, blockDim.x >>>(output, input, 

size);
    }

How many child kernels could run concurrently?
a.	 1536
b.	 256
c.	 6
d.	 1

6.	 Choose the right statement for the Bezier example:
a.	 If N_LINES = 1024, and BLOCK_DIM = 64, the number of child 

kernel launches will be 16.
b.	 If N_LINES = 1024, the fixed-size pool should be set to 1024 (Note: 

Default size is 2048).
c.	 If N_LINES = 1024, BLOCK_DIM = 64, and per-thread streams are 

used, a total of 16 streams will be deployed.
d.	 If N_LINES = 1024, BLOCK_DIM = 64, and aggregation is used, the 

number of child kernel launches will be 16.

7.	 Consider a two-dimensional organization of 64 equidistant points that is 
classified with a quadtree. What will be the maximum depth of the quadtree 
(including the root node)?
a.	 21
b.	 4
c.	 64
d.	 16

8.	 For the same quadtree, what will be the total number of child kernel launches?
a.	 21
b.	 4
c.	 64
d.	 16
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A13.1  CODE APPENDIX

01    //Some inline vector math functions
02    __forceinline__ __device__ float2 operator+(float2 a, float2 b) {
03        float2 c;
04        c.x = a.x + b.x;    c.y = a.y + b.y;
05        return c;
06    }
07    
08    __forceinline__ __device__ float2 operator -(float2 a, float2 b) {
09        float2 c;
10        c.x = a.x - b.x;    c.y = a.y - b.y;
11        return c;
12    }
13    
14    __forceinline__ __device__ float2 operator*(float a, float2 b) {
15        float2 c;
16        c.x = a * b.x;    c.y = a * b.y;
17        return c;
18    }
19    
20    __forceinline__ __device__ float length(float2 a) {
21        return sqrtf(a.x*a.x + a.y*a.y);
22    }
23    
24    //Device function that computes the curvature of a line
25    __device__ float computeCurvature(BezierLine *bLines){
26 int bidx = blockIdx.x;
27        float curvature = length(bLines[bidx].CP[1] - 0.5f*(bLines[bidx].CP[0] 
28            + bLines[bidx].CP[2]))/length(bLines[bidx].CP[2]
29            - bLines[bidx].CP[0]);
30        return curvature;
31    } 
32    
33    void initializeBLines(BezierLine *bLines_h) {
34        //Set initial point to zero (last is last point in the previous segment)
35        float2 last = {0,0};
36 for(int i = 0; i < N_LINES; i++){
37            //Set first point of this line to last point of previous line
38 bLines_h[i].CP[0] = last; 
39 for(int j = 1; j < 3; j++) {
40                //Assign random coordinate between 0 and 1
41                bLines_h[i].CP[j].x = (float)rand()/(float)RAND_MAX; 
42       //Assign random coordinate between 0 and 1
43                bLines_h[i].CP[j].y = (float)rand()/(float)RAND_MAX; 
44            }
45            last = bLines_h[i].CP[2];   //keep the last point of this line
46            //Set number of tessellated vertices to zero
47            bLines_h[i].nVertices = 0;
48        }  
49    }

FIGURE A13.8

Support code for Bezier Curve calculation without dynamic parallelism.

http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://refhub.elsevier.com/B978-0-12-811986-0.00013-3/sbref1
http://refhub.elsevier.com/B978-0-12-811986-0.00013-3/sbref1
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01    // A structure of 2D points  
02    class Points { 
03        float *m_x; 
04        float *m_y; 
05         
06        public: 
07        // Constructor 
08        __host__ __device__ Points() : m_x(NULL), m_y(NULL) {}  
09         
10        // Constructor 
11        __host__ __device__ Points(float *x, float *y) : m_x(x), m_y(y) {}  
12         
13        // Get a point 
14        __host__ __device__ __forceinline__ float2 get_point(int idx) const {  
15            return make_float2(m_x[idx], m_y[idx]);  
16        } 
17         
18        // Set a point 
19        __host__ __device__ __forceinline__ v oid set_point(int idx, const float2 &p) { 
20            m_x[idx] = p.x; 
21            m_y[idx] = p.y; 
22        } 
23         
24        // Set the pointers 
25        __host__ __device__ __forceinline__ void set(float *x, float *y) {  
26            m_x = x; 
27            m_y = y; 
28        } 
29    }; 
30     
31    // A 2D bounding box 
32    class Bounding_box { 
33        // Extreme points of the bounding box 
34        float2 m_p_min;  
35        float2 m_p_max;  
36         
37        public: 
38        // Constructor. Create a unit box 
39        __host__ __device__ Bounding_box(){  
40            m_p_min = make_float2(0.0f, 0.0f);  
41            m_p_max = make_float2(1.0f, 1.0f);  
42        } 
43         
44        // Compute the center of the bounding-box 
45        __host __ __device__ void compute_center(float2 &center) const {  
46            center.x = 0.5f * (m_p_min.x + m_p_max.x);  
47            center.y = 0.5f * (m_p_min.y + m_p_max.y);  
48        } 
49         
50        // The points of the box 
51        __host__ __devic e__ __forceinline__ const float2 &get_max() const {  
52            return m_p_max;  
53        } 
54         
55        __host__ __device__ __forceinline__ const float2 &get_min() const {  
56            return m_p_min;  
57        } 
58         
59        // Does a box contain a point 
60        __host__ __device__ bool contains(const float2 &p) const {  
61            return p.x>=m_p_min.x && p.x <m_p_max.x && p.y>=m_p_min.y && p.y< m_p_max.y;  
62        } 
63         
64        // Define the bounding box 
65        __host__  __device__ void set(float min_x, float min_y, float max_x, float max_y){  
66            m_p_min.x = min_x;  
67            m_p_min.y = min_y;  
68            m_p_max.x = max_x;  
69            m_p_max.y = max_y;  
70        } 
71    }; 

FIGURE A13.13

Support code for quadtree with dynamic parallelism: definition of points and bounding box.
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001  // A node of a quadree
002  class Quadtree_node {
003      // The identifier of the node
004      int m_id;
005      // The bounding box of the tree
006      Bounding_box m_bounding_box;
007      // The range of points
008      int m_begin, m_end;
009  
010      public:
011      // Constructor
012      __host__ __device__ Quadtree_node() : m_id(0), m_begin(0), m_end(0) {}
013  
014      // The ID of a node at its level
015 __host__ __device__ int id() const {
016          return m_id;
017      }
018  
019      // The ID of a node at its level
020      __host__ __device__ void set_id(int new_id) {
021          m_id = new_id;
022      }
023  
024      // The bounding box
025      __host__ __device__ __forceinline__ const Bounding_box &bounding_box() const {
026          return m_bounding_box;
027      }
028  
029      // Set the bounding box
030      __host__ __device__ __forceinline__ void set_bounding_box(float min_x,
031          float min_y, float max_x, float max_y) {
032          m_bounding_box.set(min_x, min_y, max_x, max_y);
033      }
034  
035      // The number of points in the tree
036      __host__ __device__ __forceinline__ int num_points() const {
037        return m_end - m_begin;
038      }
039  
040      // The range of points in the tree
041      __host__ __device__ __forceinline__ int points_begin() const {
042          return m_begin;
043      }
044  
045      __host__ __device__ __forceinline__ int po ints_end() const {
046          return m_end;
047      }
048  
049      // Define the range for that node
050      __host__ __device__ __forceinline__ void set_range(int begin, int end) {
051          m_begin = begin;
052          m_end = end;
053      }
054  };
055  
056  // Algorithm parameters
057  struct Parameters {
058      // Choose the right set of points to use as in/out
059      int point_selector;
060      // The number of nodes at a given level (2^k for level k)
061      int num_nodes_at_this_le vel;
062      // The recursion depth
063      int depth;
064      // The max value for depth
065      const int max_depth;
066      // The minimum number of points in a node to stop recursion
067      const int min_points_per_node;
068  
069      // Constructor set to default values.
070      __host__ __device__ Parameters(int max_depth, int min_points_per_node) :
071          point_selector(0),
072          num_nodes_at_this_level(1),
073          depth(0),
074          max_depth(max_depth),
075          min_points_per_node(min_points_per_node) {}
076   

FIGURE A13.14

Support code for quadtree with dynamic parallelism: definitions and main function.
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077      // Copy constructor. Changes the values for next iteration 
078      __host__ __device__ Parameters(const Parameters &params, bool) : 
079          point_selector((params.point_selector+1) % 2), 
080          num_nodes_at_this_level(4*params.num_nodes_at_this_level), 
081          depth(params.depth+1), 
082          max_depth(params.max_depth), 
083          min_points_per_node(params.min_points_per_node) {} 
084  }; 
085   
086  // Main function 
087  void main(int argc, char **argv) { 
088   
089      // Constants to control the algorithm 
090      const int num_points = atoi(argv[0]); 
091      const int max_depth  = atoi(argv[1]); 
092      const int min_points_per_node = atoi(argv[2]); 
093   
094      // Allocate memory for points 
095      thrust::device_vector<float> x_d0(num_points); 
096      thrust::device_vector<float> x_d1(num_points); 
097      thrust::device_vector<float> y_d0(num_points); 
098      thrust::device_vector<float> y_d1(num_points); 
099   
100      // Generate random points 
101      Random_generator rnd; 
102      thrust::generate( 
103          thrust::make_zip_iterator(thrust::make_tuple(x_d0.begin(), y_d0.begin())), 
104          thrust::make_zip_iterator(thrust::make_tuple(x_d0.end(), y_d0.end())), 
105          rnd); 
106   
107      // Host structures to analyze the device ones 
108      Points points_init[2]; 
109      points_init[0].set(thrust::raw_pointer_cast(&x_d0[0]), 
110                          thrust::raw_pointer_cast(&y_d0[0])); 
111      points_init[1].set(thrust::raw_pointer_cast(&x_d1[0]), 
112                          thrust::raw_pointer_cast(&y_d1[0])); 
113   
114      // Allocate memory to store points 
115      Points *points; 
116      cudaMalloc((void **) &points, 2*sizeof(Points)); 
117      cudaMemcpy(points, points_init, 2*sizeof(Points), cudaMemcpyHostToDevice); 
118   
119      // We could use a close form... 
120      int max_nodes = 0; 
121   
122      for (int i=0, num_nodes_at_level=1 ; i<max_depth ; ++i, num_nodes_at_level*=4) 
123          max_nodes += num_nodes_at_level; 
124   
125      // Allocate memory to store the tree 
126      Quadtree_node root; 
127      root.set_range(0, num_points); 
128      Quadtree_node *nodes; 
129      cudaMalloc((void **) &nodes, max_nodes*sizeof(Quadtree_node)); 
130      cudaMemcpy(nodes, &root, sizeof(Quadtree_node), cudaMemcpyHostToDevice); 
131   
132      // We set the recursion limit for CDP to max_depth 
133      cudaDeviceSetLimit(cudaLimitDevRuntimeSyncDepth, max_depth); 
134   
135      // Build the quadtree 
136      Parameters params(max_depth, min_points_per_node); 
137      const int NUM_THREADS_PER_BLOCK = 128; 
138      const size_t smem_size = 8*sizeof(int); 
139      build_quadtree_kernel<<<1, NUM_THREADS_PER_BLOCK, smem_size>>> 
140          (nodes, points, params); 
141      cudaGetLastError(); 
142   
143      // Free memory 
144      cudaFree(nodes); 
145      cudaFree(points); 
146   
147  } 

FIGURE A13.14

(Continued)
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Application case studies teach computational thinking and practical programing 
techniques in a concrete manner. They also help demonstrate how the individual 
techniques fit into a top-to-bottom application development process. Most impor-
tantly, they help us to visualize the practical use of these techniques in solving prob-
lems. In this chapter, we start with the background and problem formulation of a 
relatively simple application that has traditionally been constrained by the limited 
capabilities of the main stream computing systems. We show that parallel execution 
not only speeds up the existing approaches, but also allows the applications experts 
to pursue an approach that has been known to provide benefit but was previously 
ignored due to their excessive computational requirements. This approach represents 
an increasingly important class of computational methods that derive statistically 
optimal estimation of unknown values from a very large amount of observational 
data. We use an example algorithm and its implementation source code from such 
an approach to illustrate how a developer can systematically determine the kernel 
parallelism structure, assign variables into different types of memories, steer around 
limitations of the hardware, validate results, and assess the impact of performance 
improvements.
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14.1  BACKGROUND
Magnetic resonance imaging (MRI) is commonly used by the medical community to 
safely and noninvasively probe the structure and function of biological tissues in all 
regions of the body. Images that are generated using MRI have made profound impact 
in both clinical and research settings. MRI consists of two phases, acquisition (scan) and 
reconstruction. During the acquisition phase, the scanner samples data in the k-space 
domain (i.e., the spatial-frequency domain or Fourier transform domain) along a pre-
defined trajectory. These samples are then transformed into the desired image during 
the reconstruction phase. Intuitively, the reconstruction phase estimates the shape and 
texture of the tissues based on the observation k-space data collected from the scanner.

The application of MRI is often limited by high noise levels, significant imaging 
artifacts, and/or long data acquisition times. In clinical settings, short scan times not 
only increase scanner throughput but also reduce patient discomfort, which tends to 
mitigate motion-related artifacts. High image resolution and fidelity are important 
because they enable early detection of pathology, leading to improved prognoses 
for patients. However, the goals of short scan time, high resolution, and high signal-
to-noise ratio (SNR) often conflict; improvements in one metric tend to come at the 
expense of one or both of the others. One needs new technological breakthroughs to 
be able to simultaneously improve on all of three dimensions. This study presents a 
case where massively parallel computing provides such a breakthrough.

The reader is referred to MRI textbooks such as Liang and Lauterbur [LL 1999] 
for the physics principles behind MRI. For this case study, we will focus on the 
computational complexity in the reconstruction phase and how the complexity is 
affected by the k-space sampling trajectory. The k-space sampling trajectory used by 
the MRI scanner can significantly affect the quality of the reconstructed image, the 
time complexity of the reconstruction algorithm, and the time required for the scan-
ner to acquire the samples. Eq. (14.1) shows a formulation that relates the k-space 
samples to the reconstructed image for a class of reconstruction methods.

	
ˆ ( ) ( ) ( )m W s ej j

i

j

jr k k k r
�

2π ⋅∑
	

(1)

In Eq. (14.1), m�( )r  is the reconstructed image, s( )k  is the measured k-space data, 
and W(k) is the weighting function that accounts for nonuniform sampling. That is, 
W(k) decreases the influence of data from k-space regions where a higher density of 
samples points are taken. For this class of reconstructions, W(k) can also serve as an 
apodization filtering function that reduces the influence of noise and reduces artifacts 
due to finite sampling.

If data are acquired at uniformly spaced Cartesian grid points in the k-space 
under ideal conditions, then the W(k) weighting function is a constant and can thus 
be factored out of the summation in Eq. (14.1). Furthermore, with uniformly spaced 
Cartesian grid samples, the exponential terms in (1) are uniformly spaced in the 
k-space. As a result, the reconstruction of m�( )r  becomes an inverse Fast Fourier 
Transform (iFFT) on s( )k , an extremely efficient computation method. A collection 
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of data measured at such uniformly spaced Cartesian grid points is referred to as a 
Cartesian scan trajectory. Fig. 14.1A depicts a Cartesian scan trajectory. In practice, 
Cartesian scan trajectories allow straightforward implementation on scanners and are 
widely used in clinical settings today.

Although the iFFT reconstruction of Cartesian scan data is computationally effi-
cient, non-Cartesian scan trajectories often have advantage in reduced sensitivity to 
patient motion, better ability to provide self-calibrating field inhomogeneity informa-
tion, and reduced requirements on scanner hardware performance. As a result, non-
Cartesian scan trajectories like spirals (shown in Fig. 14.1C), radial lines (also known 
as projection imaging) and rosettes have been proposed to reduce motion-related arti-
facts and address scanner hardware performance limitations. These improvements have 
recently allowed the reconstructed image pixel values to be used for measuring subtle 
phenomenon such as tissue chemical anomalies before they become anatomical pathol-
ogy. Fig. 14.2 shows such an MRI reconstruction-based measurement that generates 
a map of sodium, a heavily regulated substance in normal human tissues. The infor-
mation can be used to track to tissue health in stroke and cancer treatment processes. 
Because sodium is much less abundant than water molecules in human tissues, reliable 
measure of sodium levels requires a higher SNR through higher number of samples and 
thus needs to mitigate the extra scan time with non-Cartesian scan trajectories.

Image reconstruction from non-Cartesian trajectory data presents both challenges 
and opportunities. The main challenge arises from the fact that the exponential terms 
are no longer uniformly spaced; the summation does not have the form of a Fast Fourier 
Transform (FFT) anymore. Therefore, one can no longer perform reconstruction by 
directly applying an iFFT to the k-space samples. In a commonly used approach called 
gridding, the samples are first interpolated onto a uniform Cartesian grid and then 
reconstructed using the FFT (see Fig. 14.1B). For example, a convolution approach to 
gridding takes a k-space data point, convolves it with a gridding convolution mask, and 

Cartesian scan data Spiral scan data

Gridding*

FFT LS

kx

ky

kx

kykx

ky

(A) (B) (C)

FIGURE 14.1

Scanner k-space trajectories and their associated reconstruction strategies: (A) Cartesian 
trajectory with FFT reconstruction, (B) Spiral (or non-Cartesian trajectory in general) followed 
by gridding to enable FFT reconstruction, (C) spiral (non-Cartesian) trajectory with linear 
solver based reconstruction. Note: *Based on Fig 1 of Lustig et al. Fast Fourier Transform for 
Iterative MR Image Reconstruction, IEEE Int’l Symp. on Biomedical Imaging, 2004.
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accumulates the results on a Cartesian grid. As we have seen in Chapter 7, Parallel pat-
terns: convolution, convolution is quite computationally intensive and is an important 
pattern for massively parallel computing. Accelerating convolution gridding computa-
tion with parallel computing facilitates the application of the current FFT approach 
to non-Cartesian trajectory data. Since we will be examining two convolution-style 
applications in the next two chapters, we will not cover the approach here.

In this chapter, we will cover an iterative, statistically optimal image reconstruc-
tion method which can accurately model imaging physics and bound the noise error 
in the resulting image pixel values. Such statistically optimal methods are gaining 
importance in the wake of big data analytics. However, such iterative reconstruction 
methods have been impractical for large-scale 3D problems due to their excessive 
computational requirements compared to gridding. Recently, these reconstructions 
have become viable in clinical settings when accelerated on graphics processing 
unit (GPUs). In particular, we will show that an iterative reconstruction algorithm 
that used to take hours using a high-end sequential central processing unit (CPUs) 
to reconstruct an image of moderate resolution now takes only minutes using both 
CPUs and GPUs, a delay acceptable in clinical settings.

14.2  ITERATIVE RECONSTRUCTION
Haldar and Liang proposed a linear-solver-based iterative reconstruction algorithm 
for non-Cartesian scan data, as shown in Fig. 14.1C. The algorithm allows for explicit 
modeling and compensation for the physics of the scanner data acquisition process, 
and can thus reduce the artifacts in the reconstructed image. It is, however, compu-
tationally expensive. The reconstruction time on high-end sequential CPUs has been 

FIGURE 14.2

Non-Cartesian k-space sample trajectory and accurate linear-solver-based reconstruction 
enable new capabilities with exciting medical applications. The improved SNR enables 
reliable collection of in-vivo concentration data on chemical substance such as sodium 
in human tissues. The variation or shifting of sodium concentration gives early signs 
of disease development or tissue death. For example, the sodium map of a human 
brain shown in this figure can be used to give early indication of brain tumor tissue 
responsiveness to chemotherapy protocols, enabling individualized medicine.
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hours for moderate-resolution images and thus impractical in clinical use. We use 
this as an example of innovative methods that have required too much computation 
time to be considered practical. We will show that massive parallelism can reduce the 
reconstruction time to the order of a minute so that one can deploy the new imaging 
capabilities such as sodium imaging in clinical settings.

Fig. 14.3 shows a solution of the quasi-Bayesian estimation problem formula-
tion of the iterative linear-solver-based reconstruction approach, where ρ is a vector 
containing voxel values for the reconstructed image, F is a matrix that models the 
physics of imaging process, D is a vector of data samples from the scanner, and W 
is a matrix that can incorporate prior information such as anatomical constraints. In 
clinical settings, the anatomical constraints represented in W are derived from one 
or more high resolution, high-SNR water molecule scans of the patient. These water 
molecule scans reveal features such as the location of anatomical structures. The 
matrix W is derived from these reference images. The problem is to solve for ρ given 
all the other matrices and vectors.

On the surface, the computational solution to the problem formulation in Fig. 
14.3 should be very straightforward. It involves matrix–matrix multiplications and 
addition (FHF+ λWHW), matrix–vector multiplication (FHD), matrix inversion 
(FHF+ λWHW)−1, and finally matrix–matrix multiplication ((FHF+ λWHW)−1*FHD). 
However, the sizes of the matrices make this straightforward approach extremely 
time consuming. FH and F are 3D matrices whose dimensions are determined by 
the resolution of the reconstructed image ρ. Even in a modest resolution 1283-voxel 
reconstruction, there are 1283 columns in F with N elements in each column where 
N is the number of k-space samples used. Obviously, F is extremely large. Such mas-
sive dimensions are commonly encountered in big-data analytics, when one tries to 
use iterative-solver methods to estimate the major contributing factors of a massive 
amount of noisy observational data.

The sizes of the matrices involved are so large that the matrix operations involved 
in a direct solution of the equation in Fig. 14.3 using methods such as Gaussian 

Compute FHF + λWHW

Acquire data

Compute FHD

Find ρ

(FHF +λWHW ) ρ = FHD

FIGURE 14.3

An iterative linear-solver-based approach to reconstructing non-Cartesian k-space sample 
data.
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elimination discussed in Chapter 6, Numerical considerations, are practically intrac-
table. An iterative method for matrix inversion, such as the conjugate gradient (CG) 
algorithm, is therefore preferred. The CG algorithm reconstructs the image by itera-
tively solving the equation in Fig. 14.3 for ρ. During each iteration, the CG algorithm 
updates the current image estimate ρ to improve the value of the quasi-Bayesian cost 
function. The computational efficiency of the CG technique is largely determined by 
the efficiency of matrix–vector multiplication operations involving FHF+ λWHW and 
ρ, as these operations are required during each iteration of the CG algorithm.

Fortunately, matrix W often has a sparse structure that permits efficient multipli-
cation by WHW, and matrix FHF is Toeplitz that enables efficient matrix–vector mul-
tiplication via the FFT. Stone et al. [SHT 2008] present a GPU accelerated method 
for calculating Q, a data structure that allows us to quickly calculate matrix–vector 
multiplication involving FHF without actually calculating FHF itself. The calculation 
of Q can take days on a high-end CPU core. It only needs to be done once for a given 
trajectory and can be used for multiple scans.

The matrix–vector multiply to calculate FHD takes about one order of magnitude 
less time than Q but can still take about three hours for a 1283-voxel reconstruction 
on a high-end sequential CPU. Recall that D is the vector of data samples from the 
scanner. Thus, FHD needs to be computed for every image acquisition; it is desirable 
to reduce the computation time of FHD to minutes.1 We will show the details of this 
process. As it turns out, the core computational structure of Q is identical to that of 
FHD; Q just has much larger data structure dimensions. As a result, the same meth-
odology can be used to accelerate the computation of both.

The “find ρ” step in Fig. 14.3 performs the actual CG based on FHD. As we 
explained earlier, precalculation of Q makes this step much less computationally 
intensive than FHD, accounting for only less than 1% of the execution of the recon-
struction of each image on a sequential CPU. As a result, we will leave the CG solver 
out of the parallelization scope and focus on FHD in this chapter. We will however, 
revisit its status at the end of the chapter.

14.3  COMPUTING FHD
Fig. 14.4 shows a sequential C implementation of the computations for the core step 
of computing a data structure for matrix–vector multiplications between FH*F and 
ρ (referred to as Q computation in Fig. 14.4A) during the iterative CG solution pro-
cess without explicitly calculating FHF and that for computing FHD (Fig. 14.4B). It 
should be clear from a quick glance at Fig. 14.4A and Fig. 14.4B that the core step 
of Q and FHD have identical loop structure. Both computations start with an outer 
loop, which encloses an inner loop. The only differences are the particular calcula-
tion done in each loop body and the fact that the core step of Q involves a much larger 
m, since it implements a matrix–matrix multiplication as opposed to a matrix–vector 

1 Note that the FHD computation can be approximated with gridding and can run in a few seconds, with 
perhaps reduced quality of the final reconstructed image.
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multiplication; thus it incurs a much longer execution time. Thus it suffices to discuss 
one of them from the parallelization perspective. We will focus on FHD, since this is 
the one that will need to be run for each data acquisition.

A quick glance at Fig. 14.4B shows that the C implementation of FHD is an excel-
lent candidate for acceleration because it exhibits substantial data parallelism. The 
algorithm first computes the real and imaginary components of Mu (rMu and iMu) 
at each sample point in the k-space, it then computes the real and imaginary com-
ponents of FHD at each voxel in the image space (M is the total number of k-space 
samples and N is the total number of voxels in the reconstructed image). The value 
of FHD at any voxel depends on the values of all k-space sample points. However, no 
voxel elements of FHD depend on any other elements of FHD. Therefore, all elements 
of FHD can be computed in parallel. Specifically, all iterations of the outer loop can 
be done in parallel and all iterations of the inner loop can be done in parallel. The 
calculations of the inner loop, however, have a dependence on the calculation done 
by the preceding statements in the same iteration of the outer loop.

Despite the algorithm’s abundant inherent parallelism, potential performance bot-
tlenecks are evident. First, in the loop that computes the elements of FHD, the ratio of 
floating-point operations to memory accesses is at best 3:1 and at worst 1:1. The best 
case assumes that the sin and cos trigonometry operations are computed using five-
element Taylor series that require 13 and 12 floating-point operations, respectively. 
The worst case assumes that each trigonometric operation is computed as a single 
operation in hardware. As we have seen in Chapter 5, Performance considerations, a 

for (m = 0; m < M; m++) {

  phiMag[m] = rPhi[m]*rPhi[m] +
              iPhi[m]*iPhi[m];

  for (n = 0; n < N; n++) {
    expQ = 2*PI*(kx[m]*x[n] +
                 ky[m]*y[n] +
                 kz[m]*z[n]);

    rQ[n] +=phiMag[m]*cos(expQ);
    iQ[n] +=phiMag[m]*sin(expQ);
  }
}

for (m = 0; m < M; m++) {

  rMu[m] = rPhi[m]*rD[m] +
           iPhi[m]*iD[m];
  iMu[m] = rPhi[m]*iD[m] –
           iPhi[m]*rD[m];

  for (n = 0; n < N; n++) {
    expFhD = 2*PI*(kx[m]*x[n] +
                   ky[m]*y[n] +
                   kz[m]*z[n]);

    cArg = cos(expFhD);
    sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg –
                iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg +
                rMu[m]*sArg;
  }
}

(A) (B)

FIGURE 14.4

Computation of Q and FHD. (A) Q computation, (B) FHD computation.
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floating-point to memory access ratio of 16:1 or more is needed for the kernel to be 
not limited by memory bandwidth. Thus, the memory accesses will clearly limit the 
performance of the kernel unless the ratio is drastically increased.

Second, the ratio of floating-point arithmetic to floating-point trigonometry func-
tions is only 13:2. Thus, GPU-based implementation must tolerate or avoid stalls due 
to long-latency and low-throughput of sin and cos operations. Without a good way 
to reduce the cost of trigonometry functions, the performance will likely be domi-
nated by the time spent in these functions.

We are now ready to take the steps in converting FHD from sequential C code to 
a CUDA kernel.

STEP 1: DETERMINE THE KERNEL PARALLELISM STRUCTURE
The conversion of a loop into a CUDA kernel is conceptually straightforward. Since 
all iterations of the outer loop of Fig. 14.4B can be executed in parallel, we can simply 
convert the outer loop into a CUDA kernel by mapping its iterations to CUDA threads. 
Fig. 14.5 shows a kernel from such a straightforward conversion. Each thread imple-
ments an iteration of the original outer loop. That is, we use each thread to calculate 
the contribution of one k-space sample to all FHD elements. The original outer loop 
has M iterations, and M can be in the millions. We obviously need to have a large 
number of thread blocks to generate enough threads to implement all these iterations.

To make performance tuning easy, we declare a constant FHD_THREADS_PER_
BLOCK that defines the number of threads in each thread block when we invoke the 
cmpFHD kernel. Thus, we will use M/FHD_THREADS_PER_BLOCK for the grid size (in 
terms of number of blocks) and FHD_THREADS_PER_BLOCK for block size (in terms of 
number of threads) for kernel invocation. Within the kernel, each thread calculates 

__global__ void cmpFhD(float* rPhi, iPhi, rD, iD,
    kx, ky, kz, x, y, z, rMu, iMu, rFhD, iFhD, int N) {

  int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
  iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

  for (int n = 0; n < N; n++) {
    floatexpFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

    floatcArg = cos(expFhD);  floatsArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
  }
}

FIGURE 14.5

First version of the FHD kernel. The kernel will not execute correctly due to conflicts 
between threads in writing into rFhD and iFhD arrays.
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the original iteration of the outer loop that it is assigned to cover using the familiar 
formula: blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x. For example, 
assume that there are 65,536 k-space samples and we decided to use 512 threads 
per block. The grid size at kernel innovation would be 65,536/512= 128 blocks. The 
block size would be 512. The calculation of m for each thread would be equivalent to 
blockIdx.x*512 + threadIdx.

While the kernel of Fig. 14.5 exploits ample parallelism, it suffers from a major 
problem: all threads write into all rFhD and iFhD voxel elements. This means that the 
kernel must use atomic operations in the global memory in the inner loop in order 
to keep threads from trashing each other’s contributions to the voxel value. As we 
have seen in Chapter 9, Parallel patterns: parallel histogram computation, heavy use 
of atomic operation on global memory data can seriously reduce the performance of 
kernel. Furthermore, the size of the rFhD and iFhD arrays make privatization infea-
sible. We need to explore other options.

The other option is to use each thread to calculate one FhD value from all k-space 
samples. In order to do so, we need to first swap the inner loop and the outer loop 
so that each of the new outer loop iterations processes one FhD element. That is, 
each of the new outer loop iterations will execute the new inner loop that accumu-
lates the contribution of all k-space samples to the FhD element handled by the outer 
loop iteration. This transformation of the loop structure is called loop interchange. 
It requires a perfectly nested loop, meaning that there is no statement between the 
outer for-loop statement and the inner for-loop statement. This is however, not true 
for the FhD code in Fig. 14.4B. We need to find a way to move the calculation of rMu 
and iMu elements out of the way.

From a quick inspection of Fig. 14.6A which is a replicate of Fig. 14.4B, we see 
that the FHD calculation can be split into two separate loops, as shown in Fig. 14.6B 
using a technique called loop fission or loop splitting. This transformation takes the 
body of a loop and splits it into two loops. In the case of FHD, the outer loop consists 
of two parts: the statements before the inner loop and the inner loop itself. As shown 
in Fig. 14.6B, we can perform loop fission on the outer loop by placing the state-
ments before the inner loop into a loop and the inner loop into a second loop. The 
transformation changes the relative execution order of the two parts of the original 
outer loop. In the original outer loop, both parts of the first iteration execute before 
the second iteration. After fission, the first part of all iterations will execute; they are 
then followed by the second part of all iterations. The reader should be able to verify 
that this change of execution order does not affect the execution results for FHD. This 
is because the execution of the first part of each iteration does not depend on the 
result of the second part of any preceding iterations of the original outer loop. Loop 
fission is a transformation often done by advanced compilers that are capable of ana-
lyzing the (lack of) dependence between statements across loop iterations.

With loop fission, the FHD computation is now done in two steps. The first step 
is a single-level loop that calculates the rMu and iMu elements for use in the sec-
ond loop. The second step corresponds to the loop that calculates the FHD elements 
based on the rMu and iMu elements calculated in the first step. Each step can now be 
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converted into a CUDA kernel. The two CUDA kernels will execute sequentially 
with respect to each other. Since the second loop needs to use the results from the 
first loop, separating these two loops into two kernels that execute in sequence does 
not sacrifice any parallelism.

The cmpMu() kernel in Fig. 14.7 implements the first loop. The conversion of 
the first loop from sequential C code to a CUDA kernel is straightforward: each 
thread implements one iteration of the original C code. Since the M value can be very 
big, reflecting the large number of k-space samples, such a mapping can result in a 
large number of threads. Since each thread block can have only 512 threads in each 

for (m = 0; m < M; m++) {

  rMu[m] = rPhi[m]*rD[m] +
           iPhi[m]*iD[m];
  iMu[m] = rPhi[m]*iD[m] –
           iPhi[m]*rD[m];

  for (n = 0; n < N; n++) {
    expFhD = 2*PI*(kx[m]*x[n] +
                   ky[m]*y[n] +
                   kz[m]*z[n]);

    cArg = cos(expFhD);
    sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg –
                iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg +
                rMu[m]*sArg;
  }
} 

for (m = 0; m < M; m++) {

  rMu[m] = rPhi[m]*rD[m] +
           iPhi[m]*iD[m];
  iMu[m] = rPhi[m]*iD[m] –
           iPhi[m]*rD[m];
}
for (m = 0; m < M; m++) {
  for (n = 0; n < N; n++) {
    expFhD = 2*PI*(kx[m]*x[n] +
                   ky[m]*y[n] +
                   kz[m]*z[n]);

    cArg = cos(expFhD);
    sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg –
                iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg +
                rMu[m]*sArg;
  }
} 

(A) (B)

FIGURE 14.6

Loop fission on the FHD computation. (A) FHD computation, (B) after loop fission.

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)
{ 
  int m = blockIdx.x*MU_THREAEDS_PER_BLOCK + threadIdx.x;

  rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
  iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
}

FIGURE 14.7

cmpMu kernel.
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block, we will need to use multiple blocks to allow the large number of threads. 
This can be accomplished by having a number of threads in each block, specified 
by MU_THREADS_PER_BLOCK in Fig. 14.4C, and by employing M/MU_THREADS_PER_
BLOCK blocks needed to cover all M iterations of the original loop. For example, if 
there are 65,536 k-space samples, the kernel could be invoked with a configuration 
of 512 threads per block and 65,536/512 = 128 blocks. This is done by defining 
MU_THREADS_PER_BLOCK as 512 and using MU_THREADS_PER_BLOCK as block size and 
M/MU_THREADS_PER_BLOCK as grid size during kernel innovation.

Within the kernel, each thread can identify the iteration assigned to it using its 
blockIdx and threadIdx values. Since the threading structure is one-dimensional, 
only blockIdx.x and threadIdx.x need to be used. Because each block covers a 
section of the original iterations, the iteration covered by a thread is blockIdx.x*MU_
THREADS_PER_BLOCK + threadIdx. For example, assume that MU_THREADS_PER_
BLOCK=512. The thread with blockIdx.x=0 and threadIdx.x=37 covers the 37th 
iteration of the original loop, whereas the thread with blockIdx.x=5 and threadIdx.
x=2 covers the 2562nd (5*512 + 2) iteration of the original loop. Using this iteration 
number to access the Mu, Phi, and D arrays ensures that the arrays are covered by 
the threads in the same way they were covered by the iterations of the original loop. 
Because every thread writes into its own Mu element, there is no potential conflict 
between any of these threads.

Determining the structure of the second kernel requires a little more work. An 
inspection of the second loop in Fig. 14.6B shows that there are at least three options 
in designing the second kernel. In the first option, each thread corresponds to one 
iteration of the inner loop. This option creates the most number of threads and thus 
exploits the largest amount of parallelism. However, the number of threads would be 
N*M, with both N in the range of millions and M in the range of hundred thousands. 
Their product would result in too many threads in the grid.

A second option is to use each thread to implement an iteration of the outer 
loop. This option employs fewer threads than the first option. Instead of generating 
N*M threads, this option generates M threads. Since M corresponds to the number of 
k-space samples and a large number of samples, on the order of a hundred thousand, 
are typically used to calculate FHD, this option still exploits a large amount of paral-
lelism. However, this kernel suffers the same problem as the kernel in Fig. 14.5. That 
is, each thread will write into all rFhD and iFhD elements, thus creating an extremely 
large number of conflicts between threads. As in the case of Fig. 14.5, the code in 
Fig. 14.8 requires atomic operations that will significantly slow down the execution. 
Thus, this option does not work well.

A third option is to use each thread to compute one pair of rFhD and iFhD ele-
ments. This option requires us to interchange the inner and outer loops and then 
use each thread to implement an iteration of the new outer loop. The transforma-
tion is shown in Fig. 14.9. Loop interchange is necessary because the loop being 
implemented by the CUDA threads must be the outer loop. Loop interchange makes 
each of the new outer loop iteration to process a pair of rFhD and iFhD elements. 
Loop interchange is permissible here because all iterations of both levels of loops are 
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independent of each other. They can be executed in any order relative to one another. 
Loop interchange, which changes the order of the iterations, is allowed when these 
iterations can be executed in any order. This option generates N threads. Since N 
corresponds to the number of voxels in the reconstructed image, the N value can be 
very large for higher-resolution images. For a 1283 image, there are 1283=2,097,152 
threads, resulting in a large amount of parallelism. For higher resolutions, such as 
5123, we may need to invoke multiple kernels, each kernel generates the value of a 
subset of the voxels. Note these threads now all accumulate into their own rFhD and 

__global__ void cmpFhD(float* rPhi, iPhi, phimag,
 kx, ky, kz, x, y, z, rMu, imu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (int n = 0; n < N; n++) {
float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n)];

float CArg = cos(expFhD);
float sArg = sin(expFhD);

atomicAdd(&rFhD[n], rMu[m]*cArg - imu[m]*sArg);
atomicAdd(&rFhD[n], iMu[m]*cArg + imu[m]*sArg);

}
}

FIGURE 14.8

Second option of the FHD kernel.

for (m = 0; m < M; m++) {
  for (n = 0; n < N; n++) {
    expFhD = 2*PI*(kx[m]*x[n] +
                   ky[m]*y[n] +
                   kz[m]*z[n]);

    cArg = cos(expFhD);
    sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg –
                iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg +
                rMu[m]*sArg;
  }
}  

for (n = 0; n < N; n++) {
  for (m = 0; m < M; m++) {
    expFhD = 2*PI*(kx[m]*x[n] +
                   ky[m]*y[n] +
                   kz[m]*z[n]);

    cArg = cos(expFhD);
    sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg –
                iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg +
                rMu[m]*sArg;
  }
}  

(A) (B)

FIGURE 14.9

Loop interchange of the FHD computation. (A) Before loop interchange, (B) after loop 
interchange.
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iFhD elements since every thread has a unique n value. There is no conflict between 
threads. These threads can run totally in parallel. This makes the third option the best 
choice among the three options.

The kernel derived from the interchanged loops is shown in Fig. 14.10. The threads 
are organized as a two-level structure. The outer loop has been stripped away; each 
thread covers an iteration of the outer (n) loop, where n is equal to blockIdx.x*FHD_
THREADS_PER_BLOCK + threadIdx.x. Once this iteration (n) value is identified, the 
thread executes the inner loop based on that n value. This kernel can be invoked with 
a number of threads in each block, specified by a global constant FHD_THREADS_PER_
BLOCK. Assuming that N is the variable that stores the number of voxels in the recon-
structed image, N/FHD_THREADS_PER_BLOCK blocks cover all N iterations of the original 
loop. For example, if there are 65,536 k-space samples, the kernel could be invoked 
with a configuration of 512 threads per block and 65,536/512 = 128 blocks. This is done 
by assigning 512 to FHD_THREADS_PER_BLOCK and using FHD_THREADS_PER_BLOCK as 
block size and N/FHD_THREADS_PER_BLOCK as grid size during kernel innovation.

STEP 2: GETTING AROUND THE MEMORY BANDWIDTH LIMITATION
The simple cmpFhD kernel in Fig. 14.10 will result in limited speedup due to mem-
ory bandwidth limitations. A quick analysis shows that the execution is limited by 
the low compute to memory access ratio of each thread. In the original loop, each 
iteration performs at least 14 memory accesses: kx[m], ky[m], kz[m], x[n], y[n], 
z[n], rMu[m] twice, iMu[m] twice, rFhD[n] read and write, and iFhD[n] read and 
write. Meanwhile, about 13 floating-point multiply, add, or trigonometry opera-
tions are performed in each iteration. Therefore, the compute to memory access 
ratio is approximately 1, which is too low according to our analysis in Chapter 5, 
Performance considerations.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
  kx, ky, kz, x, y, z, rMu, iMu, int M) {

  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  for (int m = 0; m < M; m++) {
    float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

    float cArg = cos(expFhD);  
    float sArg = sin(expFhD);

    rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
  }
}

FIGURE 14.10

Third option of the FHD kernel.
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We can immediately improve the compute to memory access ratio by assigning 
some of the array elements to automatic variables. As we discussed in Chapter  5, 
Performance considerations, the automatic variables will reside in registers, thus con-
verting reads and writes to the global memory into reads and writes to on-chip regis-
ters. A quick review of the kernel in Fig. 14.10 shows that for each thread, the same 
x[n], y[n], and z[n] elements are used across all iterations of the for loop. This means 
that we can load these elements into automatic variables before the execution enters the 
loop. The kernel can then use the automatic variables inside the loop, thus converting 
global memory accesses to register accesses. Furthermore, the loop repeatedly reads 
from and writes into rFhD[n] and iFhD[n]. We can have the iterations read from and 
write into two automatic variables and only write the contents of these automatic vari-
ables into rFhD[n] and iFhD[n] after the execution exits the loop. The resulting code 
is shown in Fig. 14.11. By increasing the number of registers used by five for each 
thread, we have reduced the memory access done in each iteration from 14 to 7. Thus, 
we have increased the compute to memory access ratio from 13:14 to 13:7. This is a 
good improvement and a good use of the precious register resource.

Recall that the register usage can limit the occupancy, number of blocks that can 
run in an streaming multiprocessor (SM). By increasing the register usage by 5 in the 
kernel code, we increase the register usage of each thread block by 5*FHD_THREADS_
PER_BLOCK. Assuming that we have 128 threads per block, we just increased the 
block register usage by 640. Since each SM can accommodate a combined regis-
ter usage of 65,536 registers among all blocks assigned to it (in SM Version 3.5 or 
higher), we need be careful, as any further increase of register usage can begin to 
limit the number of blocks that can be assigned to an SM. Fortunately, the register 
usage is not a limiting factor to parallelism for this kernel.

We want to further improve the compute to memory access ratio to something 
closer to 10 by eliminating more global memory accesses in the cmpFhD kernel. The 
next candidates to consider are the k-space samples kx[m], ky[m], and kz[m]. These 
array elements are accessed differently than the x[n], y[n], and z[n] elements: dif-
ferent elements of kx, ky, and kz are accessed in each iteration of the loop in Fig. 
14.11. This means that we cannot load a k-space element into a register and expect 
to access that element off a register through all the iterations. So, registers will not 
help here. However, we should notice that the k-space elements are not modified by 
the kernel. This means that we might be able to place the k-space elements into the 
constant memory. Perhaps the cache for the constant memory can eliminate most of 
the memory accesses.

An analysis of the loop in Fig. 14.11 reveals that the k-space elements are indeed 
excellent candidates for constant memory. The index used for accessing kx, ky, and 
kz is m. We know that m is independent of threadIdx, which implies that all threads 
in a warp will be accessing the same element of kx, ky, and kz. This is an ideal access 
pattern for cached constant memory: every time an element is brought into the cache, 
it will be used at least by all 32 threads in a warp for a current generation device. This 
means that for every 32 accesses to the constant memory, at least 31 of them will be 
served by the cache. This allows the cache to effectively eliminate 96% or more of 
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the accesses to the global memory. Better yet, each time when a constant is accessed 
from the cache, it can be broadcast to all the threads in a warp. This makes constant 
memory almost as efficient as registers for accessing k-space elements.2

There is, however, a technical issue involved in placing the k-space elements into 
the constant memory. Recall that constant memory has a capacity of 64 kB. However, 
the size of the k-space samples can be much larger, in the order of hundreds of thou-
sands or even millions. A typical way of working around the limitation of constant 
memory capacity is to breakdown a large data set into chunks or 64 kB or smaller. 
The developer must reorganize the kernel so that the kernel will be invoked multiple 
times, with each invocation of the kernel consuming only a chunk of the large data 
set. This turns out to be quite easy for the cmpFhD kernel.

A careful examination of the loop in Fig. 14.11 reveals that all threads will 
sequentially march through the k-space arrays. That is, all threads in the grid access 
the same k-space element during each iteration. For large data sets, the loop in the 
kernel simply iterates more times. This means that we can divide up the loop into 
sections, with each section processing a chunk of the k-space elements that fit into 
the 64 kB capacity of the constant memory.3 The host code now invokes the kernel 

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
   kx, ky, kz, x, y, z, rMu, iMu, int M) {

  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

  for (int m = 0; m < M; m++) {
    float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

    float cArg = cos(expFhD);  
    float sArg = sin(expFhD);

    rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
  }
  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 14.11

Using registers to reduce memory accesses in the FHD kernel.

2 The reason why a constant memory access is not exactly as efficient as a register access is that a 
memory load instruction is still needed for access the constant memory.
3 Note not all accesses to read-only data are as favorable for constant memory as what we have here. In 
Chapter 12, Parallel patterns: graph search, we present a case where threads in different blocks access 
different elements in the same iteration. This more diverged access pattern makes it much harder to fit 
enough of the data into the constant memory for a kernel launch.
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multiple times. Each time the host invokes the kernel, it places a new chunk into the 
constant memory before calling the kernel function. This is illustrated in Fig. 14.12. 
(For more recent devices and CUDA versions, a “const__restrict__” declaration 
of kernel parameters makes the corresponding input data available in the “read-only 
data” cache, which is a simpler way of getting the same effect as using constant 
memory.)

In Fig. 14.12, the cmpFhD kernel is called from a loop. The code assumes that kx, 
ky, and kz arrays are in the host memory. The dimension of kx, ky, and kz is given 
by M. At each iteration, the host code calls the cudaMemcpyToSymbol() function to 
transfer a chunk of the k-space data into the device constant memory. The kernel 
is then invoked to process the chunk. Note that when M is not a perfect multiple of 
CHUNK_SIZE, the host code will need to have an additional round of cudaMemcpyTo­
Symbol() and one more kernel invocation to finish the remaining k-space data.

Fig. 14.13 shows a revised kernel that accesses the k-space data from constant 
memory. Note that pointers to kx, ky, and kz are no longer in the parameter list of 
the kernel function. The kx_c, ky_c, and kz_c arrays are accessed as global variables 
declared under __constant__ keyword as shown in Fig. 14.12. By accessing these 
elements from the constant cache, the kernel now has effectively only four global 
memory accesses to the rMu and iMu arrays. The compiler will typically recognize 
that the four array accesses are made to only two locations. It will only perform 
two global accesses, one to rMu[m] and one to iMu[m]. The values will be stored in 
temporary register variables for use in the other two. This makes the final number of 
memory accesses reduced to two. The compute to memory access ratio is up to 13:2. 

__constant__ float  kx_c[CHUNK_SIZE],
    ky_c[CHUNK_SIZE],
                    kz_c[CHUNK_SIZE];
…
void main() {

  for (int i = 0; i < M/CHUNK_SIZE; i++);
    cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,
      cudaMemCpyHostToDevice); 
    cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,
      cudaMemCpyHostToDevice);
    cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,
      cudaMemCpyHostToDevice);
    …
    cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>
    (rPhi, iPhi, phiMag, x, y, z, rMu, iMu, CHUNK_SIZE);
  }
  /* Need to call kernel one more time if M is not */
  /* perfect multiple of CHUNK SIZE */
}

FIGURE 14.12

Chunking k-space data to fit into constant memory.
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This is still not quite the desired 10:1 ratio but is sufficiently high that the memory 
bandwidth limitation is no longer the only factor that limits performance. As we will 
see, we can perform a few other optimizations that make computation more efficient 
and further improve performance.

If we ran the code in Figs. 14.12 and 14.13, we would have found out that the 
performance enhancement was not as high as we expected for some devices. As 
it turns out, the code shown in these figures does not result in as much memory 
bandwidth reduction as we expected. The reason is that the constant cache does not 
perform very well for the code. This has to do with the design of the constant cache 
and the memory layout of the k-space data. As shown in Fig. 14.14A, each constant 
cache entry is designed to store multiple consecutive words. This design reduces the 
cost of constant cache hardware. When an element is brought into the cache, several 
elements around it are also brought into the cache. This is illustrated in shaded sec-
tions surrounding the kx[i], ky[i], and kz[i], which is shown as dark boxes in Fig. 
14.14. Three cache lines in the constant cache are needed to support the efficient 
execution of each iteration of a warp.

In a typical execution, we will have a fairly large number of warps that are con-
currently executing on an SM. Since different warps can be at very different iter-
ations, they may require many entries altogether. For example, if we define each 
thread block to have 512 threads and expect to assign three blocks to execute concur-
rently in each SM, we will have (512/32)*3 = 48 warps executing concurrently in 
an SM. If each of them requires a minimal of three cache lines in the constant cache 
to sustain efficient execution, in the worst case, we need a total of 48*3 = 144 cache 

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
  x, y, z, rMu, iMu, int M) {

  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

  for (int m = 0; m < M; m++) {
    float expFhD =           
   2*PI*(kx_c[m]*xn_r+ky_c[m]*yn_r+kz_c[m]*zn_r);

    float cArg = cos(expFhD);  
    float sArg = sin(expFhD);

    rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
  }
  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 14.13

Revised FHD kernel to use constant memory.
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lines. Even if we assume that on average, three warps will be executing at the same 
iteration and thus can share cache lines, we still need 48 cache lines. This is referred 
to as the working set of all the active warps.

Due to cost constraints, the constant caches of some devices have a small num-
ber of cache lines, say 32. When there are not enough cache lines to accommodate 
the entire working set, the data being accessed by different warps begin to compete 
with each other for the cache lines. By the time a warp moves to its next iteration, 
the next elements to be accessed have already been purged to make room for the ele-
ments accessed by other warps. As it turns out, the constant cache capacity in some 
devices indeed has insufficient number of entries to accommodate the entries for all 
the warps active in an SM. As a result, the constant cache fails to eliminate many of 
the global memory accesses.

The problem of inefficient use of cache entries has been well studied in the 
literature and can be solved by adjusting the memory layout of the k-space data. 
The solution is illustrated in Fig. 14.14B and the code based on this solution in Fig. 
14.15. Rather than having the x, y, and z components of the k-space data stored 
in three separate arrays, the solution stores these components in an array whose 
elements comprise a struct. In the literature, this style of declaration is often 
referred to as array of structs. The declaration of the array is shown on top of Fig. 
14.15. By storing the x, y, and z components in the three fields of an array element, 
the developer forces these components to be stored in consecutive locations of the 
constant memory. Therefore, all three components used by an iteration of a warp 
can now fit into one cache entry, reducing the number of entries needed to support 
the execution of all the active warps. Note that since we have only one array to 
hold all k-space data, we can just use one cudaMemcpy to copy the entire chunk to 
the device constant memory. Assuming each k-space sample is a single precision 
floating-point number, the size of the transfer is adjusted from 4*CHUNK_SIZE to 
12*CHUNK_SIZE to reflect the transfer of all three components in one cudaMemcpy­
ToSymbol call.

Cache line

kx[i]
ky[i]
kz[i]

kx
ky
kz

(A)

(B)

kx ky kzkx[i] ky[i] kz[i]

FIGURE 14.14

Effect of k-space data layout on constant cache efficiency. (A) k-space data stored in 
separate arrays, (B) k-space data stored in an array whose elements are structs.
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With the new data structure layout, we also need to revise the kernel so that the 
access is done according to the new layout. The new kernel is shown in Fig. 14.16. 
Note that kx[m] has become k[m].x, ky[m] has become k[m].y, and so on. This 
small change to the code can result in significant enhancement of its execution speed 
on some devices.4

STEP 3: USING HARDWARE TRIGONOMETRY FUNCTIONS
CUDA offers hardware implementations of mathematic functions that provide much 
higher throughput than their software counterparts. These functions are implemented 
as hardware instructions executed by the SFU (special function units). The procedure 
for using these functions is quite easy. In the case of the cmpFHD kernel, what we 
need to do is to change the calls to sin() and cos() functions into their hardware 
versions: __sin() and __cos() (two “_” characters in front of the function name). 
These are intrinsic functions that are recognized by the compiler and translated into 
SFU instructions. Because these functions are called in a heavily executed loop body, 
we expect that the change will result in a very significant performance improvement. 
The resulting cmpFhD kernel is shown in Fig. 14.17.

struct kdata {
   float x, float y, float z;
};

__constant__ struct kdata k_c[CHUNK_SIZE];
…

void main() {

 for (int i = 0; i < M/CHUNK_SIZE; i++){
   cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE,cudaMemCpyHostToDevice);
    
   cmpFhD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>(…);
 
  }
 }

FIGURE 14.15

Adjusting k-space data layout to improve cache efficiency.

4 The reader might notice that the adjustment from multiple arrays to an array of structure is opposite 
to what is often done to global memory data. When adjacent threads in a warp access consecutive ele-
ments of an array of structure, it is much better to store the fields of the structure into multiple arrays 
so that the memory accesses are coalesced. The key difference here is that all threads in a warp are 
accessing the same elements.
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However, we need to be careful about the reduced accuracy when switching 
from software functions to hardware functions. As we discussed in Chapter  6, 
Numerical considerations, hardware implementation currently has less accuracy 
than software libraries (the details are available in the CUDA C Programming 

__global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
 x, y, z, rMu, iMu, int M) {

  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

  for (int m = 0; m < M; m++) {
    float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

    float cArg = cos(expFhD);  
    float sArg = sin(expFhD);

    rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
  }
  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 14.16

Adjusting for the k-space data memory layout in the FHD kernel.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
  x, y, z, rMu, iMu, int M) {

  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

  for (int m = 0; m < M; m++) {
    float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

    float cArg = __cos(expFhD);  
    float sArg = __sin(expFhD);

    rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
    iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
  }
  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 14.17

Using hardware __sin() and __cos() functions.
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Guide). In the case of MRI, we need to make sure that the hardware implementa-
tion passes provide enough accuracy, as defined in Fig. 14.18. The testing process 
involves a “perfect” image (I0) of a fictitious object, sometimes referred to as a 
phantom object. We use a reverse process to generate a corresponding “scanned” 
k-space data that is synthesized. The synthesized scanned data is then processed 
by the proposed reconstruction system to generate a reconstructed image (I). The 
values of the voxels in the perfect and reconstructed images are then fed into the 
peak SNR (PSNR) formula in Fig. 14.18.

The criteria for passing the test depend on the application that the image is 
intended for. In our case, we worked with experts in clinical MRI to ensure that the 
PSNR changes due to hardware functions are well within the accepted limits for their 
applications. In applications where the images are used by physicians to form an 
impression of injury or evaluate a disease, one also needs to have visual inspection 
of the image quality. Fig. 14.19 shows the visual comparison of the original “true” 
image. It then shows that the PSNR achieved by CPU double precision and single 
precision implementation are both 27.6 dB, well above the acceptable level for the 
application. A visual inspection also shows that the reconstructed image indeed cor-
responds well with the original image.

The advantage of iterative reconstruction compared to a simple bilinear inter-
polation gridding/iFFT is also obvious in Fig. 14.19. The image reconstructed with 
the simple gridding/iFFT has a PSNR of only 16.8 dB, substantially lower than 
the PSNR of 27.6 dB achieved by the iterative reconstruction method. A visual 
inspection of the gridding/iFFT image in Fig. 14.19(2) shows that there are severe 
artifacts that can significantly impact the usability of the image for diagnostic pur-
poses. These artifacts do not occur in the images from the iterative reconstruction 
method.

When we moved from double precision to single precision arithmetic on the CPU, 
there was no measurable degradation of PSNR, which remains at 27.6 dB. When we 
moved the trigonometry function from software library to the hardware units, we 
observed a negligible degradation of PSNR, from 27.6 dB to 27.5 dB. The slight loss 
of PSNR is within an acceptable range for the application. A visual inspection con-
firms that the reconstructed image does not have significant artifacts compared to the 
original image.

FIGURE 14.18

Metrics used to validate the accuracy of hardware functions. I0 is perfect image. I is 
reconstructed image. PSNR is peak signal-to-noise ratio.
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STEP 4: EXPERIMENTAL PERFORMANCE TUNING
Up to this point, we have not determined the appropriate values for the configuration 
parameters for the kernel. For example, we need to determine the optimal number 
of threads for each block. On one hand, using a large number of threads in a block 
is needed to fully utilize the thread capacity of each SM (given that sixteen blocks 
can be assigned to each SM at maximum). On the other hand, having more threads in 
each block increases the register usage of each block and can reduce the number of 
blocks that can fit into an SM. Some possible values of number of threads per block 
are 32, 64, 128, 256, and 512. One could also consider nonpower-of-two numbers.

FIGURE 14.19

Validation of floating-point precision and accuracy of the different FHD implementations.
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Another kernel configuration parameter is the number of times one should unroll 
the body of the for-loop. This can be set using a “#pragma unroll” followed by the 
number of unrolls we want the compiler to perform on a loop. On one hand, unrolling 
the loop can reduce the number of overhead instructions, and potentially reduce the 
number of clock cycles to process each k-space sample data. On the other hand, too 
much unrolling can potentially increase the usage of registers and reduce the number 
of blocks that can fit into an SM.

Note that the effects of these configurations are not isolated from each other. 
Increasing one parameter value can potentially use the resource that could be used to 
increase another parameter value. As a result, one needs to evaluate these parameters 
jointly in an experimental manner. That is, one may need to change the source code 
for each joint configuration and measure the run time. There can be a large number of 
source code versions to try. In the case of FHD, the performance improves about 20% 
by systematically searching all the combinations and choosing the one with the best 
measured runtime, as compared to a heuristic tuning search effort that only explores 
some promising trends. Ryoo, et al. present a Pareto-Optimal-Curve-based method 
to screen away most of the inferior combinations using [RRS 2008].

14.4  FINAL EVALUATION
To evaluation the advantage of each alternative approach, we can use a sample data 
set obtained from a simulated, three-dimensional, non-Cartesian scan of a phan-
tom image. There are 284,592 sample points in the scan data set, and the image is 
reconstructed for a total of 221 voxels. In the first set of experiments, the simulated 
data contains no noise. In the second set of experiments, we added complex white 
Gaussian noise to the simulated data. When determining the quality of the recon-
structed images, the percent error and PSNR metrics are used. The percent error is 
the root-mean-square (RMS) of the voxel error divided by the RMS voxel value in 
the true image.

To facilitate comparison of the iterative reconstruction with a conventional recon-
struction, we also evaluated a reconstruction based on bilinear interpolation gridding 
and iFFT. Our version of the gridded reconstruction is not optimized for speed, but 
it is already quite fast. For example, the total reconstruction time for the test image 
using bilinear interpolation gridding followed by iFFT takes less than 1 minute on a 
high-end sequential CPU. It is, however, obvious from Fig. 14.19(2) that the result-
ing image exhibits an unacceptable level of artifacts. It should be noted that the 
quality of the reconstruction can be improved with more sophisticated convolutional 
gridding methods at increased computation cost.

The actual execution time of the reconstruction steps will of course vary across 
devices. Therefore, we will discuss the results in approximate terms. For the 
preparation of the system for each patient, the sequential Q computation for our 
experimental input and output takes tens of hours on a high-end CPU. This time 
is reduced to a few minutes on the GPU with all the optimizations described in 
Section 14.3.
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The total reconstruction of each image time using a sequential FHD implementa-
tion on a high-end CPU requires a few hours. This time is reduced to about 3 minutes 
using the final version of the cmpFhD kernel on a high-end GPU. A naïve implemen-
tation of the cmpFhD would result in a reconstruction time of about 30 minutes on a 
high-end GPU. There is about 10 × speed improvement going from the naïve version 
to the final version as discussed in Section 14.3.

An interesting observation is that in the end, the CG solver (the find ρ step in Fig. 
14.3) can actually take more time than FHD. This is because we have accelerated 
FHD dramatically. Any further acceleration will now require acceleration of the CG 
solver. Before parallelization, FHD used to account for nearly 100% of the execution 
time. After successful parallelization, it only accounts for about 50%. The other 50% 
is largely spent in the CG solver. This is a well-known phenomenon in parallelizing 
real applications. As some phases of the execution are accelerated by successful par-
allelization efforts, the execution time becomes dominated by other phases that used 
to account for insignificant portions of the execution.

14.5  EXERCISES

1.	 Loop fission splits a loop into two loops. Use the FHD code in Fig. 14.4B and 
enumerate the execution order of the two parts of the outer loop body: (1) the 
statements before the inner loop and (2) the inner loop. (1) List the execution 
order of these parts from different iterations of the outer loop before fission. 
(2) List the execution order of these parts from the two loops after fission. 
Determine if the execution results will be identical. The execution results are 
identical if all data required by a part is properly generated and preserved for 
its consumption before that part executes, and the execution result of the part 
is not overwritten by other parts that should come after the part in the original 
execution order.

2.	 Loop interchange swaps the inner loop into the outer loop and vice versa. Use 
the loops from Fig. 14.9 and enumerate the execution order of the instances 
of loop body before and after the loop exchange. (1) List the execution order 
of the loop body from different iterations before loop interchange. Identify 
these iterations with the values of m and n. (2) List the execution order of 
the loop body from different iterations after loop interchange. Identify these 
iterations with the values of m and n. Determine if the (1) and (2) execution 
results will be identical. The execution results are identical if all data required 
by a part is properly generated and preserved for its consumption before that 
part executes, and the execution result of the part is not overwritten by other 
parts that should come after the part in the original execution order.
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3.	 In Fig. 14.11, identify the difference between the access to x[] and kx[] in the 
nature of indices used. Use the difference to explain why it does not make 
sense to try to load kx[n] into a register for the kernel shown in Fig. 14.11.

4.	 During a meeting, a new graduate student told his advisor that he improved 
his kernel performance by using cudaMalloc() to allocate constant memory 
and using cudaMemcpy() to transfer read-only data from the CPU memory to 
the constant memory. If you were his advisor, what would be your response?

REFERENCES
Liang, Z. P., & Lauterbur, P. (1999). Principles of magnetic resonance imaging: A signal pro-

cessing perspective. New York: John Wiley & Sons, Inc.
Ryoo, S., Ridrigues, C. I., Stone, S. S., Stratton, J. A., Ueng, Z., Baghsorkhi, S. S., et al. (2008). 

Program optimization carving for GPU computing. Journal of Parallel and Distributed 
Computing http://dx.doi.org/10.1016/j.jpdc.2008.05.011.

Stone, S. S., Haldar, J. P., Tsao, S. C., Hwu, W. W., Sutton, B. P., & Liang, Z. P. (2008). 
Accelerating advanced MRI reconstruction on GPUs. Journal of Parallel and Distributed 
Computing http://dx.doi.org/10.1016/j.jpdc.2008.05.013.

http://refhub.elsevier.com/B978-0-12-811986-0.00014-5/sbref1
http://refhub.elsevier.com/B978-0-12-811986-0.00014-5/sbref1
http://dx.doi.org/10.1016/j.jpdc.2008.05.011
http://dx.doi.org/10.1016/j.jpdc.2008.05.013


This page intentionally left blank



331Programming Massively Parallel Processors. DOI: 
Copyright ©	 David B. Kirk/NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved2017

http://dx.doi.org/10.1016/B978-0-12-811986-0.00015-7

Application case study—
molecular visualization  
and analysis 15

CHAPTER 

John Stone

CHAPTER OUTLINE

15.1	 Background......................................................................................................332
15.2	 A Simple Kernel Implementation........................................................................333
15.3	 Thread Granularity Adjustment...........................................................................337
15.4	 Memory Coalescing...........................................................................................338
15.5	 Summary..........................................................................................................342
15.6	 Exercises..........................................................................................................343
References................................................................................................................344

The previous case study used a statistical estimation application to illustrate the pro-
cess of selecting an appropriate level of a loop nest for parallel execution, transform-
ing the loops for reduced memory access interference, using constant memory for 
magnifying the memory bandwidth for read-only data, using registers to reduce the 
consumption of memory bandwidth, and the use of special hardware functional units 
to accelerate trigonometry functions. In this case study, we use a molecular dynam-
ics application based on regular grid data structures to illustrate the use of additional 
practical techniques that achieve global memory access coalescing and improved 
computation throughput. As we did in the previous case study, we present a series 
of implementations of an electrostatic potential map calculation kernel, with each 
version improving upon the previous one. Each version adopts one or more practical 
techniques. Some of the techniques are in common with the previous case study but 
some are new: systematic reuse of computational results, thread granularity coarsen-
ing, and fast boundary condition checking. This application case study shows that 
the effective use of these practical techniques can significantly improve the execution 
throughput of the application.
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15.1  BACKGROUND
This case study is based on VMD (Visual Molecular Dynamics) [HDS 1996], a popular 
software system designed for displaying, animating, and analyzing bio-molecular sys-
tems. VMD has more than 200,000 registered users. It is an important foundation for 
the modern “computational microscope” for biologists to observe the atomic details and 
dynamics of tiny life forms such as viruses that are too small for traditional microscopy 
techniques. While it has strong built-in support for analyzing bio-molecular systems such 
as calculating maps of the electrostatic field that surround a molecular system, it has also 
been a popular tool for displaying other large data sets such as sequencing data, quantum 
chemistry calculations, and volumetric data due to its versatility and user extensibility.

While VMD is designed to run on a diverse range of hardware—laptops, desk-
tops, clusters, and supercomputers—most users use VMD as a desktop science appli-
cation for interactive 3D visualization and analysis. For computation that runs too 
long for interactive use, VMD can also be used in a batch mode to render movies 
for later use. A motivation for accelerating VMD is to make batch mode jobs fast 
enough for interactive use. This can drastically improve the productivity of scientific 
investigations. With CUDA devices widely available in PCs, such acceleration can 
have broad impact on the VMD user community. To date, multiple aspects of VMD 
have been accelerated with CUDA, including electrostatic potential map calculation, 
ion placement (HSS 2009), calculation and display of molecular orbitals (SSHVHS 
2009), molecular surfaces (KSES 2012), radial distribution histograms (LSK 2011), 
and electron density map quality-of-fit (SMIS 2014), and high fidelity ray tracing of 
large biomolecular complexes for conventional and panoramic displays (SVS 2013, 
Stone et al. 2016), and virtual reality headsets (SSS 2016).

The particular calculation used in this case study is the calculation of electrostatic poten-
tial maps in 3D grids with uniform spacing. This calculation is often used in placement of 
ions into a molecular structure for molecular dynamics simulation. Fig. 15.1 shows the 
placement of ions into a protein structure in preparation for molecular dynamics simulation. 
In this application, the electrostatic potential map is used to identify spatial locations where 
ions (red dots) can fit in according to physical laws. The function can also be used to calcu-
late time-averaged potentials during molecular dynamics simulation, which is useful for the 
simulation process as well as the visualization/analysis of simulation results.

There are several methods for calculating electrostatic potential maps. Among 
them, Direct Coulomb Summation (DCS) is a highly accurate method that is par-
ticularly suitable for GPUs [SPF 2007]. The DCS method calculates the electrostatic 
potential value of each grid point as the sum of contributions from all atoms in the 
system. This is illustrated in Fig. 15.2. The contribution of atom i to a lattice point 
j is the charge of atom i divided by the distance from lattice point j to atom i. Since 
this needs to be done for all grid points and all atoms, the number of calculations is 
proportional to the product of the total number of atoms in the system and the total 
number of grid points. For a realistic molecular system, this product can be very 
large. Therefore, the calculation of the electrostatic potential map had been tradition-
ally done as a batch job in VMD.
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15.2  A SIMPLE KERNEL IMPLEMENTATION
Fig. 15.3 shows the base C code of the DCS code. The function is written to process a 
two-dimensional (2D) slice of a three-dimensional (3D) grid. The function will be called 
repeatedly for all the slices of the modeled space. The structure of the function is quite 

FIGURE 15.1

Electrostatic potential map is used in building stable structures for molecular dynamics 
simulation.

FIGURE 15.2

The contribution of atom[i] to the electrostatic potential at lattice point j (potential[j]) is 
atom[i] charge/rij. In the Direct Coulomb Summation method, the total potential at lattice 
point j is the sum of contributions from all atoms in the system.
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simple with three levels of for loops. The outer two levels iterate over the y-dimension 
and the x-dimension of the grid point space. For each grid point, the innermost for 
loop iterates over all atoms, calculating the contribution of electrostatic potential energy 
from all atoms to the grid point. Note that each atom is represented by four consecutive 
elements of the atoms[] array. The first three elements store the x, y, and z coordinates 
of the atom and the fourth element the electrical charge of the atom. At the end of the 
innermost loop, the accumulated value of the grid point is written out to the grid data 
structure. The outer loops then iterate and take the execution to the next grid point.

Note that DCS function in Fig. 15.3 calculates the x and y coordinates of each grid 
point on the fly by multiplying the grid point index values by the spacing between 
grid points. This is a uniform grid method where all grid points are spaced at the 
same distance in all three dimensions. The function does take advantage of the fact 
that all the grid points in the same slice have the same z coordinate. This value is 
precalculated by the caller of the function and passed in as a function parameter (z).

Based on what we learned from the MRI case study, two attributes of the DCS 
method should be apparent. First, the computation is massively parallel: the com-
putation of electrostatic potential for each grid point is independent of that of other 
grid points. As we have seen in the previous case study, there are two alternative 
approaches to organizing parallel execution. In the first option, we can use each thread 
to calculate the contribution of one atom to all grid points. This would be a poor 
choice since each thread would be writing to all grid points, requiring extensive use of 
atomic memory operations to coordinate the updates done by different threads to each 

FIGURE 15.3

Base Coulomb potential calculation code for a 2D slice.
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grid point. The second option uses each thread to calculate the accumulated contribu-
tions of all atoms to one grid point. This is a preferred approach since each thread will 
be writing into its own grid point and there is no need to use atomic operations.

We will form a 2D thread grid that matches the 2D potential grid point organiza-
tion. In order to do so, we need to modify the two outer loops into perfectly nested 
loops so that we can use each thread to execute one iteration of the two-level loop. We 
can either perform a loop fission (as we did in the previous case study), or we move 
the calculation of the y coordinate into the inner loop. The former would require us 
to create a new array to hold all y values and result in two kernels communicating 
data through global memory. The latter increases the number of times that the y coor-
dinate will be calculated. In this case, we choose to perform the latter since there is 
only a small amount of calculation that can be easily accommodated into the inner 
loop without significant increase in execution time of the inner loop. The amount of 
work to be absorbed into the inner loop is much smaller than that in the previous case 
study. The former would have added a kernel launch overhead for a kernel where 
threads do very little work. The selected transformation allows all i and j iterations 
to be executed in parallel. This is a tradeoff between the amount of calculation done 
and the level of parallelism achieved.

The second experience that we can apply from the MRI case study is that the 
electrical charge of every atom will be read by all threads. This is because every 
atom contributes to every grid point in the DCS method. Furthermore, the values of 
the atomic electrical charges are not modified during the computation. This means 
that the atomic charge values can be efficiently stored in the constant memory (in the 
GPU box in Fig. 15.4).
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FIGURE 15.4

Overview of the DCS kernel design.
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Fig. 15.4 shows an overview of the DCS kernel design. The host program (shown 
as the Host box) inputs and maintains the atomic charges and their coordinates in the 
system memory. It also maintains the grid point data structure in the system memory. 
The DCS kernel is designed to process a 2D slice of the electrostatic potential grid 
point structure (not to be confused with thread grids). The right-hand side grid in the 
Host box shows an example of a 2D slice. For each 2D slice, the CPU transfers its 
grid data to the device global memory. Similar to the k-space data, the atom infor-
mation is divided into chunks to fit into the constant memory. For each chunk of the 
atom information, the CPU transfers the chunk into the device constant memory, 
invokes the DCS kernel to calculate the contribution of the current chunk to the 
current slice, and prepares to transfer the next chunk. After all chunks of the atom 
information have been processed for the current slice, the slice is transferred back to 
update the grid point data structure in the CPU system memory. The system moves 
on to the next slice.

Within each kernel invocation, the thread blocks are organized to calculate the 
electrostatic potential of tiles of the grid structure. In the simplest kernel, each thread 
calculates the value at one grid point. In more sophisticated kernels, each thread 
calculates multiple grid points and exploits the redundancy between the calculations 
of the grid points to improve execution speed. This is illustrated in the left-hand side 
portion labeled as “Thread blocks” in Fig. 15.4 and is an example of the granularity 
adjustment optimization discussed in Chapter 5, Performance Considerations.

Fig. 15.5 shows the resulting CUDA kernel code. We omitted some of the decla-
rations. As was in the MRI case study, the atominfo[] array is declared in the con-
stant memory by the host code. The host code divides up the atom information into 
chunks that fit into the constant memory for each kernel invocation. This means that 
kernel will be invoked multiple times when there are multiple chunks of atoms. Since 
this is similar to the MRI case study, we will not show the details.

FIGURE 15.5

DCS kernel version 1.
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The outer two levels of the loop in Fig. 15.3 have been removed from the kernel 
code and are replaced by the execution configuration parameters in the kernel invoca-
tion. Since this is also similar to one of the steps we took in the MRI case study, we 
will not show the kernel invocation but leave it as an exercise for the reader. The rest 
of the kernel code is straightforward and corresponds directly to the original loop 
body of the innermost loop.

One particular aspect of the kernel is somewhat subtle and worth mentioning. The 
kernel code calculates the contribution of a chunk of atoms to a grid point. The grid 
point must be stored in the global memory and updated by each kernel invocation. 
This means that the kernel needs to read the current grid point value, add the contri-
butions by the current chunk of atoms, and write the updated value to global memory. 
The code attempts to hide the global memory latency by loading the grid value at the 
beginning of the kernel and using it at the end of the kernel. This helps to reduce the 
number of warps needed by the SM scheduler to hide the global memory latency.

The performance of the kernel in Fig. 15.5 is quite good. However, there is defi-
nitely room for improvement. A quick glance over the code shows that each thread 
does nine floating-point operations for every four memory elements accessed. On the 
surface, this is not a very good ratio. We need a ratio of 10 or more to avoid global 
memory congestion. However, all four memory accesses are done to atominfo[] 
array. These atominfo[] array elements for each atom are cached in a hardware 
cache memory in each SM and are broadcast to a large number of threads. A calcula-
tion similar to that in the MRI case study shows that the massive reuse of memory 
elements across threads makes the constant cache extremely effective, boosting the 
effective ratio of floating operations per global memory access much higher than 10. 
As a result, global memory bandwidth is not a limiting factor for this kernel.

15.3  THREAD GRANULARITY ADJUSTMENT
Although the kernel in Fig. 15.5 avoids global memory bottlenecks through con-
stant caching, it still needs to execute four constant memory access instructions for 
every nine floating-point operations performed. These memory access instructions 
consume hardware resources that could be otherwise used to increase the execution 
throughput of floating-point instructions. More importantly, the execution of these 
memory access instructions consumes energy, an important limiting factor for many 
large scale parallel computing systems. This section shows that we can fuse several 
threads together so that the atominfo[] data can be fetched once from the constant 
memory, stored into registers, and used for multiple grid points.

We observe that all grid points along the same row have the same y-coordinate. 
Therefore, the difference between the y-coordinate of an atom and the y-coordinate 
of any grid point along a row has the same value. In the DCS kernel version 1 in Fig. 
15.5, this calculation is redundantly done by all threads for all grid points in a row 
when calculating the distance between the atom and the grid points. We can eliminate 
this redundancy and improve the execution efficiency.
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The idea is to have each thread calculate the electrostatic potential for multiple 
grid points. The kernel in Fig. 15.7 has each thread calculate four grid points. For 
each atom, the code calculates dy, the difference of the y-coordinates, in line 2. It 
then calculates the expression dy*dy plus the pre-calculated dz*dz information and 
saves it to the auto variable dysqpdzsq, which is assigned to a register. This value is 
the same for all four grid points. Therefore, the calculation of energyvalx1 through 
energyvalx4 can all just use the value stored in the register. Furthermore, the elec-
trical charge information is also accessed from constant memory and stored in the 
automatic variable charge. Similarly, the x-coordinate of the atom is also read from 
constant memory into auto variable x. Altogether, this kernel eliminates three accesses 
to constant memory for atominfo[atomid].y, three accesses to constant memory for 
atominfo[atomid].x, three accesses to constant memory for atominfo[atomid].w, 
three floating-point subtraction operations, five floating-point multiply operations, 
and nine floating-point add operations when processing an atom for four grid points. 
A quick inspection of the kernel code in Fig. 15.7 shows that each iteration of the 
loop performs four constant memory accesses, five floating-point subtractions, nine 
floating-point additions, and five floating-point multiplications for four grid points.

The reader should also verify that the version of DCS kernel in Fig. 15.5 per-
forms 16 constant memory accesses, 8 floating-point subtractions, 12 floating-point 
additions, and 12 floating-point multiplications, a total of 48 operations for the same 
four grid points. Going from Figs. 15.5 to 15.7, there is a total reduction from 48 
operations down to 25 operations, a sizable reduction. This is translated into about 
40% increased execution speed and about the same percentage reduction in energy 
consumption.

The cost of the optimization is that more registers are used by each thread. This 
can potentially reduce the number of threads that can be accommodated by each SM. 
However, as the results show, this is a good tradeoff with an excellent performance 
improvement.

15.4  MEMORY COALESCING
While the performance of the DCS kernel version 2 in Fig. 15.7 is quite high, a 
quick profiling run reveals that the threads perform memory writes inefficiently. As 
shown in Figs. 15.6 and 15.7, each thread calculates four neighboring grid points. 
This seems to be a reasonable choice. However, as we illustrate in Fig. 15.8, the write 
pattern of adjacent threads in each warp will result in un-coalesced global memory 
writes.

There are two problems that cause the un-coalesced writes in DCS kernel version 
2. First, each thread calculates four adjacent neighboring grid points. Thus, for each 
statement that accesses the energygrid[] array, the threads in a warp are not access-
ing adjacent locations. Note that two adjacent threads access memory locations that 
are three elements apart. Thus, the 16 locations to be written by all the threads in warp 
write are spread out, with three elements in between the loaded/written locations. 
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FIGURE 15.7

Version 2 of the DCS kernel.

FIGURE 15.6

Reusing computation results among multiple grid points.

FIGURE 15.8

Organizing threads and memory layout for coalesced writes.
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This problem can be solved by assigning adjacent grid points to adjacent threads in 
each half-warp. Most previous generation devices form coalesced memory accesses 
on a half-warp basis. Assuming that we still want to have each thread calculate four 
grid points, we first assign 16 consecutive grid points to the 16 threads in a half-warp. 
We then assign the next 16 consecutive grid points to the same 16 threads. We repeat 
the assignment until each thread has the number of grid points desired. This assign-
ment is illustrated in Fig. 15.8. For more recent devices, the number of threads in a 
coalesced access has increased to 32. Thus, we may need to assign the grid points on 
a full-warp basis so that the grid points to be processed by each thread will be 32 grid 
points apart from each other.

The kernel code with coarsened thread granularity and warp-aware assignment 
of grid points to threads is shown in Fig. 15.9. Note that the x-coordinates used to 
calculate the atom-to-grid-point distances for a thread’s assigned grid points are off-
set by the value of the variable gridspacing_coalesce, which is the original grid-
spacing times the constant BLOCKSIZEX (set as 16). This reflects the fact that the 
x-coordinates of the 8 grid points assigned to a thread are 16 grid points away from 
each other. Also, after the end of the loop, memory writes to the energygrid array 
are indexed by outaddr, outaddr+BLOCKSIZEX, …, outaddr+7*BLOCKSIZEX. Each 
of these indices is one BLOCKSIZEX (16) away from the previous one. The detailed 
thread block organization for this kernel is left as an exercise.

The other cause of un-coalesced memory writes is the layout of the energygrid 
array, which is a 3D array. If the x-dimension of the array is not a multiple of the half-
warp size (16), the beginning location of the row 1, as well as those of the subsequent 

FIGURE 15.9

DCS kernel version 3.
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rows will no longer be at the 16-word boundaries. For example, if the energygrid 
array starts at location 0 and the x-dimension has 1000 elements, row 1 of the array 
will start at location 1000, which is not a 16-word boundary. The nearest 16-word  
boundaries are 992 and 1008. Therefore, starting at row 1, the accesses to the  
energygrid by threads in a half-warp will span two 16-word units in the global 
memory address space.

In some devices, this means that the half-warp accesses will not be coalesced, 
even though they write to consecutive locations. This problem can be corrected by 
padding each row with additional elements so that the total length of the x-dimension 
is a multiple of 16. This can require adding up to 15 elements, or 60 bytes to each 
row, as shown in Fig. 15.8. In our example, since the x-dimension has 1000 elements, 
we need to pad 8 elements at the end of each row so that the number of words in each 
row is a multiple of 16 (1008).

If we want to avoid if-statements for handling boundary conditions, we will  
need to make the x-dimension a multiple of the number of grid points processed  
by each thread block. Each block has 16 threads in the x-dimension. With the kernel 
of Fig. 15.9, the number of elements in the x-dimension needs to be a multiple of  
8 × 16 = 128. This is because each thread actually writes eight elements in each itera-
tion. Thus, one may need to pad up to 127 elements, or 1016 bytes to each row. In our 
example, the nearest multiple of 128 that we can pad from 1000 is 1024. Therefore, 
we will need to pad 24 elements at the end of each row to avoid adding if-statements 
for handling the boundary condition.

Finally, there is a potential problem with the last row of thread blocks. Each 
thread block is 16 × 16 so there are 16 threads in the y dimension. Since the number 
of rows grid array may not be a multiple of 16, some of the threads may end up writ-
ing outside the grid data structure without adding if-statements to handle the bound-
ary conditions. Since the grid data structure is a 3D array, these threads will write 
into the next slice of grid points. As we discussed in Chapter 3, Scalable parallel 
execution, we can add a test in the kernel and avoid writing the array elements that 
are out of the known y-dimension size. However, this would have added a number of 
overhead instructions and incurred control divergence. An alternative solution is to 
pad the y-dimension of the grid structure so that it contains a multiple of tiles covered 
by thread blocks. This is shown in Fig. 15.8 as the bottom padding in the grid struc-
ture. In general, one may need to add up to 15 rows due to this padding.

The cost of padding can be substantial for smaller grid structures. For example, 
if the potential energy grid has 100 × 100 grid points in each 2D slice, it would be 
padded into a 128 × 112 slice. The total number of grid points increases from 10,000 
to 14,336, or a 43% overhead. At such overhead, one should consider much less 
coarsening. On the other hand, for a 1000 × 1000 grid, one will need to pad it to 1024 
× 1008 = 1,032,192 T, or 3.2% overhead. This makes it very cost-effective to assign 
eight grid points to each thread. This is the reason why high-performance libraries 
often have multiple kernels for the same type of computation. When the user calls 
the library function, the interface would choose the version according to the size and 
shape of the actual data set.
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If we had to pad the entire 3D structure, the grid points would have increased from 
100 × 100 × 100 (1,000,000) to 128 × 112 × 112 (1,605,632), or a 60% overhead! 
This is part of the reason why we calculate the energy grids in 2D slices and use the 
host code to iterate over these 2D slices. Writing a single kernel to process the entire 
3D structure would have incurred a lot more extra overhead. This type of tradeoff 
appears frequently in simulation models, differential equation solvers, and video pro-
cessing applications. Decomposing the problem into individual 2D slices also allows 
multiple GPUs to be used concurrently, with each GPU computing independent slices.

The DCS version 3 kernel shown in Fig. 15.9 achieves about 535.16 GFLOPS 
or 72.56 billion atom evaluations per second on a Fermi GPU. On a recent GeForce 
GTX 680 (Kepler 1), it achieves a whopping 1267.26 GFLOPS or 171.83 billion 
atom evaluations per second! This measured speed of the kernel also includes a slight 
boost from moving the read access to the energygrid array from the beginning of the 
kernel to the end of the kernel. The contribution to the grid points are first calcu-
lated in the loop. The code loads the original grid point data after the loop, adds the 
contribution to them, and writes the updated values back. Although this movement 
exposes more of the global memory latency to each thread, it saves the consumption 
of eight registers. Since the version 3 kernel is using many registers to hold the atom 
data and the distances, such savings in number of registers used relieve a critical bot-
tleneck for the kernel. This allows more thread blocks to be assigned to each SM and 
achieved an overall performance improvement.

15.5  SUMMARY
The relative merit of the three versions of the DCS kernel depends on the dimension 
lengths of the potential energy grid. However, the DCS version 3 (CUDA-Unroll8clx) 
will perform consistently better than all others once the grid dimension length is suf-
ficiently large, say 300 × 300 or more.

A detailed comparison of between the sequential code performance on a CPU and 
the CPU–GPU joint performance shows a commonly observed tradeoff. Fig. 15.10 
shows plot of the execution time of a medium-sized grid for varying number of atoms 
to be evaluated. For 400 atoms or fewer, the CPU performs better. This is because 
the particular GPU used has a fixed initialization overhead of 110 ms regardless of 
the number of atoms to be evaluated. Also, for a small number of atoms, the GPU 
is underutilized, thus the curve of the GPU execution time is quite flat between 100 
atoms and 1000 atoms.

The plot in Fig. 15.10 reinforces a commonly held principle that GPUs perform 
better for large amounts of data. Once the number of atoms reaches 10,000, the GPU 
is fully utilized. The slope of the CPU and the CPU–GPU execution time becomes 
virtually identical, with the CPU–GPU execution being consistently 44 × times faster 
than the sequential CPU execution for all input sizes.

While DCS is a highly accurate method for calculating the electrostatic poten-
tial energy map of a molecular system, it is not a scalable method. The number of 
operations to be performed of the method grows proportionally with the number of 
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atoms and the number of grid points. When we increase the physical volume of the 
molecular system to be simulated, we should expect that both the number of grid 
points and the number of atoms to increase proportional to the physical size. As 
a result, the number of operations to be performed will be approximately propor-
tional to the square of the physical volume. That is, the number of operations to be 
performed will grow quadratically with the volume of the system being simulated. 
This makes the use of DCS method not suitable for simulating realistic biological 
systems. Therefore, one must devise a method whose number of operations grows 
linearly with the volume of the biological systems being simulated. We will revisit 
this topic in Chapter 17, Parallel programming and computational thinking.

15.6  EXERCISES

1.	 Complete the implementation of the DCS kernel as outlined in Fig. 15.5. Fill 
in all of the missing declarations. Give the kernel launch statement with all 
the execution configuration parameters.

2.	 Compare the number of operations (memory loads, floating-point arithmetic, 
branches) executed in each iteration of the kernel in Fig. 15.7 compared to 
that in Fig. 15.5. Keep in mind that each iteration of the former corresponds 
to four iterations of the latter.

3.	 Complete the implementation of the DCS kernel version 3 in Fig. 15.9. 
Explain in your own words how the thread accesses are coalesced in this 
implementation.

FIGURE 15.10

Single-threads CPU versus CPU–GPU comparison.
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4.	 For the memory padding in Fig. 15.8 and DCS kernel version 3 in Fig. 15.9, 
show why one needs to pad up to 127 elements in the x dimension but only 
up to 15 elements in the y dimension.

5.	 Give two reasons for adding extra “padding” elements to arrays allocated in 
the GPU global memory, as shown in Fig. 15.8.

6.	 Give two potential disadvantages associated with increasing the amount of 
work done in each CUDA thread, as shown in Section 15.3.
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In this chapter, we will describe a case study of accelerating machine learning 
algorithms with GPUs. Machine learning has been used in numerous applications 
to train or adapt the application logic in accordance with the experience gleaned 
from data sets. To be effective, one often needs to conduct such training with a mas-
sive amount of data. While machine learning has existed as a subject in computer  
science for a considerable time, it has recently gained significant practical industry 
acceptance because of the availability of inexpensive, massively parallel GPU com-
puting systems that can effectively train application logic with massive data sets. 
We will start with a brief introduction to deep learning and then consider one of the  
most widely used algorithms, convolutional neural networks (ConvNets), in more 
detail. ConvNets are characterized by high compute-to-bandwidth ratio and high 
levels of parallelism, which are perfect attributes for GPU acceleration. We will 
first implement a ConvNet with a basic algorithm. We will then show how we can 
improve this basic implementation with shared memory. Finally, we will demon-
strate how one can formulate the convolutional layers as matrix–matrix multiplica-
tion problems.
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16.1  BACKGROUND
Machine learning is a field of computer science that explores algorithms whose logic 
can be learned directly from data rather than be explicitly programmed. Machine 
learning is most successful in computing tasks where designing explicit algorithms 
is infeasible, mostly because knowledge in the design of such explicit algorithms 
is inadequate. Machine learning is the foundation of automatic speech recognition, 
computer vision, natural language processing, and search engines.

Conventional machine learning systems require humans with considerable domain 
expertise to define meaningful features for transforming raw data (e.g., the pixels of 
an image or speech signal) into a curated representation. From this representation, 
machine learning algorithms could detect important patterns that can be used for train-
ing the application logic. By contrast, deep learning is a set of methods that allows 
a machine learning system to automatically discover the complex features needed 
for detection directly from raw data [LBH 2015]. This area of machine learning is 
described as “deep” because it is based on the idea of hierarchical, multilevel feature 
representation. The hierarchical features are obtained by composing simple nonlinear 
modules that each transforms a representation at one level (starting with the raw input) 
into another at a higher, slightly more abstract level. For example, in computer vision, 
the first layer of representation typically detects edges at particular orientations and 
locations in the image. The second layer typically detects the so-called “motifs” by 
spotting particular patterns of edges, regardless of small variations in the edge posi-
tions. The third layer assembles these motifs into larger parts. Such layered structures, 
as illustrated in Fig. 16.1, are often referred to as “feed forward networks” because the 
information flows in one direction from one layer to the next in these systems.

Output patterns

Input patterns

Internal
representation
units

FIGURE 16.1

A multilayer feedforward network.
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Deep learning procedures based on feedforward networks can learn highly com-
plex features that can achieve more accurate pattern recognition results compared 
with features that are manually engineered by humans; however, this method requires 
that sufficient information is accessible in order to allow the system to automatically 
discover an adequate number of relevant patterns. One type of a deep learning proce-
dure is based on a particular type of feedforward network called the ConvNet. These 
procedures are easier to train and can be generalized much better than others.

The ConvNet was invented in late 1980s [LBB 1998]. By the early 1990s, ConvNet 
had been successfully applied to automated speech recognition, optical character rec-
ognition, handwriting recognition, and face recognition. However, the mainstream of 
computer vision and that of automated speech recognition had been based on care-
fully engineered features until the late 1990s. The amount of labeled data was insuf-
ficient for a deep learning system to compete with recognition/classification functions 
crafted by human experts. The common notion was that it was computationally infea-
sible to automatically build hierarchical feature extractors that have enough layers to 
perform better than human-defined application-specific feature extractors.

Interest in deep feedforward networks was revived around 2006 by a group of 
researchers who introduced unsupervised learning methods that could create multi-
layer, hierarchical feature detectors without requiring labeled data [HOT 2006]. The 
first major application of this approach was in speech recognition. The breakthrough 
was made possible by GPUs that allowed researchers to train networks 10 times 
faster than traditional CPUs [RMN 2009]. This advancement, coupled with a mas-
sive amount of media data available online, drastically elevated the position of deep 
learning approaches. Despite their success in speech, ConvNets were largely ignored 
in the field of computer vision until 2012.

In 2012, a group of researchers from University of Toronto trained a large, deep 
ConvNet to classify 1000 different classes in the ImageNet Large Scale Visual 
Recognition Competition contest [KSH 2012]. The network was huge by the norms 
of the time: it had approximately 60 million parameters and 650,000 neurons. It 
was trained on 1.2 million high-resolution images from the ImageNet database. The 
network was trained in only one week on two GPUs, using the very efficient cuda-
convnet library [Krizhevsky] written by Alex Krizhevsky. The network achieved 
breakthrough results with a winning top-5 test error of 15.3%. By comparison, the 
second place team that used the traditional computer vision algorithms achieved 
an error rate of 26.2%. This success triggered a revolution in computer vision, and 
ConvNet became a mainstream tool in computer vision, natural language processing, 
reinforcement learning, and many other traditional machine learning areas.

16.2  CONVOLUTIONAL NEURAL NETWORKS
To explain how ConvNets work, we will use LeNet-5, the network designed in the 
late 1980s for handwritten digit recognition [LBB 1998]. As shown in Fig. 16.2, 
LeNet-5 is composed of three types of layers: convolutional layers, subsampling 
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layers, and full connection layers. We will consider each type of layer in the next 
section. The input to the network appears as a gray image with a handwritten digit 
represented as 2D 32 × 32 pixel array. The last layer computes the output, the vector 
which contains the probabilities for the original image to belong to each of the 10 
classes (digits) that the network is set up to recognize.

CONVNETS: BASIC LAYERS
The computation in a convolutional network is organized as a sequence of layers. 
Inputs and outputs to layers will be referred to as “feature maps.” In Fig. 16.2, the 
computation of the C1 layer is organized to generate six output feature maps from the 
INPUT pixel array. The computation result or output to be generated for input fea-
ture maps consists of pixels, each of which is produced by performing a convolution 
between a small local patch of feature map pixels of the previous layer (INPUT in 
the case of C1) and a set of weights (i.e., a convolution mask as defined in Chapter 7, 
Parallel patterns: convolution) called “filter bank.”

All pixels in an input feature map are processed with the same filter bank when 
generating a particular output feature map. Different feature maps in a layer use dif-
ferent filter banks. Although not shown in Fig. 16.2, all filter banks used in LeNet-5 
are 5 × 5 convolutions. They differ in the 25 weights that are present in them. If a 
convolution layers has n input feature maps and m output feature maps, n*m different 
filter banks will be used.

Recall from Chapter  7, Parallel patterns: convolution that generating a 32 × 
32 convolution image from a 32 × 32 input image and a 5 × 5 convolution mask 
requires making assumptions regarding “ghost cells.” However, instead of making 
such assumption, the LeNet-5 design simply uses two elements at the edge of each 
dimension as ghost cells. By so doing, the size of each dimension is reduced by four: 
two at the top, two at the bottom, two at the left, and two at the right. We see that by 
performing convolution with each filter bank, the 32 × 32 image results in a feature 
map that is a 28 × 28 image. Fig. 16.2 illustrates this computation by showing that a 
pixel in the C1 layer is generated from a square (5× 5 although not explicitly shown) 
patch of INPUT pixels.

Input
32x32

C1: feature maps
6@28x28

C3: f. maps 16@10x10

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

F6: layer
84

OUTPUT
10

Convolutions Subsampling Convolutions Subsampling
Full connection

Full connection

Gaussian
connections

FIGURE 16.2

LeNet-5, a convolutional neural network for handwritten digit recognition.
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Fig. 16.3 provides an overview of the forward propagation path of a convolution 
layer. We assume that the input feature maps are stored in a 3D array X[C, H, W], 
where “C” is the number of input feature maps, “H” is the height of each input map 
image, and “W” is the width of each input map image. The highest dimension index 
selects one of the feature maps and the lower two dimension indexes selects one of 
the pixels in a feature map. To illustrate, the input feature maps for the C1 layer is 
stored in X[1, 32, 32] because only one input image (INPUT in Fig. 16.2) consists 
of 32 pixels in each of the x and y dimensions.

The output feature maps of a convolutional layer is also stored in a 3D array Y[M, 
H-K+1, W-K+1], where “M” is the number of output feature maps, “H” is the height of 
each input map image, “W” is the width of each input map image, and “K” is the height 
(and width) of each filter bank W[C, M, K, K]. For instance, the output feature maps 
for the C1 layer are stored in Y[6, 28, 28] because C1 generates six output feature 
maps and a 5 × 5 filter bank. Two elements are used at each edge of the image, as 
halo cells, when generating the convolved image. There are MxC filter banks. Filter 
bank W[m, c,_,_] is used for the input feature map X[c,_,_] to calculate the output 
feature map Y[m,_,_]. Note that each output feature map is the sum of convolutions 
of all input feature maps. Therefore, we can consider the forward propagation path 
of a convolutional layer as a set of M 3D convolutions, where each 3D convolution is 
specified by a 3D filter bank that is a C x K x K submatrix of W. Note that W is used 
for both the width of the images and the name of the filter bank matrix. In each case, 
the usage should be clear from the contex.

Fig. 16.4 shows a sequential implementation of the forward propagation path of 
a convolution layer. Each iteration of the outermost (m) for-loop generates an output 
feature map. Each of the next two levels (h and w) of for-loops generates one pixel of 
the current output feature map. The three innermost levels perform the 3D convolu-
tion between the input feature maps and the 3D filter banks.

Convolutional
layer

Weights
W

Input
features

X Output
features

Y

FIGURE 16.3

Overview of the forward propagation path of a convolution layer.
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The output feature maps of a convolution layer typically go through a subsam-
pling (also known as pooling) layer. A subsampling layer reduces the size of image 
maps by combining pixels. For example, in Fig. 16.2, the subsampling layer S2 takes 
six input feature maps of size 28 × 28 and generates six feature maps of size 14x14. 
Each pixel in a subsampling feature map is generated from a 2x2 neighborhood in 
the corresponding input feature map. The values of these four pixels are averaged 
to form one pixel in the output feature map. The output of a subsampling layer has 
the same number of output feature maps as the previous layer; however, each map 
has half the number of rows and columns. To illustrate, the number of output feature 
maps (6) of the subsampling layer S2 is the same as the number of its input feature 
maps or the output feature maps of the convolutional layer C1.

Fig. 16.5 shows a sequential C implementation of the forward propagation path of 
a subsampling layer. Each iteration of the outermost (m) for-loop generates an output 
feature map. The next two levels (h, w) of for-loops generate individual pixels of the 
current output map. The two innermost for-loops sum up the pixels in the neighbor-
hood. K is equal to 2 in our LeNet-5 example in Fig. 16.2. A bias value b[m] that is 
specific to each output feature map is then added to each output feature map, and the 
sum goes through a nonlinear function such as the tanh, sigmoid, or ReLU functions 
to provide the output pixel values a more desirable distribution. ReLU [JKL 2009], a 
very simple nonlinear filter, passes only nonnegative values, as follows:

Y = X, if X ≥ 0, and 0 otherwise.

To complete our example, the convolutional layer C3 has 16 output feature maps, 
each of which is a 10 × 10 image. This layer contains 6 × 16 filter banks, with each 
filter bank having 5 × 5 weights. The output of C3 is passed through the subsampling 
layer S4, which generates 16 5 × 5 output feature maps. The last convolutional layer 

void convLayer_forward(int M, int C, int H, int W, int K, float* X, float* W, float* Y)
{

int m, c, h, w, p, q;
int H_out = H – K + 1;
int W_out = W – K + 1; 

for(m = 0;  m < M;  m++) // for each output feature maps
for(h = 0; h < H_out; h++) // for each output element

for(w = 0; w < W_out; w++) {
Y[m, h, w] = 0;
for(c = 0;  c < C; c++) // sum over all input feature maps

for(p = 0; p < K; p++) // KxK  filter
for(q = 0; q < K; q++)  

Y[m, h, w] +=  X[c, h + p, w + q] * W[m, c, p, q];
}

}

FIGURE 16.4

A sequential implementation of the forward propagation path of a convolution layer.
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C5, which uses 16 × 120 = 1920 5 × 5 filter banks to generate 120 one-pixel output 
features from its 16 input feature maps.

These feature maps are passed through the Fully Connected layer F6 with 84 out-
put units, where each output is fully connected to all inputs. The output is computed 
as a product of a weight matrix W with an input vector X. For the F6 example, W 
is a 120 × 84 matrix. Then bias is added, and output is passed through the sigmoid 
function. In summary, the output is an 84-element vector Y6 = sigmoid (W*X + b), 
assuming the implementation presented in Fig. 16.2.

The final stage is an output layer that uses Gaussian filters to generate a vector of 
10 elements, which correspond to the probability that input image contains 1 of 10 
digits. It also computes loss functions, which estimate the difference between the true 
label and the prediction.

CONVNETS: BACKPROPAGATION
Training of ConvNets is based on a procedure called gradient backpropagation 
[RHW 1986]. The training data set is labeled with the “correct answer.” In the hand-
writing recognition example, the labels give the correct digit in the image. The label 
information can be used to generate the “correct” output of the last stage: the correct 
probability values of the 10-element vector would be all “0” except the right digit 
which should have probability “1”.

For each training image, the final stage of the network calculates the loss function 
or the error as the difference between the generated output vector element values and 
the “correct” output vector element values. Given a sequence of training images, we 
can calculate the gradient of loss function with respect to the elements of the output 
vector. Intuitively, it gives the rate at which the loss function value changes when the 
values of the output vector elements change.

void poolingLayer_forward(int M, int H, int W, int K, float* Y, float* S)
{  

int m, h, w, p, q;
for(m = 0;  m < M;  m++) // for each output feature maps
for(h = 0; x < H/K; h++) // for each output element
for(w = 0; y < W/K; y++) {
S[m, x, y] = 0.;
for(p = 0; p < K; p++) { // loop over KxK input samples 

for(q = 0; q < K; q++)
S[m, h, w] = S[m, h, w] + Y[m, K*x + p, K*y + q]/(K*K);

}
// add bias and apply non-linear activation
S[m, h, w] = sigmoid(S[m, h, w] + b[m])

}
}

FIGURE 16.5

A sequential C implementation of the forward propagation path of a subsampling layer.
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Backpropagation starts by calculating the gradient of loss function ∂E/∂Y for 
the last layer. This process then propagates the gradient from the last layer toward 
the first layer through all layers of the network. Each layer receives as its input  
∂E/∂Y—gradient with respect to its output feature maps and calculates ∂E/∂X—
gradient with respect to its input feature maps (Fig. 16.6).

If a layer has learned parameters (“weights”) W, then the layer also calculates  
∂E/∂W—gradient of loss with respect to weights (Fig. 16.7).

For instance, the fully connected layer is given as Y = W*X. The backpropaga-
tion of gradient ∂E/∂Y is expressed by two equations:
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Convolutional layer: Backpropagation of ∂E/∂X.
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Convolutional layer: Backpropagation of ∂E/∂w.
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We will now describe backpropagation for a convolutional layer, starting with the 
calculation of ∂E/∂X.

Note that the calculation of ∂E/∂X is important for propagating the gradient to the 
previous layer. The gradient ∂E/∂X with respect to the channel c of input X is given as the 
sum of “backward convolution” with corresponding WT(c,m) over all layer outputs m:
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Fig. 16.8 demonstrates the calculation of the ∂E/∂X function in the form of one 
matrix for each input feature map. The code assumes that ∂E/∂Y has been calculated for 
all the output feature maps of the layer and passed with a pointer argument dE_dY. It also 
assumes that the space of dE_dX has been allocated in the device memory whose handle 
is passed as a pointer argument. The kernel will be generating the elements of dE_dX.

The algorithm for calculating ∂E/∂W for a convolution layer computation is very 
similar to that of ∂E/∂X and is shown in Fig. 16.9. Since each W(c,m) affects all 
elements of the output Y(m), we should accumulate gradients over all pixels in the 
corresponding output feature map:
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Note that while the calculation of ∂E/∂X is important for propagating the gradi-
ent to the previous layer, the calculation of ∂E/∂W is key to the weight value adjust-
ments of the current layer.

void convLayer_backward_xgrad(int M, int C, int H_in, int W_in, int K, 
float* dE_dY, float* W, float* dE_dX) 

{
int m, c, h, w, p, q;
int H_out = H_in – K + 1;
int W_out = W_in – K + 1; 
for(c = 0;  c < C; c++)
for(h = 0; h < H_in; h++)
for(w = 0; w < W_in; w++)

dE_dX[c, h, w] = 0.;

for(m = 0;  m < M;  m++) 
for(h = 0; h < H_out; h++)
for(w = 0; w < W_out; w++) 

for(c = 0;  c < C; c++)
for(p = 0; p < K; p++)
for(q = 0; q < K; q++)  
dE_dX[c, h + p, w + q] += dE_dY[m, h, w] * W[m, c, p, q];

}

FIGURE 16.8

dE/dX calculation of the backward path of a convolution layer.
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After the ∂E/∂W values at all positions of feature map elements are evaluated, 
weights are updated iteratively to minimize the expected error: W(t + 1) = W(t) − λ* 
∂E/∂W, where λ is a constant called the learning rate. The initial value of λ is set 
empirically and reduced through the iterations in accordance with the rule defined by 
the user. The value of λ is reduced through the iterations to ensure the convergence to 
a minimal error. The negative sign of the adjustment term makes the change opposite 
to the direction of the gradient so that the change will likely reduce the error. Recall 
that the weight values of the layers determine how the input is transformed through 
the network. This adjustment of the weight values of all the layers adapts the behav-
ior of the network, i.e. the network “learns” from a sequence of labeled training data 
and adapts its behavior by adjusting weight values at all layers.

The training data sets are usually large; thus, the training of ConvNets is typically 
accomplished using Stochastic Gradient Descent. Instead of performing a forward–
backward step to determine ∂E/∂W for the whole training data set, one randomly 
selects a small subset (“mini-batch”) of N images from the training data set and 
computes the gradient only for this subset. Subsequently, one selects another subset, 
and so on. If we would work by the “optimization book,” we should return samples 
to the training set and then build a new mini-batch by randomly picking subsequent 
samples. In practice, we go sequentially over the entire training set. We then shuffle 
the entire training set and start the subsequent epoch. This procedure adds one addi-
tional dimension to all data arrays with n—the index of the sample in the mini-batch. 
It also adds another loop over samples.

Fig. 16.10 shows the revised forward path implementation of a convolutional 
layer. It generates the output feature maps for all samples of a mini-batch. During 

void convLayer_backward_wgrad(int M, int C, int H, int W, int K,
float* dE_dY, float* X, float* dE_dW) 

{
int m, c, h, w, p, q;
int H_out = H - K + 1;
int W_out = W - K + 1; 
for(m = 0; m < M; m++)
for(c = 0; c < C; c++)
for(p = 0; p < K; p++)
for(q = 0; q < K; q++)  
dE_dW[m, c, p, q] = 0.;

for(m = 0;  m < M;  m++)
for(h = 0; h < H_out; h++)
for(w = 0; w < W_out; w++) 
for(c = 0;  c < C; c++)

for(p = 0; p < K; p++)
for(q = 0; q < K; q++)  
dE_dW[m, c, p, q] += X[c, h + p, w + q] * dE_dY[m, c, h, w];

}

FIGURE 16.9

dE/dW calculation of the backward path of a convolutional layer.
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backpropagation, one first computes for the average gradient of the error with respect 
to the weights of the last layer over all samples in a mini-batch. The gradient is then 
propagated backward through the layers and used to adjust all the weights. Each iter-
ation of the weight adjustment processes one mini-batch. The training is measured in 
epochs, where one epoch is a sequential pass over all the samples in the training data 
set. The training data set is typically reshuffled between epochs.

16.3  �CONVOLUTIONAL LAYER: A BASIC CUDA 
IMPLEMENTATION OF FORWARD PROPAGATION

The computation pattern in training a convolutional network is highly similar to 
matrix multiplication: compute-intensive and highly parallel. We can compute in dif-
ferent parallel samples in a mini-batch, different output feature maps for the same 
sample, and different elements for each output feature map. Fig. 16.11 presents a 
conceptual parallel code for the forward path of a convolutional layer. Each paral-
lel_for loop indicates that all its iterations can be executed in parallel.

As shown in Fig. 16.11, the parallelism in the forward-path convolutional layer 
has four levels. The total number of parallel iterations is the product N*M*H_out*W_
out. This high degree of available parallelism makes ConvNets an excellent candi-
date for GPU acceleration. To illustrate, forward path for a convolutional layer is 
implemented.

We will refine the high-level parallel code into a kernel by making some high-
level design decisions. Assume that each thread will compute one element of one 
output feature map. We will use 2D thread blocks, with each thread block computing 
a tile of TILE_WIDTH x TILE_WIDTH elements in one output feature map. For instance, 

void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W, float* Y)
{ 

int n, m, c, h, w, p, q;
int H_out = H– K + 1;
int W_out = W – K + 1;  
for(n = 0;  n < N;  n++) // for each sample in the mini-batch
for(m = 0;  m < M;  m++) // for each output feature maps
for(h = 0; h < H_out; h++) / / for each output element
for(w = 0; w < W_out; w++) {
Y[n, m, h, w] = 0;
for (c = 0;  c < C; c++) // sum over all input feature maps
for (p = 0; p < K; p++) // KxK  filter
for (q = 0; q < K; q++)  

Y[n, m, h, w]  += X[n, c, h + p, w + q] * W[m, c, p, q]; 
}

}

FIGURE 16.10

Forward path of a convolutional layer with mini-batch training.
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if we set TILE_WIDTH=16, we would have a total of 256 threads per block. Blocks will 
be organized into a 3D grid:

1.	 The first dimension (X) of the grid corresponds to samples (N) in the batch;
2.	 The second dimension (Y) corresponds to the (M) output features maps; and
3.	 The last dimension (Z) will define the location of the output tile inside the 

output feature map.

The last dimension Z depends on the number of tiles in the horizontal and verti-
cal dimensions of the output image. Assume for simplicity that H_out (height of the 
output image) and W_out (width of the output image) are multiples of the tile width 
(set to 16 below):

# define TILE_WIDTH 16
W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map
H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map
Z = H_grid * W_grid;
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
dim3 gridDim(N, M, Z);
ConvLayerForward_Kernel<<< gridDim, blockDim>>>(…);

As previously discussed, each thread block is responsible for computing one 
16 × 16 tile in the output Y(n, c, ., .), and each thread will compute one element  
Y[n, m, h, w] where

n = blockIdx.x;
m = blockIdx.y;
h = blockIdx.z / W_grid + threadIdx.y;
w = blockIdx.z % W_grid + threadIdx.x;

void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W, float* Y) 
{  

int n, m, c, h, w, p, q;
int H_out = H - K + 1;
int W_out = W - K + 1;
parallel_for(n = 0;  n < N;  n++)
parallel_for (m = 0;  m < M;  m++)
parallel_for(h = 0; h < H_out; h++)
parallel_for(w = 0; w < W_out; w++) {
Y[n, m, h, w] = 0;
for (c = 0;  c < C; c++)
for (p = 0; p < K; p++)

Y[n, m, h, w] += X[n, c, h + p, w + q] * W[m, c, p, q]; 
for (q = 0; q < K; q++)  

}
}

FIGURE 16.11

Parallelization of the forward path of a convolutional layer with mini-batch training.
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This result is the kernel shown in Fig. 16.12. Note that in the code above, we use a 
multidimensional index in arrays. We leave it to the reader to translate this pseudo-code 
into a regular C, with the assumption that X, Y, and W must be accessed via linearized 
indexing based on a row-major layout (see Chapter 3: Scalable parallel execution).

The kernel in Fig. 16.12 exhibits a considerably high degree of parallelism but 
consumes excessive global memory bandwidth. Like in the convolution-based pat-
tern, the execution speed of the kernel will be limited by the global memory band-
width. We will now modify the basic kernel to reduce traffic to global memory. We 
can use shared memory tiling to dramatically improve the execution speed of the ker-
nel as in Chapter 7, Parallel patterns: convolution. The kernel appears in Fig. 16.13. 
The basic design is stated in the comments and outlined below, as follows:

1.	 Load the filter W[m, c] into the shared memory.
2.	 All threads collaborate to copy the portion of the input X[n,c,.,.] that is 

required to compute the output tile into the shared memory array X_shared.
3.	 Compute for the partial sum of output Y_shared[n, m,.,.].
4.	 Move to the next input channel c.

We need to allocate shared memory for the input block X_tile_width * X_tile_
width, where X_tile_width = TILE_WIDTH + K-1. We also need to allocate shared 
memory for K*K filter coefficients. Thus, the total amount of shared memory will be 
(TILE_WIDTH + K-1)* (TILE_WIDTH + K-1)+ K*K. Since we do not know K at com-
pile time, we need to add it to the kernel definition as the third parameter.

    …
    size_t shmem_size = sizeof(float) * ( (TILE_WIDTH + K-1)*(TILE_
WIDTH + K-1) + K*K );
    ConvLayerForward_Kernel<<< gridDim, blockDim, shmem_size>>>(…);
    …

__global__ void
ConvLayerForward_Kernel(int C, int W_grid, intK, float* X, float* W, float* Y) 
{

int n, m, h, w, c, p, q;
n = blockId.x;
m = blockId.y;
h = blockId.z / W_grid + threadId.y;
w = blockId.z % W_grid + threadId.x;
float acc = 0.;
for (c = 0;  c < C; c++) { // sum over all input channels
for (p = 0; p < K; p++) // loop over KxK  filter
for (q = 0; q < K; q++)  
acc = acc + X[n, c, h + p, w + q] * W[m, c, p, q];

}
Y[n, m, h, w] = acc;

}

FIGURE 16.12

Kernel for the forward path of a convolution layer.

16.3  Convolutional layer
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We will divide the shared memory between the input buffer and the filter inside 
the kernel. The first X_tile_width * X_tile_width entries are allocated to the input 
tiles, and the remaining entries are allocated to the weight values.

The use of shared memory tiling leads to a considerably high level of acceleration 
in the execution of the kernel. The analysis is similar to that discussed in Chapter 7, 
Parallel patterns: convolution, and is left as an exercise to the reader.

__global__ void 
ConvLayerForward_Kernel(int C, int W_grid, int K, float* X, float* W, float* Y) 
{

int n, m, h0, w0, h_base, w_base, h, w;
int X_tile_width = TILE_WIDTH + K-1;
extern __shared__ float shmem[];
float* X_shared = &shmem[0];
float* W_shared = &shmem[X_tile_width * X_tile_width];
n = blockIdx.x;
m = blockIdx.y;
h0 = threadIdx.x;  // h0 and w0 used as shorthand for threadIdx.x and threadIdx.y 
w0 = threadIdx.y;
h_base = (blockIdx.z / W_grid) * TILE_SIZE; // vertical base out data index for the block
w_base = (blockIdx.z % W_grid) * TILE_SIZE; // horizontal base out data index for the block
h = h_base+ h0;
w = w_base+ w0;

float acc = 0.;
int c, i, j, p, q;
for (c = 0; c < C; c++) { // sum over all input channels

// load weights for W [m, c,..], 
// h0 and w0 used as shorthand for threadIdx.x 
// and threadIdx.y

if (( h0 < K) && ( w0 < K))
W_shared[h0, w0]= W [m, c, h0, w0];  
__syncthreads()

// load tile from X[n, c,…]into shared memory

for (i = h; i < h_base+ X_tile_width; i += TILE_WIDTH) {
for (j = w; j < w_base + X_tile_width; j += TILE_WIDTH)
X_shared[i -h_base, j -w_base] = X[n, c, h, w] 

}  

__syncthreads();
for (p = 0; p < K; p++) {
for (q = 0; q < K; q++)  
acc = acc + X_shared[h + p, w + q] * W_shared[p, q];

}
__syncthreads();

}
Y[n, m, h, w] = acc;

}

FIGURE 16.13

A kernel that uses shared memory tiling to reduce the global memory traffic of the forward 
path of the convolutional layer.
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16.4  �REDUCTION OF CONVOLUTIONAL LAYER TO MATRIX 
MULTIPLICATION

We can build an even faster convolutional layer by reducing it to matrix multiplica-
tion and then using highly efficient matrix multiplication, GEneral Matrix to Matrix 
Multiplication (GEMM), from CUDA linear algebra library (cuBLAS). This method 
was proposed by Chellapilla, Puri, and Simard [CPS 2006]. The central idea is 
unfolding and replicating the inputs to the convolutional kernel such that all ele-
ments needed to compute one output element will be stored as one sequential block. 
This technique will reduce the forward operation of the convolutional layer to one 
large matrix–matrix multiplication. See also https://petewarden.com/2015/04/20/
why-gemm-is-at-the-heart-of-deep-learning/ for an elaborate explanation.

Consider a convolutional layer that takes as input C = 3 feature maps of size 
3 × 3 and produces the M = 2 output features 2 × 2. It uses M*C = 6 filter banks, with 
each filter bank of size 2 × 2. The matrix version of this layer will be constructed as 
follows:

First, we will rearrange all input elements. Since the results of the convolutions 
are summed across input features, the input features can be concatenated into one 
large matrix. Each row of this matrix contains all input values necessary to compute 
one element of an output feature. This process means that each input element will be 
replicated multiple times. To illustrate, the center of each 3 × 3 input feature is used 
four times to compute for each element of an output feature for it to be reproduced 
four times. The central element on each edge is used two times so that it will be 
duplicated. The four elements at the corners of each input feature are used only once 
and will not need to be reproduced. Therefore, the total number of elements in the 
expanded input feature matrix is 4*1 + 2*4 + 1*4 = 16.

In general, the size of the expanded (unrolled) input feature map matrix can be 
derived by considering the number of input feature map elements required to gener-
ate each output feature map element. In general, the height (or the number of rows) 
of the expanded matrix is the number of input feature elements contributing to each 
output feature map element. The number is C*K*K: each output element is the con-
volution of K*K elements from each input feature map, and there are C input feature 
maps. In our example, K is two since the filter bank is 2 × 2, and there are three input 
feature maps. Thus, the height of the expanded matrix should be 3*2*2 = 12, which 
is exactly the height of the matrix in Fig. 16.14.

The width, or the number column, of the expanded matrix should be the number 
of elements in each output feature map. Assuming that the output feature maps are 
H_out x W_out matrices, the number of columns of the expanded matrix is H_out*W_
out. In our example, each output feature map is a 2 × 2 matrix so that the expanded 
matrix consists of four columns. The number of output feature maps M does not 
affect the duplication as all output feature maps share the same expanded matrix.

The ratio of expansion for the input feature maps is the size of the expanded 
matrix over the total size of the original input feature maps. The reader should verify 

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
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that the expansion ratio is (K*K*H_out*W_out)/(H_in*W_in), where H_in and W_in 
denote the height and width of each input feature map, respectively. In our example, 
the ratio is (2*2*2*2)/(3*3) = 16/9. In general, if the input feature maps and output 
feature maps are much larger than the filter banks, the ratio will approach K*K.

The filter banks are represented as a filter-bank matrix in a fully linearized lay-
out, where each row contains all weight values needed to produce one output fea-
ture map. The height of the filter-bank matrix is the number of output feature maps 
(M). The height of the filter-bank matrix allows the output feature maps to share 
a single expanded input matrix. Meanwhile, the width of the filter-bank matrix is 
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Reduction of a convolutional layer to GEMM.
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the number of weight values needed to generate each output feature map element, 
which is C*K*K. Note that no duplication occurs when placing the weight values into 
the filter-banks matrix. In our example, the filter-bank matrix is simply a linearized 
arrangement of six filter banks.

When the filter-bank matrix W is multiplied by the expanded input matrix  
X_unrolled, the output features Y are computed as one large matrix of height M and 
width H_out*W_out.

The discussion that follows is on the method of implementing this algorithm in 
CUDA. We will first discuss the data layout, starting with the layout of the input and 
output matrices.

●	 We assume that the input feature map samples in a mini-batch will be supplied 
in the same way as that for the basic CUDA kernel. It is organized as an  
N x C x H x W array, where N is the number of samples in a mini-batch, C is the 
number of input feature maps, H is the height of each input feature map, and W is 
the width of each input feature map.

●	 As shown in Fig. 16.14, the matrix multiplication will naturally generate an 
output Y stored as an M x H_out*W_out array. This output is what the original 
basic CUDA kernel would generate.

●	 Since the filter-bank matrix does not involve duplication of weight values, we 
assume that it will be prepared as early and organized as an M x C x (K x K) 
array, as illustrated in Fig. 16.14.

The preparation of the expanded input feature map matrix X_unroll involves 
greater complexity. Since each expansion increases the size of the input by approxi-
mately up to K*K times, the expansion ratio can be very large for typical K values of 
5 or larger. The memory footprint for keeping all sample input feature maps for a 
mini-batch can be prohibitively large. To reduce the memory footprint, we will allo-
cate only one buffer for X_unrolled [C * K * K* H_out * W_out]. We will reuse 
this buffer by adding a loop over samples in the batch. During each iteration, we will 
convert the simple input feature map from its original form into the expanded matrix.

Fig. 16.15 shows the sequential implementation of the forward path of a convo-
lutional layer with matrix multiplication. The code loops through all samples in the 
batch.

Fig. 16.16 shows a sequential function that produces the X_unroll array by gath-
ering and duplicating the elements of an input feature map X. The function uses five 
levels of loops. The two innermost levels of the for-loop (w and h) place one element of 
the input feature map for each of the output feature map elements. The next two levels 
repeat the process for each of the K*K element of the input feature map for the filter-
ing operations. The outermost loop repeats the process of all input feature maps. This 
implementation is conceptually straightforward and can be quite easily parallelized 
since the loops do not impose dependencies among their iterations. In addition, succes-
sive iterations of the innermost loop read from a localized tile of one of the input fea-
ture maps in X and write into sequential locations in the expanded matrix X_unrolled. 
This process should result in efficient usage of memory bandwidth on a CPU.
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We are now ready to design a CUDA kernel that implements the input feature 
map unrolling. Each CUDA thread will be responsible for gathering (K*K) input 
elements from one input feature map for one element of an output feature map. The 
total number of threads will be (C * H_out * W_out). We will use one-dimensional 
blocks. If we assume that a maximum number of threads per block is CUDA_MAX_NUM_
THREADS (e.g., 1024), the total number of blocks in the grid will be num_blocks = 
ceil((C*H_out*W_out) / CUDA_MAX_NUM_THREADS) (Fig. 16.17).

Fig. 16.18 illustrates an implementation of the unroll kernel. Each thread will 
build a K*K section of a column, shown as a shaded box in the Input Features  
X_Unrolled array in Fig. 16.14. Each such section contains all elements of the input 

void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W_unroll, float* Y)
{

int W_out = W– K + 1;  
int H_out = H– K + 1;
int W_unroll = C * K * K;
int H_unroll = H_out * W_out;
float* X_unrolled = malloc(W_unroll * H_unroll * sizeof(float));
for (int n=0; n < N; n++) {
unroll(C, H, W, K, n,X, X_unrolled);
gemm(H_unroll, M, W_unroll, X_unrolled, W, Y[n]);

}
}

FIGURE 16.15

Implementing the forward path of a convolutional layer with matrix multiplication.

void unroll(int C, int H, int W, int K, float* X, float* X_unroll) 
{

int c, h, w, p, q, w_base, w_unroll, h_unroll;
int H_out = H– K + 1;
int W_out = W– K + 1; 
for(c = 0; c < C; c++) {
w_base = c * (K*K);
for(p = 0; p < K; p++)
for(q = 0; q < K; q++) {
for(h = 0; h <  H_out; h++)
for(w = 0; w < W_out; w++){

w_unroll = w_base + p * K + q;
h_unroll = h * W_out + w;
X_unroll(h_unroll, w_unroll) = X(c, h + p, w + q); 

}
}

}

FIGURE 16.16

The function that generates the unrolled X matrix.
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feature map X from channel c, which is required for convolution with a correspond-
ing filter to produce one element of output Y.

Comparison of the loop structure in Figs. 16.16 and 16.18 indicates that the two 
innermost loop levels in Fig. 16.16 have been exchanged into outer level loops. 
Having each thread collect all input feature map elements from an input feature map 
needed to generate an output generates a coalesced memory write pattern. As shown 
in Fig. 16.16, adjacent threads will be writing adjacent X_unroll elements in a row 
as they all move vertically to complete their sections. The read access patterns to X 
are similar. We leave the analysis of the read access pattern as an exercise.

void unroll_gpu(int C, int H, int W, int K, float* X, float* X_unroll) 
{

int H_out = H – K + 1;
int W_out = W– K + 1;  
int num_threads = C * H_out * W_out;
int num_blocks = ceil((C * H_out * W_out) / CUDA MAX_NUM_THREADS);
unroll_Kernel<<<num_blocks, CUDA MAX_NUM_THREADS>>>();

}

FIGURE 16.17

Host code for invoking the unroll kernel.

__global__ void unroll_Kernel(int C, int H, int W, int K, float* X, float* X_unroll) 
{

int c, s, h_out, w-out, h_unroll, w_base, p, q;  
int t = blockId.x * CUDA MAX_NUM_THREADS + threadId.x;
int H_out = H– K + 1;
int W_out = W– K + 1; 
int W_unroll = H_out * W_out;

if (t < C * W_unroll) {
c = t / W_unroll; 
s = t % W_unroll;
h_out = s / W_out;
w_out = s % W_out;
h_unroll = h_out * W_out + w_out;
w_base = c * K * K;
for(p = 0; p < K; p++) 
for(q = 0; q < K; q++) {
w_unroll = w_base + p * K + q;
X_unroll(h_unroll, w_unroll) = X(c, h_out + p, w_out + q);

}
}

}

FIGURE 16.18

High-performance implementation of the unroll kernel.
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An important high-level assumption is that we keep the input feature maps, filter 
bank weights, and output feature maps in the device memory. The filter-bank matrix 
is prepared once and stored in the device global memory for use by all input feature 
maps. For each sample in the mini-batch, we launch the unroll_Kernel to prepare an 
expanded matrix and launch a matrix multiplication kernel, as outlined in Fig. 16.15.

Implementing convolutions with matrix multiplication can be highly efficient 
because matrix multiplication is highly optimized on all hardware platforms. Matrix 
multiplication is especially fast on GPUs because it has a high ratio of floating-
point operations per byte of global memory data access. This ratio increases as the 
matrices become larger, implying that matrix multiplication is less efficient on small 
matrices. Accordingly, this approach to convolution is most effective when it creates 
large matrices for multiplication.

As mentioned earlier, the filter-bank matrix is an M x C*K*K matrix and the 
expanded input feature map matrix is a C*K*K x H_out*W_out matrix. Note that 
except for the height of the filter-bank matrix, the sizes of all dimensions depend on 
the products of the parameters to the convolution, not the parameters themselves. 
While individual parameters can be small, their products tend to be large. The impli-
cation is that the matrices tend to be consistently large; thus, this approach can exhibit 
a consistent performance. For instance, C is often small in the early layers of a convo-
lutional network, whereas H_out and W_out are large. At the end of the network, C is 
large, whereas H_out and W_out tend to be small. However, the product C*H_out*W_
out is usually fairly large for all layers, so performance can be consistently good.

The disadvantage of forming the expanded input feature map matrix is that it 
involves duplicating the input data up to K*K times, which can require a prohibitively 
large temporary allocation. To work around this, implementations such as the one 
shown in Fig. 16.15 materialize the X_unroll matrix piece by piece, e.g. by forming 
the expanded input feature map matrix and calling matrix multiplication iteratively 
for each sample of the mini-batch. However, this process limits the parallelism in the 
implementation and can lead to matrix multiplication being too small to effectively 
use the GPU. This approach also lowers the computational intensity of the convolu-
tions. The reason is that X_unroll must be written and read, in addition to X read-
ing itself, requiring significantly more memory traffic as a more direct approach. 
Accordingly, the highest performance implementation involves even more complex 
arrangements in realizing the unrolling algorithm to both maximize GPU utilization 
while keeping the reading from DRAM minimal. We will return to this point when 
we present the cuDNN approach in the subsequent section.

16.5  CUDNN LIBRARY
cuDNN is a library of optimized routines for implementing deep learning primitives 
[CWVCT-2014]. It was designed to help deep learning frameworks take advantage of 
GPUs. The library provides a flexible, easy-to-use C-language deep learning API that 
integrates neatly into existing frameworks (Caffe, Tensorflow, Theano, Torch, etc.). 
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The library requires that input and output data reside in the GPU device memory, as 
discussed in the previous section. This requirement is analogous to that of cuBLAS.

The library is thread-safe, and its routines can be called from different host 
threads. Convolutional routines for the forward and backward paths use a common 
descriptor that encapsulates the attributes of the layer. Tensors and filters are accessed 
through opaque descriptors, with the flexibility to specify the tensor layout by using 
arbitrary strides along each dimension. The most important computational primitive 
in ConvNets is a special form of batched convolution. In this section, we describe the 
forward form of this convolution. The cuDNN parameters governing this convolution 
are listed in Table 16.1.

There are two inputs to convolution:

●	 D is a four-dimensional N x C x H x W tensor which forms the input data. 
Tensor is a mathematical term for arrays that have more than two dimensions. 
In mathematics, matrices have only two dimensions. Arrays with three or more 
dimensions are called tensors. For the purpose of this book, one can simply treat 
a T-dimensional tensor as a T-dimensional array.

●	 F is a four-dimensional K x C x R x S tensor, which forms the convolutional 
filters.

The input data array (tensor) D ranges over N samples in a mini-batch, C input 
feature maps per sample, H rows per input feature map, and W columns per input fea-
ture map. The filters range over K output feature maps, C input feature maps, R rows 
per filter bank, and S columns per filter bank. The output is also a four-dimensional 
tensor O that ranges over N samples in the mini-batch, K output feature maps, P rows 
per output feature map, and Q columns per output feature map, where P = f(H;R; u; 
pad_h) and Q = f(W; S; v; pad_w). The height and width of the output feature maps 

Table 16.1  Convolution Parameters for cuDNN

Parameter Meaning

N Number of images in mini-batch
C Number of input feature maps
H Height of input image
W Width of input image
K Number of output feature maps
R Height of filter
S Width of filter
u Vertical stride
v Horizontal stride
pad_h Height of zero padding
pad_w Width of zero padding

Note that the cuDNN naming convention is slightly different than what we 
have been using in previous sections.
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depend on the input feature map and filter bank height and width, along with padding 
and striding choices. The striding parameters u and v allow the user to reduce compu-
tational load by computing only a subset of the output pixels. The padding parameters 
allow users to specify the number of rows or columns of 0 entries are appended to 
each feature map for improved memory alignment and/or vectorized execution.

cuDNN supports multiple algorithms for implementing a convolutional layer: 
matrix multiplication-based (GEMM and Winograd [Lavin & Gray]), fast-Fourier-
transform-based [VJM 2014], etc. The GEMM-based algorithm used to implement 
the convolutions with a matrix multiplication is similar to the approach presented 
in Section 16.4. As discussed at the end of Section 16.4 materializing the expanded 
input feature matrix in global memory can be costly in both the global memory space 
and bandwidth consumption. cuDNN prevents this problem by lazily generating and 
loading the expanded input feature map matrix X_unroll into on-chip memory only, 
rather than by gathering it into off-chip memory before calling a matrix multiplica-
tion routine. NVIDIA provides a matrix multiplication-based routine that achieves a 
high utilization of maximal theoretical floating-point throughput on GPUs. The algo-
rithm for this routine is similar to that described in [TLT 2011]. Fixed-sized subma-
trices of the input matrices A and B are successively read into on-chip memory and 
are then used to compute a submatrix of the output matrix C. All indexing complexi-
ties imposed by the convolution are handled in the management of tiles in this rou-
tine. We compute on tiles of A and B while fetching the subsequent tiles of A and B 
from off-chip memory into on-chip caches and other memories. This technique hides 
the memory latency associated with the data transfer; consequently, the matrix mul-
tiplication computation is limited only by the time it takes to perform the arithmetic.

Since the tiling required for the matrix multiplication routine is independent of 
any parameters from the convolution, the mapping between the tile boundaries of  
X_unroll and the convolution problem is nontrivial. Accordingly, the cuDNN 
approach entails computing this mapping and using it to load the correct elements of 
A and B into on-chip memories. This process occurs dynamically as the computation 
proceeds, which allows the cuDNN convolution implementation to exploit optimized 
infrastructure for matrix multiplication. It requires additional indexing arithmetic 
compared with matrix multiplication but fully leverages the computational engine 
of matrix multiplication to perform the work. Once the computation is complete, 
cuDNN performs the required tensor transposition to store the result in the desired 
data layout of the user.

16.6  EXERCISES

1.	 Implement the forward path for the pooling layer described in Section 16.2.

2.	 We used an [N x C x H x W] layout for input and output features. Can we 
reduce the required memory bandwidth by changing it to an [N x H x W x 
C]? What are the potential benefits of the [C x H x W x N] layout?
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3.	 Implement the convolutional layer employing fast Fourier transform by using 
the schema described in [VJM 2014].

4.	 Implement the backward path for the convolutional layer described in  
Section 16.2.

5.	 Analyze the read access pattern to X in unroll_kernel in Fig. 16.18 and 
determine whether the memory reads done by adjacent threads can be 
coalesced.
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We have so far concentrated on the practical experience of parallel programming, 
which consists of features of the CUDA programming model, performance and 
numerical considerations, parallel patterns, and application case studies. We will 
now switch gears to more abstract concepts. We will first generalize parallel pro-
gramming into a computational thinking process that decomposes a domain problem 
into well-defined, coordinated work units that can each be realized with efficient 
numerical methods and well-studied algorithms. A programmer with strong com-
putational thinking skills not only analyzes but also transforms the structure of a 
domain problem: which parts are inherently serial, which parts are amenable to high-
performance parallel execution, and the domain-specific tradeoffs involved in mov-
ing parts from the former category to the latter. With good problem decomposition, 
the programmer can select and implement algorithms that achieve an appropriate 
compromise between parallelism, computational efficiency, and memory bandwidth 
consumption. A strong combination of domain knowledge and computational think-
ing skills is often needed for creating successful computational solutions to chal-
lenging domain problems. This chapter will give the reader more insight into parallel 
programming and computational thinking in general.
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17.1  GOALS OF PARALLEL COMPUTING
Before we discuss the fundamental concepts of parallel programming, it is important 
for us to first review the three main reasons why people pursue parallel computing. 
The first goal is to solve a given problem in less time. For example, an investment 
firm may need to run a financial portfolio scenario risk analysis package on all its 
portfolios during after-trading hours. Such an analysis may require 200 hours on a 
sequential computer. However, the portfolio management process may require that 
analysis be completed in 4 hours in order to be in time for major decisions based on 
that information. Using parallel computing may speed up the analysis and allow it to 
complete within the required time window.

The second goal of using parallel computing is to solve bigger problems within 
a given amount of time. In our financial portfolio analysis example, the investment 
firm may be able to run the portfolio scenario risk analysis on its current portfolio 
within a given time window using sequential computing. However, the firm is plan-
ning on expanding the number of holdings in its portfolio. The enlarged problem size 
would cause the running time of analysis under sequential computation to exceed the 
time window. Parallel computing that reduces the running time of the bigger problem 
size can help accommodate the planned expansion to the portfolio.

The third goal of using parallel computing is to achieve better solutions for a 
given problem and a given amount of time. The investment firm may have been using 
an approximate model in its portfolio scenario risk analysis. Using a more accurate 
model may increase the computational complexity and increase the running time on 
a sequential computer beyond the allowed window. For example, a more accurate 
model may require consideration of interactions between more types of risk factors 
using a more numerically complex formula. Parallel computing that reduces the run-
ning time of the more accurate model may complete the analysis within the allowed 
time window.

In practice, parallel computing may be driven by a combination of these three 
goals.

It should be clear from our discussion that parallel computing is primarily moti-
vated by increased speed. The first goal is achieved by increased speed in running 
the existing model on the current problem size. The second goal is achieved by 
increased speed in running the existing model on a larger problem size. The third 
goal is achieved by increased speed in running a more complex model on the current 
problem size. Obviously, the increased speed through parallel computing can be used 
to achieve a combination of these goals. For example, parallel computing can reduce 
the run time of a more complex model on a larger problem size.

It should also be clear from our discussion that applications that are good can-
didates for parallel computing typically involve large problem sizes and high mod-
eling complexity. That is, these applications process a large amount of data, require 
a lot of computation in each iteration, and/or perform many iterations on the data, 
or both. Applications that do not process large problem sizes or incur high modeling 
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complexity tend to complete within a small amount of time and do not offer much 
motivation for increased speed. In order for a problem to be solved with parallel 
computing, the problem must be formulated in such a way that the large problem can 
be decomposed into sub-problems that can be safely solved at the same time. Under 
such formulation and decomposition, the programmer writes code and organizes data 
to solve these sub-problems concurrently.

In Chapters  14 and 15, Application case study—non-Cartesian MRI and 
Application case study—molecular visualization and analysis, we presented two 
problems that are good candidates for parallel computing. The magnetic resonance 
imaging (MRI) reconstruction problem processes a large amount of k-space sample 
data. Each k-space sample data is also used many times for calculating its contribu-
tions to the reconstructed voxel data. For a reasonably high resolution reconstruc-
tion, each sample data is used a very large number of times. We showed that a good 
decomposition of the FHD problem in MRI reconstruction forms sub-problems that 
each calculate the value of an FHD element. All of these subproblems can be solved 
in parallel with each other. We use a massive number of CUDA threads to solve these 
sub-problems.

Similarly, the electrostatic potential calculation problem involves the calculation 
of the contribution of a large number of atoms to the potential energy of a large num-
ber of grid points. Fig. 15.10 further shows that the electrostatic potential calculation 
problem should be solved with a massively parallel CUDA device only if there are 
400 or more atoms. In reality, this is not a very restricting requirement. A realistic 
molecular system model typically involves at least hundreds of thousands of atoms 
and millions of energy grid points. The electrostatic charge information of each atom 
is used many times in calculating its contributions to the energy grid points. We 
showed that a good decomposition of the electrostatic potential calculation problem 
forms sub-problems that each calculates the energy value of a grid point. All the 
sub-problems can be solved in parallel with each other. We use a massive number of 
CUDA threads to solve these sub-problems.

The process of parallel programming can typically be divided into four steps: 
problem decomposition, algorithm selection, implementation in a language, and per-
formance tuning. The last two steps were the focus of previous chapters. In the next 
two sections, we will discuss the first two steps with more generality as well as depth.

17.2  PROBLEM DECOMPOSITION
Finding parallelism in large computational problems is often conceptually simple but 
can be challenging in practice. The key is to identify the work to be performed by 
each unit of parallel execution, which is a thread, so that the inherent parallelism of 
the problem is well utilized. For example, in the electrostatic potential map calcula-
tion problem, it is clear that all atoms can be processed in parallel and all energy grid 
points can be calculated in parallel. However, one must take care when decomposing 
the calculation work into units of parallel execution, which will be referred to as 
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threading arrangement. As we discussed in Section 15.2, the decomposition of the 
electrostatic potential map calculation problem can be atom-centric or grid-centric. 
In an atom-centric threading arrangement, each thread is responsible for calculating 
the effect of one atom on all grid points. In contrast, a grid-centric threading arrange-
ment uses each thread to calculate the effect of all atoms on a grid point.

While both threading arrangements lead to similar levels of parallel execution 
and same execution results, they can exhibit very different performance in a given 
hardware system. The grid-centric arrangement has a memory access behavior called 
gather, where each thread gathers or collects the effect of input atoms into a grid 
point. Fig. 17.1A illustrates the gather access behavior. Gather is a desirable thread 
arrangement in CUDA devices because the threads can accumulate their results in 
their private registers. Also, multiple threads share input atom values, and can effec-
tively use constant memory caching or shared memory to conserve global memory 
bandwidth.

The atom-centric arrangement, on the other hand, exhibits a memory access 
behavior called scatter, where each thread scatters or distributes the effect of an atom 
into grid points. The scatter behavior is illustrated in Fig. 17.1B. This is an undesir-
able arrangement in CUDA devices because the multiple threads can write into the 
same grid point at the same time. The grid points must be stored in a memory that 
can be written by all the threads involved. Atomic operations must be used to prevent 
race conditions and loss of value during simultaneous writes to a grid point by mul-
tiple threads. These atomic operations are typically slower than the register accesses 
used in the atom-centric arrangement. Understanding the behavior of the threading 
arrangement and the limitations of hardware allows a parallel programmer to steer 
toward the more desired gather-based arrangement.

A real application often consists of multiple modules that work together. Fig. 17.2 
shows an overview of major modules of a molecular dynamics application. For each 
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37317.2  Problem decomposition

atom in the system, the application needs to calculate the various forms of forces, 
e.g., vibrational, rotational, and nonbonded, that are exerted on the atom. Each form 
of force is calculated by a different method. At the high level, a programmer needs to 
decide how the work is organized. Note that the amount of work can vary dramati-
cally between these modules. The nonbonded force calculation typically involves 
interactions among many atoms and incurs much more calculation than the vibra-
tional and rotational forces. Therefore, these modules tend to be realized as separate 
passes over the force data structure.

The programmer needs to decide if each pass is worth implementing in a CUDA 
device. For example, he/she may decide that the vibrational and rotational force calcu-
lations do not involve sufficient amount of work to warrant execution on a device. Such 
a decision would lead to a CUDA program that launches a kernel that calculates non-
bonded force fields for all the atoms while continuing to calculate the vibrational and 
rotational forces for the atoms on the host. The module that updates atomic positions 
and velocities may also run on the host. It first combines the vibrational and rotational 
forces from the host and the nonbonded forces from the device. It then uses the com-
bined forces to calculate the new atomic positions and velocities.

The portion of work done by the device will ultimately decide the application 
level speedup achieved by parallelization. For example, assume that the nonbonded 
force calculation accounts for 95% of the original sequential execution time and it is 
accelerated by 100× using a CUDA device. Further assume that the rest of the appli-
cation remains on the host and receives no speedup. The application level speedup is 
1/(5% + 95%/100) = 1/(5% + 0.95%) = 1/(5.95%) = 17×. This is a demonstration 
of Amdahl’s Law: the application speedup due to parallel computing is limited by the 
sequential portion of the application. In this case, even though the sequential portion 
of the application is quite small (5%), it limits the application level speedup to 17× 
even though the nonbonded force calculation has a speedup of 100×. This example 
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illustrates a major challenge in decomposing large applications: the accumulated 
execution time of small activities that are not worth parallel execution on a CUDA 
device can become a limiting factor in the speedup seen by the end users.

Amdahl’s Law often motivates task-level parallelization. Although some of these 
smaller activities do not warrant fine-grained massive parallel execution, it may be 
desirable to execute some of these activities in parallel with each other when the data 
set is large enough. This could be achieved by using a multi-core host to execute such 
tasks in parallel. Alternatively, we could try to simultaneously execute multiple small 
kernels, each corresponding to one task. The previous CUDA devices did not support 
such parallelism but the new generation devices such as Kepler do.

An alternative approach to reducing the effect of sequential tasks is to exploit data 
parallelism in a hierarchical manner. For example, in a Message Passing Interface 
(MPI) [MPI 2009] implementation, a molecular dynamics application would typi-
cally distribute large chunks of the spatial grids and their associated atoms to nodes 
of a networked computing cluster. By using the host of each node to calculate the 
vibrational and rotational force for its chunk of atoms, we can take advantage of 
multiple host CPUs and achieve speedup for these lesser modules. Each node can 
use a CUDA device to calculate the nonbonded force at higher levels of speedup. 
The nodes will need to exchange data to accommodate forces that go across chunks 
and atoms that move across chunk boundaries. We will discuss more details of joint 
MPI-CUDA programming in Chapter 18, Programming a heterogeneous cluster. The 
main point here is that MPI and CUDA can be used in a complementary way in appli-
cations to jointly achieve a higher level of speed with large data sets.

17.3  ALGORITHM SELECTION
An algorithm is a step-by-step procedure where each step is precisely stated and can 
be carried out by a computer. An algorithm must exhibit three essential properties: 
definiteness, effective computability, and finiteness. Definiteness refers to the notion 
that each step is precisely stated; there is no room for ambiguity as to what is to be 
done. Effective computability refers to the fact that each step can be carried out by 
a computer. Finiteness means that the algorithm must be guaranteed to terminate.

Given a problem, we can typically come up with multiple algorithms to solve the 
problem. Some require fewer steps of computation than others; some allow a higher 
degree of parallel execution than others; some have better numerical stability than 
others, and some consume less memory bandwidth than others. Unfortunately, there 
is often not a single algorithm that is better than others in all the four aspects. Given 
a problem and a decomposition strategy, a parallel programmer often needs to select 
an algorithm that achieves the best compromise for a given hardware system.

In our matrix–matrix multiplication example, we decided to decompose the 
problem by having each thread compute the dot product for an output element. 
Given this decomposition, we presented two different algorithms. The algorithm in  
Section 4.2 is a straightforward algorithm where every thread simply performs 
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an entire dot product. Although the algorithm fully utilizes the parallelism avail-
able in the decomposition, it consumes too much global memory bandwidth. In  
Section 4.4, we introduced tiling, an important algorithm strategy for conserving 
memory bandwidth. Note that the tiled algorithm partitions the dot products into 
phases. All threads involved in a tile must synchronize with each other so that they 
can collaboratively load the tile of input data into the shared memory and collec-
tively utilize the loaded data before they move on to the next phase. As we showed in  
Fig. 4.16, the tiled algorithm requires each thread to execute more statements 
and incur more overhead in indexing the input arrays than the original algorithm. 
However, it runs much faster because it consumes much less global memory band-
width. In general, tiling is one of the most important algorithm strategies for matrix 
applications to achieve high performance.

As we demonstrated in Sections 5.5 and 15.3, we can systematically merge threads 
to achieve a higher level of instruction and memory access efficiency. In Section 5.5, 
threads that handle the same columns of neighboring tiles are combined into a new 
thread. This allows the new thread to access each M element only once while calculat-
ing multiple dot products, reducing the number of address calculations and memory 
load instructions executed. It also further reduces the consumption of global memory 
bandwidth. The same technique, when applied to the DCS kernel in electrostatic poten-
tial calculation, further reduces the number of distance calculations while achieving a 
similar reduction in address calculations and memory load instructions.

One can often invent even more aggressive algorithm strategies. An important 
algorithm strategy, referred to as cutoff binning, can significantly improve the execu-
tion efficiency of grid or particle algorithms by sacrificing a small amount of accu-
racy. This is based on the observation that many grid or particle calculation problems 
are based on physical laws where numerical contributions from particles or samples 
that are far away from a grid point or particle can be collectively treated with an 
implicit method at much lower computational complexity. This is illustrated for the 
electrostatic potential calculation in Fig. 17.3. Fig. 17.3A shows the direct summa-
tion algorithms discussed in Chapter 15, Application case study—molecular visuali-
zation and analysis. Each grid point receives contributions from all atoms. While this 
is a very parallel approach and achieves excellent speedup over CPU-only execution 
for moderate-sized energy grid systems, as we showed in Section 15.5, it does not 
scale well to very large energy-grid systems where the number of atoms increases 
proportional to the volume of the system. The amount of computation increases with 
the square of the volume. For large volume systems, such an increase makes the 
computation excessively long even for massively parallel devices.

In practice, we know that each grid point needs to receive contributions from 
atoms that are close to it. The atoms that are far away from a grid point will have 
negligible contribution to the energy value at the grid point because the contribu-
tion is inversely proportional to the distance. Fig. 17.3B illustrates this observation 
with a circle drawn around a grid point. The contributions to the grid point energy 
from atoms outside the circle (maroon (dark gray in print versions)) are negligible. If 
we can devise an algorithm where each grid point only receives contributions from 
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atoms within a fixed radius of its coordinate (green (light gray in the print versions)), 
the computational complexity of the algorithm would be reduced, becoming linearly 
proportional to the volume of the system. This would make the computation time of 
algorithm linearly proportional to the volume of the system. Such algorithms have 
been used extensively in sequential computation.

In sequential computing, a simple cutoff algorithm handles one atom at a time. 
For each atom, the algorithm iterates through the grid points that fall within a radius 
of the atom’s coordinate. This is a straightforward procedure since the grid points are 
in an array that can be easily indexed as a function of their coordinates. However, this 
simple procedure does not carry easily to parallel execution. The reason is what we 
discussed in Section 17.2: the atom-centric decomposition does not work well due to 
its scatter memory access behavior. However, as we discussed in Chapter 8, Parallel 
patterns – prefix-sum, it is important that a parallel algorithm matches the work effi-
ciency of an efficient sequential algorithm.

Therefore, we need to find a cutoff binning algorithm based on the grid-centric 
decomposition: each thread calculates the energy value at one grid point. Fortunately, 
there is a well-known approach to adapting direct summation algorithm, such as the 
one in Fig. 15.9, into a cutoff binning algorithm. Rodrigues et al. presents such an 
algorithm for the electrostatic potential problem [RSH 2008].

The key idea of the algorithm is to first sort the input atoms into bins according to 
their coordinates. Each bin corresponds to a box in the grid space and it contains all 
atoms whose coordinates falls into the box. We define a “neighborhood” of bins for a 
grid point to be the collection of bins that contain all the atoms that can contribute to 

(A)

At each grid point, sum the
electrostatic potential from
all charges

(B)
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(C)

Spatially sort charges into
bins; adapt direct
summation to process a bin

+ +

+ + + +

+ + + +

+

+ + + +

+ + + +

+ + + +

+

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

+ + +

+ + +

+ +

FIGURE 17.3

Cutoff summation algorithm. (A) Direct summation, (B) cutoff summation, and (C) cutoff 
summation using direct summation kernel.
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the energy value of a grid point. If we have an efficient way of managing neighborhood 
bins for all grid points, we can calculate the energy value for a grid point by examining 
the neighborhood bins for the grid point. This is illustrated in Fig. 17.3C. Although 
Fig. 17.3 shows only one layer (2D) of bins that immediately surround that containing 
a grid point as its neighborhood, a real algorithm will typically have multiple layers 
(3D) of bins in a grid’s neighborhood. In this algorithm, all threads iterate through 
their own neighborhood. They use their block and thread indices to identify the appro-
priate bins. Note that some of the atoms in the surrounding bins may not fall into the 
radius. Therefore, when processing an atom, all threads need to check if the atom falls 
into its radius. This can cause some control divergence among threads in a warp.

The main source of improvement in work efficiency comes from the fact that 
each thread now examines a much smaller set of atoms in a large grid system. This, 
however, makes constant memory much less attractive for holding the atoms. Since 
thread blocks will be accessing different neighborhoods, the limited-size constant 
memory will unlikely be able to hold all the atoms that are needed by all active thread 
blocks. This motivates the use of global memory to hold a much larger set of atoms. 
To mitigate the bandwidth consumption, threads in a block collaborate in loading the 
atom information in the common neighborhood into the shared memory. All threads 
then examine the atoms out of shared memory. The reader is referred to Rodrigues 
et al. [RSH 2008] for more details of this algorithm.

One subtle issue with binning is that bins may end up with different numbers 
of atoms. Since the atoms are statistically distributed in space, some bins may have 
lots of atoms and some bins may end up with no atom at all. In order to guarantee 
memory coalescing, it is important that all bins are of the same size and aligned at 
appropriate coalescing boundaries. In order to accommodate the bins with the largest 
number of atoms, we would need to make the size of all other bins the same size. 
This would require us to fill many bins with dummy atoms whose electrical charge 
is 0, which causes two negative effects. First, the dummy atoms still occupy global 
memory and shared memory storage. They also consume data transfer bandwidth to 
the device. Second, the dummy atoms extend the execution time of the thread blocks 
whose bins have few real atoms.

A well-known solution is to set the bin size at a reasonable level, typically much 
smaller than the largest possible number of atoms in a bin. The binning process 
maintains an overflow list. When processing an atom, if the atom’s home bin is full, 
the atom is added to the overflow list instead. After the device completes a kernel, the 
result grid point energy values are transferred back to the host. The host executes a 
sequential cutoff algorithm on the atoms in the overflow list to complete the missing 
contributions from these overflow atoms. As long as the overflow atoms account for 
only a small percentage of the atoms, the additional sequential processing time of the 
overflow atoms is typically shorter than that of the device execution time. One can 
also design the kernel so that each kernel invocation calculates the energy values for 
a subvolume of grid points. After each kernel completes, the host launches the next 
kernel and processes the overflow atoms for the completed kernel. Thus, the host 
will be processing the overflow atoms while the device executes the next kernel. This 
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approach can hide most, if not all, the delays in processing overflow atoms since it is 
done in parallel with the execution of the next kernel.

Fig. 17.4 shows a comparison of scalability and performance of the various elec-
trostatic potential map algorithms. Note that the CPU–SSE3 curve is based on a 
sequential cutoff algorithm. For a map with small volumes, around 1000 Å3 the host 
(CPU with SSE) executes faster than the DCS kernel shown in Fig. 17.4. This is 
because there is not enough work to fully utilize a CUDA device for such a small vol-
ume. However, for moderate volumes, between 2000 Å3 and 500,000 Å3, the Direct 
Summation kernel performs significantly better than the host due to its massive par-
allelism. As we anticipated, the Direct Summation kernel scales poorly when the vol-
ume size reaches about 1,000,000 Å3, and runs longer than the sequential algorithm 
on the CPU! This is due to the fact that the algorithm complexity of the DCS kernel 
is higher than the sequential cut-off algorithm and thus the amount of work done by 
kernel grows much faster than that done by the sequential algorithm. For volume size 
larger than 1,000,000, the amount of work is so large that it swamps the hardware 
execution resources.

Fig. 17.4 also shows the running time of three binned cutoff algorithms. The 
LargeBin algorithm is a straightforward adaptation of the DCS kernel for cutoff. The 
kernel is designed to process a sub-volume of the grid points. Before each kernel 
launch, the CPU transfers all atoms that are in the combined neighborhood of all the 
grid points in the sub-volume. These atoms are still stored in the constant memory. 
All threads examine all atoms in the joint neighborhood. The advantage of the kernel 
is its simplicity. It is essentially the same as the Direct Summation kernel with a rela-
tively large, pre-selected neighborhood of atoms. Note that the LargeBin approach 
performs reasonably well for moderate volumes and scales well for large volumes.
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The SmallBin algorithm allows the threads running within the same kernel to pro-
cess different neighborhoods of atoms. This is the algorithm that uses global memory 
and shared memory for storing atoms. The algorithm achieves higher efficiency than 
the LargeBin algorithm because each thread needs to examine a smaller number 
of atoms. For moderate volumes, around 8000 Å3, the LargeBin algorithm slightly 
outperforms SmallBin. The reason is that the SmallBin algorithm does incur more 
instruction overhead for loading atoms from global memory into shared memory. For 
a moderate volume, there is limited number of atoms in the entire system. The abil-
ity to examine a smaller number of atoms does not provide sufficient advantage to 
overcome the additional instruction overhead. However, the difference is so small at 
8000 Å3 that the SmallBin algorithm is still a clear win across all volume sizes. The 
SmallBin-Overlap algorithm overlaps the sequential overflow atom processing with 
the next kernel execution. It provides a slight but noticeable improvement in run-
ning time over SmallBin. The SmallBin-Overlap algorithm achieves a 17× speedup 
an efficiently implemented sequential CPU–SSE cutoff algorithm and maintains the 
same scalability for large volumes.

17.4  COMPUTATIONAL THINKING
Computational thinking is arguably the most important aspect of parallel application 
development [Wing 2006]. We define computational thinking as the thought process 
of formulating domain problems in terms of computation steps and algorithms. Like 
any other thought processes and problem-solving skill, computational thinking is 
an art. As we mentioned in Chapter 1, Introduction, we believe that computational 
thinking is best taught with an iterative approach where students bounce back and 
forth between practical experience and abstract concepts.

The electrostatic potential map kernels used in Chapter  15, Application case 
study—molecular visualization and analysis, and this chapter serve as good exam-
ples of computational thinking. In order to develop an efficient parallel application 
that solves the electrostatic potential map problem, one must come up with a good 
high-level decomposition of the problem. As we showed in Section 17.2, one must 
have a clear understanding of the desirable (e.g., gather in CUDA) and undesirable 
(e.g., scatter in CUDA) memory access behaviors to make a wise decision.

Given a problem decomposition, parallel programmers face a potentially over-
whelming task of designing algorithms to overcome major challenges in parallel-
ism, execution efficiency, and memory bandwidth consumption. There is a very large 
volume of literature on a wide range of algorithm techniques that can be hard to 
understand. It is beyond the scope of this book to have a comprehensive coverage 
of the available techniques. We did discuss a substantial set of techniques that have 
broad applicability. While these techniques are based on CUDA, they help the read-
ers build up the foundation for computational thinking in general. We believe that 
humans understand best when we learn from the bottom up. That is, we first learn the 
concepts in the context of a particular programming model, which provide us with 
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solid footing before we generalize our knowledge to other programming models. An 
in-depth experience with the CUDA model also enables us to gain maturity, which 
will help us learn concepts that may not even be pertinent to the CUDA model.

There is a myriad of skills needed for a parallel programmer to be an effective 
computational thinker. We summarize these foundational skills as follows:

●	 Computer architecture: memory organization, caching and locality, memory 
bandwidth, Single Instruction, Multiple Thread (SIMT) vs Single Program, 
Multiple Data (SPMD) vs. Single Instruction, Multiple Data (SIMD) execution, 
and floating-point precision vs. accuracy. These concepts are critical in 
understanding the tradeoffs between algorithms.

●	 Programming models and compilers: parallel execution models, types of 
available memories, array data layout, and thread granularity transformation. 
These concepts are needed for thinking through the arrangements of data 
structures and loop structures to achieve better performance.

●	 Algorithm techniques: tiling, cutoff, scatter-gather, binning, and others. 
These techniques form the toolbox for designing superior parallel algorithms. 
Understanding of the scalability, efficiency, and memory bandwidth 
implications of these techniques is essential in computational thinking.

●	 Domain knowledge: numerical methods, precision, accuracy, and numerical 
stability. Understanding these ground rules allows a developer to be much more 
creative in applying algorithm techniques.

Our goal for this book is to provide a solid foundation for all the four areas. The 
reader should continue to broaden his/her knowledge in these areas after finishing this 
book. Most importantly, the best way of building up more computational thinking 
skills is to keep solving challenging problems with excellent computational solutions.

17.5  SINGLE PROGRAM, MULTIPLE DATA,  
SHARED MEMORY AND LOCALITY
At this point, it is worth saying a few words about some different parallel program-
ming models, specifically Shared Memory vs. Message Passing. You may be familiar 
with these concepts from other studies, or you may encounter them later. We have 
focused on shared memory parallel programming, because this is what CUDA (and 
OpenMP, OpenCL) is based on. Also, most if not all future massively parallel micro-
processors are expected to support shared memory at the chip level. The programming 
considerations of the message passing model are quite different; however, you will 
find similar concepts for almost every technique you learned in parallel programming.

In either case, you will need to be aware of space-time constraints. Data local-
ity (or lack thereof) in time of access/use and data locality in access patterns can 
have profound effects on performance. Data sharing, whether intentional or not, can 
be a double-edged sword. Excessive data sharing can drastically reduce the perfor-
mance advantages of parallel execution, so it is important not to overshare. Localized 
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sharing can improve memory bandwidth efficiency without creating conflicts and 
contention. Efficient memory bandwidth usage can be achieved by synchronizing 
the execution of task groups and coordinating their usage of memory and data. Also 
important is efficient use of on-chip, shared storage and datapaths. Read-only sharing 
can usually be done at much higher efficiency than read-write sharing, which often 
requires more synchronization.

You can think of sharing as appearing in one of four modes: Many:Many, 
One:Many, Many:One, or One:One. This is true for both data sharing, and synchro-
nization. You may think of synchronization as “control sharing.” An example is bar-
riers—barriers may cause some threads to wait until other threads catch up. This 
may be good in that execution is aligned, but it is also bad in that waiting is a lost 
opportunity for work. Atomic operations may reduce waiting, but perhaps at the cost 
of serialization. It is important to be aware of which work items are truly independent 
and not introduce false/unnecessary synchronizations into your program.

Program models and data organization drive parallel programming coding styles. 
One very important program model is SPMD. In this model, all PEs (processor 
elements) execute the same program in parallel, but program instance has its own 
unique data. Consequently, each PE uses a unique ID to access its portion of data, 
but each different PE can follow different paths through the same code. This is essen-
tially the CUDA Grid model (also OpenCL, MPI). SIMD is a special case of SPMD 
where the threads move in lock-step—in CUDA execution, SIMD WARPs are used 
for efficiency.

SPMD programming also drives algorithm structures and coding styles. Due to 
the prevalence of massively parallel processors, this is currently the dominant cod-
ing style of scalable parallel computing. MPI code is mostly developed in SPMD 
style, so it is often used for parallel programming in multicore CPUs as well. Many 
OpenMP codes are also created in SPMD style, or utilize loop parallelism. This 
style is particularly suitable for algorithms based on task parallelism and geometric 
decomposition. A powerful advantage of this approach is that tasks and their interac-
tions are visible in one piece of source code, and there is no need to correlate multiple 
sources and algorithm fragments to understand what is going on.

Many SPMD programs look similar, as almost all SPMD programs have the same 
typical program phases. These are:

1.	 Initialize—establish localized data structure and communication channels.
2.	 Uniquify—each thread acquires a unique identifier, typically ranging from 0 to 

N-1, where N is the number of threads. Both OpenMP and CUDA have built-in 
support for this.

3.	 Distribute data—decompose global data into chunks and localize them, or 
sharing/replicating major data structures using thread IDs to associate subsets of 
the data to threads.

4.	 Compute—run the core computation! Thread IDs are used to differentiate the 
behavior of individual threads. Use thread ID in loop index calculations to 
split loop iterations among threads—beware of the potential for memory/data 
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divergence. Use thread ID or conditions based on thread ID to branch to their 
specific actions—beware of the potential for instruction/execution divergence.

5.	 Finalize—reconcile global data structure, and prepare for the next major 
iteration or group of program phases.

You will see this pattern a myriad of times in your journeys through parallel pro-
graming, and it will become second nature for you to organize the solution of your 
problem in this fashion.

17.6  STRATEGIES FOR COMPUTATIONAL THINKING
A good goal for effective use of computing is making science better, not just faster. 
This requires re-examining prior assumptions and really thinking about how to apply 
the big hammer of massively parallel processing. Put another way, there will proba-
bly be no Nobel Prizes or Turing Awards awarded for “just recompile” or using more 
threads with the same computational approach! Truly important scientific discover-
ies will more likely come from fresh computational thinking. Consider this an exhor-
tation to use this bonanza of computing power to solve new problems in new ways.

As a strategy for attacking computation-hungry applications, we can consider a 
three-step approach:

1.	 Tune core software for hardware architecture.
2.	 Innovate at the algorithm level.
3.	 Restructure the mathematical formulation.

This breakdown leads to three options, in increasing order of difficulty, complex-
ity, and not surprisingly, potential for payoff. Let us call these good, better, and best!

The “good” approach is simply to “accelerate” legacy program codes. The most 
basic approach is simply to recompile and run on a new platform or architecture, 
without adding any domain insight or expertise in parallelism. This approach can be 
improved by using optimized libraries, tools, or directives, such as CuBLAS, CuFFT, 
Thrust, Matlab, OpenACC, etc. This is very good and rewarding work for domain sci-
entists—minimal Computer Science knowledge or programming skills are required. 
We can categorize this approach as only choosing to attack part of step 3 above.

The “better” approach involves rewriting existing codes using new parallelism 
skills to take advantage of new architectures, or creating new codes from scratch. We 
can benefit from new algorithmic techniques to increase execution efficiency. This 
is an opportunity for clever algorithmic thinking, and is good work for nondomain 
computer scientists, as minimal domain knowledge is required. We can categorize 
this approach as choosing only to attack part of step 2 above.

The “best” approach involves more deep and careful thought and a holistic 
approach involving all three steps above. We wish to not only map a known algo-
rithm and computation to a parallel program and architecture, but also rethink the 
numerical methods and algorithms used in the solution. In this approach, there is the 
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potential for the biggest performance advantage and fundamental new discoveries 
and capabilities. It is, however, also much more difficult. This approach is interdis-
ciplinary and requires both Computer Science and domain insight, but the payoff is 
worth the effort. It is truly an exciting time to be a computational scientist!

The order of operations should be: Think, Understand… and then and only then, 
Program.

First, think deeply about the problem you are trying to solve, and truly understand 
the overall structure of the problem. Apply mathematical techniques to find a solu-
tion to your problem, and then map the mathematical technique to an algorithmic 
approach for computational solution.

Plan the structure of computation in detail. Be aware of in/dependence, interac-
tions, and bottlenecks, and plan the work phases accordingly. Plan the organization 
of data, both for input and output, as well as during the computation phases. Be 
explicitly aware of locality, opportunities for data sharing or privatization, and mini-
mize global data access and movement. Finally, write some code! This is the easy 
part ☺—all of the hard work has been done in the planning stage.

Of course this description is an oversimplification and many other techniques and 
considerations are left for future studies. We could explore more complex data struc-
tures, more scalable algorithms and building blocks, or more scalable or hierarchical 
mathematical models. We can also consider thread-aware approaches to capitalize on 
more available parallelism. There will also be great opportunities in locality-aware 
approaches, since computing is becoming bigger, and everything is becoming further 
away both in space and time. All of these are beyond the scope of this book, but we 
encourage you to pursue them.

17.7  A HYPOTHETICAL EXAMPLE: SODIUM MAP  
OF THE BRAIN
Let us provide a hypothetical example of rethinking a well-known and well-solved 
problem—MRI. We have discussed this problem in detail in previous chapters, and 
have described many aspects of how to use parallel computing to efficiently convert 
the frequency samples from the MRI device into spatial information. We will start 
with a worthy goal: creating 3D images of sodium in the brain, using MRI. Normally, 
MRI images the density of water in human tissue, as measured by the resonance of 
hydrogen atoms. The density of water provides imaging of anatomy—what kind of 
tissue exists in the 3D volume. Why is sodium imaging desirable? First, sodium 
is one of the most regulated substances in human tissues—any significant shift in 
sodium concentration signals cell death. Real-time measurement of sodium density 
would enable study of brain-cell viability before anatomic changes occur as a result 
of stroke and cancer treatment. This would provide a drastic improvement in timeli-
ness of treatment decisions. We would be able to determine if treatment is effective 
within critical minutes for stroke and days for oncology, saving and improving the 
quality of many lives. Fig. 17.5 shows what this might look like.
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So, why is sodium imaging difficult? Unfortunately, sodium is much less abun-
dant than water in human tissues, about 1/2000 the concentration. In addition, the 
magnetic resonance echo of sodium is much less strong than the echo from hydro-
gen/water. Thus, a very, very much larger number of samples would be required for 
good signal-to-noise ratio in the MRI. Another possible approach would be to choose 
mathematical techniques and algorithms for much higher quality signal reconstruc-
tion. This approach has been considered impractical due to the massive computation 
required. However, it is time to re-examine those assumptions. When MRI was first 
developed, computers were much slower, and MRI reconstruction required a long 
time on a roomful of computing equipment. Conventional MRI reconstruction is now 
real-time using desk-side hardware.

Non-Cartesian trajectories, such as the spiral trajectory shown here in Fig. 17.6, 
are becoming increasingly popular and common. These non-Cartesian scans are 
faster and less susceptible to artifacts than Cartesian scans. The spiral scan pattern is 
also a more efficient use of time on the MRI machine.

FIGURE 17.5

Sodium images of the brain. Courtesy of Keith Thulborn and Ian Atkinson, Center for MR 
Research, University of Illinois at Chicago.

Cartesian scan data Spiral scan data
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FFT

Spiral scan data + gridding + FFT:
fast scan, fast reconstruction, good images

can become realtime with about 10X speedup.
1Based on Fig 1 of Lustig et al. Fast Spiral Fourier Transfor for lterative

MR Image Reconstruction, IEEE Int’l Symp. on Biomedical Imaging, 2004
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FIGURE 17.6

Classical gridded MRI reconstruction from spiral scan data.
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However, the FFT cannot be applied directly to the non-Cartesian scan data. One 
popular approach is to “grid” the data. That is, the non-Cartesian data (shown in 
orange (light gray in the print versions)) is interpolated onto a uniform grid (shown 
in blue (dark gray in the print versions)) using some sort of windowing function. The 
FFT can then be applied to the interpolated data. This technique introduces inaccura-
cies and satisfies no statistical optimality criterion, but is very fast and does produce 
better images than a Cartesian scan.

This is similar to the old joke about a man who has lost his keys in a dark corner 
of a parking lot. He is discovered looking for his keys under the streetlight. When 
asked why he is looking for his keys there instead of where he lost them, the reply is 
“because the light is better here!” While it may have been true that the gridding and 
FFT solution was a good choice for MRI processing at first, this is likely no longer 
the case.

Least-squares (LS) iterative reconstruction is a superior technique that operates 
directly on the nonuniform data using the LS optimality criterion. The combination 
of a non-Cartesian scan and the LS reconstruction produces images far superior to 
those obtained via Cartesian scans or gridding. Unfortunately, these superior images 
come at the expense of increasing the amount of computation by several orders of 
magnitude. For the LS reconstruction to be practical in clinical settings, it must be 
accelerated by a similar number of orders of magnitude.

Again, this is what we mean when we say that the GPU allows us to change the 
boundaries of science. The LS reconstruction algorithm isn’t viable on the CPU. It’s 
the GPU that makes the LS reconstruction practical, so that we don’t have to use 
lossy and approximate techniques like gridding, just so that we can warp the problem 
into a convenient computational framework such as FFT (Fig 17.7).

Instead of simply applying brute force to the much harder problem of sodium 
imaging using MRI, we have achieved much more by re-examining the foundations 
of MRI and the related computations.

Cartesian scan data Spiral scan data

Gridding

FFT

Spiral scan data + LS
Superior images at expense of significantly more computation;

several hundred times slower than gridding.
Traditionally considered impractical!

Least-squares (LS)

kx

ky

kx

kykx

ky

FIGURE 17.7

Least squares reconstruction of spiral scan data.
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17.8  SUMMARY
In summary, we have discussed the main dimensions of algorithm selection and 

computational thinking. The key lesson is that given a problem decomposition deci-
sion, the programer will typically have to select from a variety of algorithms. Some 
of these algorithms achieve different tradeoffs while maintaining the same numerical 
accuracy. Others involve sacrificing some level of accuracy to achieve much more 
scalable running times. The cutoff strategy is perhaps the most popular of such strate-
gies. Even though we introduced cutoff in the context of electrostatic potential map 
calculation, it is used in many domains including ray tracing in graphics and collision 
detection in games. Computational thinking skills allow an algorithm designer to 
work around the roadblocks and reach a good solution.

17.9  EXERCISES

1.	 Write a host function to perform binning of atoms. Determine the 
representation of the bins as arrays. Think about coalescing requirements. 
Make sure that every thread can easily find the bins it needs to process.

2.	 Write the part of the cut-off kernel function that determines if an atom is in 
the neighborhood of a grid point based on the coordinates of the atoms and 
the grid points.

3.	 Think about refactoring to change the organization of work. Take a scatter-
gather kernel, and rewrite as scatter-scatter, or gather-gather, to improve 
locality. Which is better for CUDA execution?
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So far, we have focused on programming a heterogeneous computing system with 
one host and one device. In high-performance computing (HPC), applications 
require the aggregate computing power of a cluster of computing nodes. Many of 
the HPC clusters today have one or more hosts and one or more devices in each 
node. Historically, these clusters have been programmed predominately with mes-
sage passing interface (MPI). In this chapter, we will present an introduction to joint 
MPI/CUDA Programming. The reader should be able to easily extend the material 
to joint MPI/OpenCL, MPI/OpenACC, and so on. We will only present the MPI 
concepts that programmers need to understand in order to scale their heterogeneous 
applications to multiple nodes in a cluster environment. In particular, we will focus 
on domain partitioning, point-to-point communication, and collective communica-
tion in the context of scaling a CUDA kernel into multiple nodes.
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18.1  BACKGROUND
While there was practically no top supercomputer using GPUs before 2009, the need 
for better energy efficiency has led to fast adoption of GPUs in the recent years. 
Many of the top supercomputers in the world today use both CPUs and GPUs in each 
node. The effectiveness of this approach is validated by their high rankings in the 
Green500 list, which reflects their high energy efficiency.

The dominating programing interface for computing clusters today is MPI 
[Gropp 1999], which is a set of API functions for communication between processes 
running in a computing cluster. MPI assumes a distributed memory model where 
processes exchange information by sending messages to each other. When an appli-
cation uses API communication functions, it does not need to deal with the details of 
the interconnect network. The MPI implementation allows the processes to address 
each other using logical numbers, much the same way as using phone numbers in a 
telephone system: telephone users can dial each other using phone numbers without 
knowing exactly where the called person is and how the call is routed.

In a typical MPI application, data and work are partitioned among processes. As 
shown in Fig. 18.1, each node can contain one or more processes, shown as clouds 
within nodes. As these processes progress, they may need data from each other. This 
need is satisfied by sending and receiving messages. In some cases, the processes 
also need to synchronize with each other and generate collective results when col-
laborating on a large task. This is done with MPI’s collective API functions.

18.2  A RUNNING EXAMPLE
We will use a 3D stencil computation similar to that introduced in Chapter 7, Parallel 
patterns: convolution, as a running example. We assume that the computation calcu-
lates heat transfer based on a finite difference method for solving a partial differential 
equation that describes the physical laws of heat transfer. In particular, we will use the 
Jacobi Iterative Method where in each iteration or time step, the value of a grid point 
is calculated as a weighted sum of neighbors (north, east, south, west, up, down) and 

Node Node Node Node

Interconnect

FIGURE 18.1

Programer’s view of MPI processes.
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its own value from the previous time step. In order to achieve high numerical stability, 
multiple indirect neighbors in each direction are also used in the computation of a grid 
point. This is referred to as a higher order stencil computation. For the purpose of this 
chapter, we assume that four points in each direction will be used.

As shown in Fig. 18.2, there are a total of 24 neighbor points for calculating the 
next step value of a grid point. In Fig. 18.2, each point in the grid has an x, y, and z 
coordinate. For a grid point where the coordinate value is x = i, y = j, and z = k, or 
(i,j,k) its 24 neighbors are (i−4,j,k), (i−3,j,k), (i−2,j,k), (i−1,j,k), (i+1,j,k), (i+2,j,k), 
(i+3,j,k), (i+4,j,k), (i,j−4,k), (i,j−3,k), (i,j−2,k), (i,j−1,k), (i,j+1,k), (i,j+2,k), (i,j+3,k), 
(i,j+4,k), (i,j,k−4), (i,j,k−3), (i,j,k−2), (i,j,k−1), (i,j,k+1), (i,j,k+2), (i,j,k+3) and 
(i,j,k+4). Since the data value of each grid point for the next time step is calculated 
based on the current data values of 25 points (24 neighbors and itself), the type of 
computation is often called 25-stencil computation.

We assume that the system is modeled as a structured grid, where spacing between 
grid points is constant within each direction. This allows us to use a 3D array where 
each element stores the state of a grid point. The physical distance between adjacent 
elements in each dimension can be represented by a spacing variable. Note that this 
grid data structure is similar to that used in the electrostatic potential calculation in 
Chapter 15, Application case study—molecular visualization and analysis. Fig. 18.3 
illustrates a 3D array that represents a rectangular ventilation duct, with x and y 
dimensions as the cross-sections of the duct and the z dimension the direction of the 
heat flow along the duct.

FIGURE 18.2

A 25-stencil computation example, with neighbors in the x, y, z directions.
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We assume that the data is laid out in the memory space so that x is the lowest 
dimension, y is the next, and z is the highest. That is, all elements with y=0 and 
z=0 will be placed in consecutive memory locations according to their x coordinate. 
Fig. 18.4 shows a small example of the grid data layout. This small example has only 
16 data elements in the grid: two elements in the x dimension, two in the y dimen-
sion, and four in the z dimension. Both x elements with y=0 and z=0 are placed in 
memory first. They are followed by all elements with y=1 and z=0. The next group 
will be elements with y=0 and z=1. The reader should verify that this is simply a 3D 
generalization of the row-major layout convention of C/C++ discussed in Chapter 3, 
Scalable parallel execution.

When one uses a computing cluster, it is common to divide the input data into sev-
eral partitions, called domain partitions, and assign each partition to a node in the clus-
ter. In Fig. 18.3, we show that the 3D array is divided into four domain partitions: D1, 
D2, D3, and D4. Each of the partitions will be assigned to an MPI compute process.

The domain partitions can be further illustrated with Fig. 18.4. The first sec-
tion, or slice, of four elements (z=0) in Fig. 18.4 are in the first partition, the second 
section (z=1) the second partition, the third section (z=2) the third partition, and 
the fourth section (z=3) the fourth partition. This is obviously a toy example. In a 
real application, there are typically hundreds or even thousands of elements in each 
dimension. For the rest of this chapter, it is useful to remember that all elements in a 
z slice are in consecutive memory locations.

y z

x

D1

D2

D3

D4

FIGURE 18.3

3D grid array for the modeling heat transfer in a duct.
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A small example of memory layout for the 3D grid.
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18.3  MESSAGE PASSING INTERFACE BASICS
Like CUDA, MPI programs are based on the SPMD parallel execution model. All 
MPI processes execute the same program. The MPI system provides a set of API 
functions to establish communication systems that allow the processes to communi-
cate with each other. Fig. 18.5 shows five essential MPI functions that set up and tear 
down the communication system for an MPI application. We will use a simple MPI 
program shown in Fig. 18.6 to illustrate the usage of these API functions. To launch 
an MPI application in a cluster, a user needs to supply the executable file of the pro-
gram to the mpirun command or the mpiexec command in a cluster.

Each process starts by initializing the MPI runtime with an MPI_Init() call. This 
initializes the communication system for all the processes running the application. 
Once the MPI runtime is initialized, each process calls two functions to prepare for 
communication. The first function is MPI_Comm_rank() that returns a unique number 
to calling each process, which is called the MPI rank or process id for the process. 
The numbers received by the processes vary from 0 to the number of processes − 1. 
An MPI rank for a process is equivalent to the expression blockIdx.x*blockDim.
x+threadIdx.x for a CUDA thread. It uniquely identifies the process in a communi-
cation, similar to the phone number in a telephone system.

The MPI_Comm_rank() function takes two parameters. The first one is an MPI built-
in type MPI_Comm that specifies the scope of the request. Each variable of the MPI_Comm 
type is commonly referred to as a communicator. MPI_Comm and other MPI built-in types 
are defined in “mpi.h” header file that should be included in all C program files that use 
MPI. This is similar to the “cuda.h” header file for CUDA programs. An MPI applica-
tion can create one or more communicators each of which is a group of MPI processes 
for the purpose of communication. MPI_Comm_rank() assigns a unique id to each process 
in a communicator. In Fig. 18.6, the parameter value passed is MPI_COMM_WORLD, which 
means that the communicator includes all MPI processes running the application.1

• int MPI_Init (int*argc, char***argv)
–  Initialize MPI

• int MPI_Comm_rank (MPI_Comm comm, int *rank)
–  Rank of the calling process in group of comm

• int MPI_Comm_size (MPI_Comm comm, int *size)
–  Number of processes in the group of comm

• int MPI_Comm_abort (MPI_Comm comm)
–  Terminate MPI comminication connection with an error flag

• int MPI_Finalize ( )
–  Ending an MPI application, close all resources

FIGURE 18.5

Five basic MPI functions for establishing and closing a communication system.

1 Interested readers should refer to the MPI reference manual [Gropp 1999] for details on creating and 
using multiple communicators in an application, in particular the definition and use of intracommuni-
cators and intercommunicators.
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The second parameter to the MPI_Comm_rank() function is a pointer to an integer 
variable into which the function will deposit the returned rank value. In Fig. 18.6, a 
variable pid is declared for this purpose. After the MPI_Comm_rank() returns, the pid 
variable will contain the unique id for the calling process.

The second API function is MPI_Comm_size(), which returns the total number of 
MPI processes running in the communicator. The MPI_Comm_size() function takes 
two parameters. The first one is of MPI_Comm type and gives the scope of the request. 
In Fig. 18.6, the parameter value passed in is MPI_COMM_WORLD, which means the 
scope of the MPI_Comm_size() is all the processes of the application. Since the scope 
is all MPI processes, the returned value is the total number of MPI processes running 
the application. This is a value requested by a user when the application is submitted 
using the mpirun command or the mpiexec command. However, the user may not 
have requested sufficient number of processes. Also, the system may or may not be 
able to create all the processes requested. Therefore, it is a good practice for an MPI 
application program to check the actual number of processes running.

The second parameter is a pointer to an integer variable into which the MPI_Comm_
size() function will deposit the return value. In Fig. 18.6, a variable np is declared 
for this purpose. After the function returns, the variable np contains the number of 
MPI processes running the application. We assume that the application requires at 
least three MPI processes. Therefore, it checks if the number of processes is at least 
three. If not, it calls MPI_Comm_abort() function to terminate the communication 
connections and return with an error flag value 1.

#include "mpi.h“

int main(int argc, char *argv[]) {
int pad = 0, dimx = 480+pad, dimy = 480, dimz = 400, nreps = 100;
int pid=-1, np=-1;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &np);

if(np < 3) {
if(0 == pid) printf(“Needed 3 or more processes.\n");
MPI_Abort( MPI_COMM_WORLD, 1 ); return 1;

}

}

if(pid < np - 1)
compute_process(dimx, dimy, dimz/ (np - 1), nreps);

else
data_server( dimx,dimy,dimz, nreps);

MPI_Finalize();
return 0;

FIGURE 18.6

A simple MPI main program.
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Fig. 18.6 also shows a common pattern for reporting errors or other chores. There 
are multiple MPI processes but we need to report the error only once. The application 
code designates the process with pid=0 to do the reporting. This is similar to the pat-
tern in CUDA kernels where some tasks only need to be done by one of the threads 
in a thread-block.

As shown in Fig. 18.5, the MPI_Comm_abort() function takes two parameters. The 
first sets the scope of the request. In Fig. 18.6, the scope is set as MPI_COMM_WORLD, 
which means all MPI processes running the application. The second parameter is a 
code for the type of error that caused the abort. Any number other than 0 indicates 
that an error has happened.

If the number of processes satisfies the requirement, the application program 
goes on to perform the calculation. In Fig. 18.6, the application uses np-1 pro-
cesses (pid from 0 to np-2) to perform the calculation and one process (the last one 
whose pid is np-1) to perform I/O service for the other processes. We will refer 
to the process that performs the I/O services as the data server and the processes 
that perform the calculation as compute processes. If the pid of a process is within 
the range from 0 to np-2, it is a compute process and call the compute_process() 
function. If the process pid is np-1, it is the data server and calls data_server() 
function. This is similar to the pattern where threads perform different actions 
according to their thread ids.

After the application completes its computation, it notifies the MPI runtime with 
a call to the MPI_Finalize(), which frees all MPI communication resources allo-
cated to the application. The application can then exit with a return value 0, which 
indicates that no error occurred.

18.4  �MESSAGE PASSING INTERFACE POINT-TO-POINT 
COMMUNICATION

MPI supports two major types of communication. The first is point-to-point type, 
which involves one source process and one destination process. The source process 
calls the MPI_Send() function and the destination process calls the MPI_Recv() func-
tion. This is analogous to a caller dialing a call and a receiver answering a call in a 
telephone system.

Fig. 18.7 shows the syntax for using the MPI_Send() function. The first parameter 
is a pointer to the starting location of the memory area where the data to be sent can 
be found. The second parameter is an integer that gives that number of data ele-
ments to be sent. The third parameter is of an MPI built-in type MPI_Datatype. It 
specifies the type of each data element being sent. The MPI_Datatype is defined in 
mpi.h and includes MPI_DOUBLE (double precision floating point), MPI_FLOAT(single  
precision floating point), MPI_INT (integer), and MPI_CHAR (character). The exact 
sizes of these types depend on the size of the corresponding C types in the host 
processor. See the MPI reference manual for more sophisticated use of MPI types 
[Gropp 1999].
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The fourth parameter for MPI_Send is an integer that gives the MPI rank of the 
destination process. The fifth parameter gives a tag that can be used to classify the 
messages sent by the same process. The sixth parameter is a communicator that 
selects the processes to be considered in the communication.

Fig. 18.8 shows the syntax for using the MPI_Recv() function. The first parameter 
is a pointer to the area in memory where the received data should be deposited. The 
second parameter is an integer that gives the maximal number of elements that the 
MPI_Recv() function is allowed to receive. The third parameter is an MPI_Datatype 
that specifies the type (size) of each element to be received. The fourth parameter is 
an integer that gives the process id of the source of the message.

The fifth parameter is an integer that specifies the particular tag value expected 
by the destination process. If the destination process does not want to be limited to a 
particular tag value, it can use MPI_ANY_TAG, which means that the receiver is willing 
to accept messages of any tag value from the source.

We will first use the data server to illustrate the use of point-to-point communica-
tion. In a real application, the data server process would typically perform data input 

• int MPI_Send (void *buf, int count, 
MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm)
–  Buf: starting address of send buffer (pointer)
–  Count: Number of elements in send buffer (nonnegative integer) 
–  Datatype: Datatype of each send buffer element (MPI_Datatype) 
–  Dest: Rank of destination (integer)
–  Tag: Message tag (integer) 
–  Comm: Communicator (handle)

FIGURE 18.7

Syntax for the MPI_Send() function.

• int MPI_Recv (void *buf, int count,
MPI_Datatype datatype, int source, int tag, 
MPI_Comm comm, MPI_Status *status)
–  buf: starting address of receive buffer (pointer)
–  Count: Maximum number of elements in receive buffer (integer) 
–  Datatype: Datatype of each receive buffer element (MPI_Datatype) 
–  Source: Rank of source (integer) 
–  Tag: Message tag (integer) 
–  Comm: Communicator (handle) 
–  Status: Status object (Status)

FIGURE 18.8

Syntax for the MPI_Recv() function.
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and output operations for the compute processes. However, input and output have too 
much system dependent complexity. Since I/O is not the focus of our discussion, we 
will avoid the complexity of I/O operations in a cluster environment. That is, instead 
of reading data from a file system, we will just have the data server to initialize the 
data with random numbers and distribute the data to the compute processes. The first 
part of the data server code is shown in Fig. 18.9.

The data server function takes four parameters. The first three parameters specify 
the size of the 3D grid: number of elements in the x dimension dimx, the number of 
elements in the y dimension dimy, and the number of elements in the z dimension 
dimz. The fourth parameter specifies the number of iterations that need to be done for 
all the data points in the grid.

In Fig. 18.9, Line 1 declares variable np that will contain the number of pro-
cesses running the application. Line 2 calls MPI_Comm_size(), which will deposit 
the information into np. Line 3 declares and initializes several helper variables. The 
variable num_comp_procs contains the number of compute processes. Since we are 
reserving one process as data server, there are np-1 compute processes. The variable 
first_node gives the process id of the first compute process, which is 0. The variable 
last_node gives the process id of the last compute process, which is np-2. That is, 
Line 3 designates the first np-1 processes, 0 through np-2 as compute processes. This 

void data_server(int dimx, int dimy, int dimz, int nreps) {
1.   int np, 
     /* Set MPI Communication Size */
2. MPI_Comm_size(MPI_COMM_WORLD, &np);

3.   num_comp_nodes = np – 1, first_node = 0, last_node = np - 2;
4.   unsigned int num_points = dimx * dimy * dimz;
5.   unsigned int num_bytes  = num_points * sizeof(float);
6. float *input=0, *output=0;
     /* Allocate input data */
7. input = (float *)malloc(num_bytes);
8. output = (float *)malloc(num_bytes);
9.   if(input == NULL || output == NULL) {
  printf("server couldn't allocate memory\n");
  MPI_Abort( MPI_COMM_WORLD, 1 );
 }
     /* Initialize input data */
10. random_data(input, dimx, dimy ,dimz , 1, 10);
     /* Calculate number of shared points */
11. int edge_num_points = dimx * dimy * ((dimz / num_comp_nodes) +  
 4);
12. int int_num_points  = dimx * dimy * ((dimz / num_comp_nodes) +  
 8);
13. float *send_address = input;

FIGURE 18.9

Data server process code (Part 1).
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reflects the design decision and the process with the largest rank serves as the data 
server. This decision will also be reflected in the compute process code.

Line 4 declares and initializes the num_points variable that gives the total number 
of grid data points to be processed, which is simply the product of the number of 
elements in each dimension, or dimx * dimy * dimz. Line 5 declares and initial-
izes the num_bytes variable that gives the total number of bytes needed to store all 
the grid data points. Since each grid data point is a float, this value is num_points * 
sizeof(float).

Line 6 declares two pointer variables: input and output. These two pointers 
will point to the input data buffer and the output data buffer. Lines 7 and 8 allocate 
memory for the input and output buffers and assign their addresses to their respec-
tive pointers. Line 9 checks if the memory allocations were successful. If either of 
the memory allocation fails, the corresponding pointer will receive a NULL pointer 
from the malloc() function. In this case, the code aborts the application and reports 
an error.

Lines 11 and 12 calculate the number of grid point array elements that should be 
sent to each compute process. As shown in Fig. 18.3, there are two types of compute 
processes. The first process (Process 0) and the last process (Process 3) compute an 
“edge” partition that has neighbors only on one side. Partition D1 assigned to the first 
process has neighbor only on the right side (partition D2). Partition D4 assigned to 
the last process has neighbor only on the left side (partition D3). We call the compute 
processes that compute edge partitions the edge processes.

Each of the rest of the processes computes an internal partition that has neighbors 
on both sizes. For example, the second process (Process 1) computes a partition (par-
tition D2) that has a left neighbor (partition D1) and a right neighbor (partition D3). 
We call the processes that compute internal partitions internal processes.

Recall that in the Jacobi Iterative Method, each calculation step for a grid point 
needs the values of its immediate neighbors from the previous step. This creates a need 
for halo cells for grid points at the left and right boundaries of a partition, shown as 
slices defined by dotted lines at the edge of each partition in Fig. 18.3. Note that these 
halo cells are similar to those in convolution pattern presented in Chapter 7, Parallel 
patterns: convolution. Therefore, each process also needs to receive four slices of halo 
cells that contains all neighbors for each side of the boundary grid points of its parti-
tion. For example, in Fig. 18.3, partition D2 needs four halo slices from D1 and four 
halo slices from D3. Note that a halo slice for D2 is a boundary slice for D1 or D3.

Recall that the total number of grid points is dimx*dimy*dimz. Since we are 
partitioning the grid along the z dimension, the number of grid points in each 
partition should be dimx*dimy*(dimz/num_comp_procs). Recall that we will 
need four neighbor slices in each direction in order to calculate values within 
each slice. Because we need to send four slices of grid points for each neighbor, 
the number of grid points that should be sent to each internal process should be 
dimx*dimy*((dimz/num_comp_procs) + 8). As for an edge process, there is only 
one neighbor. Like in the case of convolution, we assume that zero values will be 
used for the ghost cells and no input data needs to be sent for them. For example, 
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partition D1 only needs the neighbor slice form D2 on the right side. Therefore, 
the number of grid points to be sent to an edge process is dimx*dimy*((dimz/
num_comp_procs) + 4). That is, each process receives four slices of halo grid 
points from the neighbor partition on each side.

Line 13 of Fig. 18.9 sets the send_address pointer to point to the beginning of the 
input grid point array. In order to send the appropriate partition to each process, we 
will need to add the appropriate offset to this beginning address for each MPI_Send(). 
We will come back to this point later.

We are now ready to complete the code for the data server, shown in Fig. 18.10. 
Line 14 sends Process 0 its partition. Since this is the first partition, its starting 
address is also the starting address of the entire grid, which was set up in Line 13. 
Process 0 is an edge process and it does not have a left neighbor. Therefore, the num-
ber of grid points to be sent is the value edge_num_points, i.e., dimx*dimy*((dimz/
num_comp_procs) + 4). The third parameter specifies that the type of each element 
is an MPI_FLOAT which is C float (single precision, 4 bytes). The fourth parameter 
specifies that the value of first_node, i.e., 0, is the MPI rank of the destination pro-
cess. The fifth parameter specifies 0 for the MPI tag. This is because we are not using 
tags to distinguish between messages sent from the data server. The sixth parameter 
specifies that the communicator to be used for sending the message should be all MPI 
processes for the current application.

Line 15 of Fig. 18.10 advances the send_address pointer to the beginning of 
the data to be sent to Process 1. From Fig. 18.3, there are dimx*dimy*(dimz/num_
comp_procs) elements in partition D1, which means D2 starts at location that is 
dimx*dimy*(dimz/num_comp_procs) elements from the starting location of input. 
Recall that we also need to send the halo cells from D1 as well. Therefore, we adjust 
the starting address for the MPI_Send() back by four slices, which results in the 
expression for advancing the send_address pointer in Line 15: dimx*dimy*((dimz/
num_comp_procs) - 4).

    /* Send data to the first compute node */
14. MPI_Send(send_address, edge_num_points, MPI_FLOAT, first_node,
   0, MPI_COMM_WORLD );

15. send_address += dimx * dimy * ((dimz / num_comp_nodes) - 4);
    /* Send data to "internal" compute nodes */
16. for(int process = 1; process < last_node; process++) {
17.    MPI_Send(send_address, int_num_points, MPI_FLOAT, process,
    0, MPI_COMM_WORLD);
18.    send_address += dimx * dimy * (dimz / num_comp_nodes);
 }
 
    /* Send data to the last compute node */
19. MPI_Send(send_address, edge_num_points, MPI_FLOAT, last_node,
   0, MPI_COMM_WORLD);

FIGURE 18.10

Data server process code (Part 2).
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Line 16 is a loop that sends out the MPI messages to Process 1 through Process 
np-3. In our small example for four compute processes, np is 5. The loop sends 
the MPI messages to Processes 1 and 2. These are internal processes. They need to 
receive halo grid points for neighbors on both sides. Therefore, the second parameter 
of the MPI_Send() in Line 17 uses int_num_nodes, i.e., dimx*dimy*((dimz/num_
comp_procs) + 8). The rest of the parameters are similar to that for the MPI_Send() 
in Line 14 with the obvious exception that the destination process is specified by 
the loop variable process, which is incremented from 1 to np-3 (last_node is np-2).

Line 18 advances the send address for each internal process by the number of 
grid points in each partition: dimx*dimy*dimz/num_comp_nodes. Note that the start-
ing locations of the halo grid points for internal processes are dimx*dimy*dimz/
num_comp_procs points apart. Although we need to pull back the starting address by 
four slices to accommodate halo grid points, we do so for every internal process so 
the net distance between the starting locations remains as the number of grid points 
in each partition.

Line 19 sends the data to the Process np-2, the last compute process that has only 
one neighbor on the left. The reader should be able to reason through all the para
meter values used. Note that we are not quite done with the data server code. We will 
come back later for the final part of the data server that collects the output values 
from all compute processes.

We now turn our attention to the compute processes that receive the input from 
the data server process. In Fig. 18.11, Lines 1 and 2 establish the process id for the 

void compute_node_stencil(int dimx, int dimy, int dimz, int nreps ) 
{
 int np, pid;
1. MPI_Comm_rank(MPI_COMM_WORLD, &pid);
2. MPI_Comm_size(MPI_COMM_WORLD, &np);
3. int server_process = np - 1;

4. unsigned int num_points       = dimx * dimy * (dimz + 8);
5. unsigned int num_bytes        = num_points * sizeof(float);
6. unsigned int num_halo_points = 4 * dimx * dimy;
7. unsigned int num_halo_bytes  = num_halo_points * sizeof(float);

 /* Alloc host memory */
8. float *h_input  = (float *)malloc(num_bytes);
 /* Alloc device memory for input and output data */
9. float *d_input = NULL;
10. cudaMalloc((void **)&d_input,  num_bytes );
11. float *rcv_address = h_input + num_halo_points * (0 == pid);
12. MPI_Recv(rcv_address, num_points, MPI_FLOAT, server_process,
   MPI_ANY_TAG, MPI_COMM_WORLD, &status );

FIGURE 18.11

Compute process code (Part 1).
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process and the total number of processes for the application. Line 3 establishes that 
the data server is Process np-1. Lines 4 and 5 calculates the number of grid points 
and the number of bytes that should be processed by each internal process. Lines 6 
and 7 calculate the number of grid points and the number of bytes in each halo (four 
slices).

Lines 8–10 allocate the host memory and device memory for the input data. 
Although the edge processes need less halo data, they still allocate the same amount 
of memory for simplicity; part of the allocated memory will not be used by the edge 
processes. Line 11 sets the starting address of the host memory for receiving the 
input data from the data server. For all compute processes except Process 0, the 
starting receiving location is simply the starting location of the allocated memory 
for the input data. However, we adjust the receiving location by four slices. This is 
because for simplicity, we assume that the host memory for receiving the input data 
is arranged the same way for all compute processes: four slices of halo from the left 
neighbor followed by the partition, followed by four slices of halo from the right 
neighbor. However, we showed in Line 4 of Fig. 18.10, the data server will not send 
any halo data from the left neighbor to Process 0. That is, for Process 0, the MPI 
message from the data server only contains the partition and the halo from the right 
neighbor. Therefore, Line 10 adjusts the starting host memory location by four slices 
so that Process 0 will correctly interpret the input data from the data server.

Line 12 receives the MPI message from the data server. Most of the parameters 
should be familiar. The last parameter reflects any error condition that occurred when 
the data is received. The second parameter specifies that all compute processes will 
receive the full amount of data from the data server. However, the data server will 
send less data to Process 0 and Process np-2. This is not reflected in the code because 
MPI_Recv() allows the second parameter to specify a larger number of data points 
than what is actually received and will only place the actual number of bytes received 
from the sender into the receiving memory. In the case of Process 0, the input data 
from the data server contain only the partition and the halo from the right neighbor. 
The received input will be placed by skipping the first four slices of the allocated 
memory, which should correspond to the halo for the (non-existent) left neighbor. 
This effect is achieved with the term num_halo_points*(pid==0) in Line 11. In 
the case of Process np-2, the input data contain the halo from the left neighbor and 
the partition. The received input will be placed from the beginning of the allocated 
memory, leaving the last four slices of the allocated memory unused.

Line 13 copies the received input data to the device memory. In the case of 
Process 0, the left halo points are not valid. In the case of Process np-2, the right halo 
points are not valid. However, for simplicity, all compute nodes send the full size to 
the device memory. The assumption is that the kernels will be launched in such a way 
that these invalid portions will be correctly ignored. After Line 13, all the input data 
are in the device memory.

Fig. 18.12 shows Part 2 of the compute process code. Lines 14–16 allocate host 
memory and device memory for the output data. The output data buffer in the device 
memory will actually be used as a ping-pong buffer with the input data buffer. That 
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is, they will switch roles in each iteration. Recall that we used a similar scheme in 
the BFS pattern in Chapter 12, Parallel patterns: graph search. We will return to this 
point later.

We are now ready to present the code that performs computation steps on the 
grid points.

18.5  �OVERLAPPING COMPUTATION  
AND COMMUNICATION

A simple way to perform the computation steps is for each compute process to per-
form a computation step on its entire partition, exchange halo data with the left and 
right neighbors, and repeat. While this is a very simple strategy, it is not very effec-
tive. The reason is that this strategy forces the system to be in one of the two modes. 
In the first mode, all compute processes are performing computation steps. During 
this time, the communication network is not used. In the second mode, all compute 
processes exchange halo data with their left and right neighbors. During this time, the 
computation hardware is not well utilized. Ideally, we would like to achieve better 
performance by utilizing both the communication network and computation hard-
ware all the time. This can be achieved by dividing the computation tasks of each 
compute process into two stages, as illustrated in Fig. 18.13.

During the first stage (Stage 1), each compute process calculates its boundary 
slices that will be needed as halo cells by its neighbors in the next iteration. Let’s 
continue to assume that we use four slices of halo data. Fig. 18.13 shows that the 
collection of four halo slices as a dashed transparent piece and the four boundary 
slices as a colored piece. Note that the colored piece of Process i will be copied into 
the dashed piece of Process i+1 and vice versa during the next communication. For 

14. float *h_output = NULL, *d_output = NULL, *d_vsq = NULL;
15. float *h_output = (float *)malloc(num_bytes);
16. cudaMalloc((void **)&d_output, num_bytes );

17. float *h_left_boundary = NULL, *h_right_boundary = NULL;
18. float *h_left_halo = NULL, *h_right_halo = NULL;

    /* Alloc host memory for halo data */
19. cudaHostAlloc((void **)&h_left_boundary, num_halo_bytes, cudaHostAllocDefault);
20. cudaHostAlloc((void **)&h_right_boundary,num_halo_bytes, cudaHostAllocDefault);
21. cudaHostAlloc((void **)&h_left_halo,     num_halo_bytes, cudaHostAllocDefault);
22. cudaHostAlloc((void **)&h_right_halo,    num_halo_bytes, cudaHostAllocDefault);

    /* Create streams used for stencil computation */
23. cudaStream_t stream0, stream1;
24. cudaStreamCreate(&stream0);
25. cudaStreamCreate(&stream1);

FIGURE 18.12

Compute process code (Part 2).
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FIGURE 18.13

A two-stage strategy for overlapping computation with communication.

Process 0, the first phase calculates the right four slices of boundary data. For an 
internal node, it calculates the left four slices and the right four slices of its bound-
ary data. For Process n-2, it calculates the left four pieces of its boundary data. The 
rationale is that these boundary slices are needed by their neighbors for the next itera-
tion. By calculating these boundary slices first, the data can be communicated to the 
neighbors while the compute processes calculate the rest of its grid points.

During the second stage (Stage 2), each compute process performs two parallel 
activities. The first is to communicate its new boundary values to its neighbor pro-
cesses. This is done by first copying the data from the device memory into the host 
memory, followed by sending MPI messages to the neighbors. As we will discuss 
later, we need to be careful that the data received from the neighbors are used in the 
next iteration, not the current iteration. The second activity is to calculate the rest of 
the data in the partition. If the communication activity takes a shorter amount of time 
than the calculation activity, we can hide the communication delay and fully utilize 
the computing hardware all the time. This is usually achieved by having enough 
slices in the internal part of each partition to allow each compute process to perform 
computation steps in between communications.

In order to support the parallel activities in Stage 2, we need to use two advanced 
features of the CUDA Programming model: pinned memory allocation and streams. 
A pinned memory allocation requests that the memory allocated will not be paged 
out by the operating system. This is done with the cudaHostAlloc() API call. Lines 
19–22, in Fig. 18.12, allocates memory buffers for the left and right boundary slices 
and the left and right halo slices. The left and right boundary slices need to be sent 
from the device memory to the left and right neighbor processes. The buffers are 
used as a host memory staging area for the device to copy data into and then used 
as the source buffer for MPI_Send() to neighbor processes. The left and right halo 
slices need to be received from neighbor processes. The buffers are used as a host 
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memory staging area for MPI_Recv() to use as destination buffer and then copied to 
the device memory.

Note that the host memory allocation is done with cudaHostAlloc() function 
rather than the standard malloc() function. The difference is that the cudaHostAl-
loc() function allocates a pinned memory buffer, sometimes also referred to as page 
locked memory buffer. We need to know a little more background on the memory 
management in operating systems in order to fully understand the concept of pinned 
memory buffers.

In a modern computer system, the operating system manages a virtual memory 
space for applications. Each application has access to a large, consecutive address 
space. In reality, the system has a limited amount of physical memory that needs to 
be shared among all running applications. This sharing is performed by partitioning 
the virtual memory space into pages and mapping only the actively used pages into 
physical memory. When there is much demand for memory, the operating system 
needs to “swap out” some of the pages from the physical memory to mass storage 
such as disks. Therefore, an application may have its data paged out any time during 
its execution.

The implementation of cudaMemcpy() uses a type of hardware called direct mem-
ory access (DMA) device. When a cudaMemcpy() function is called to copy between 
the host and device memories, its implementation uses a DMA to complete the task. 
On the host memory side, the DMA hardware operates on physical addresses. That is, 
the operating system needs to give a translated physical address to DMA. However, 
there is a chance that the data may be swapped out before the DMA operation is 
complete. The physical memory locations for the data may be reassigned to another 
virtual memory data. In this case, the DMA operation can be potentially corrupted 
since its data can be overwritten by the paging activity.

A common solution to this data corruption problem is for the CUDA runtime to 
perform the copy operation in two steps. For a host-to-device copy, the CUDA runt-
ime first copies the source host memory data into a “pinned” memory buffer, which 
means the memory locations are marked so that the operating paging mechanism will 
not page out the data. It then uses the DMA device to copy the data from the pinned 
memory buffer to the device memory. For a device-to-host copy, the CUDA runtime 
first uses a DMA device to copy the data from the device memory into a pinned 
memory buffer. It then copies the data from the pinned memory to the destination 
host memory location. By using an extra pinned memory buffer, the DMA copy will 
be safe from any paging activities.

There are two problems with this approach. One is that the extra copy adds delay 
to the cudaMemcpy() operation. The second is that the extra complexity involved 
leads to a synchronous implementation of the cudaMemcpy() function. That is, the 
host program cannot continue to execute until the cudaMemcpy() function completes 
its operation and returns. This serializes all copy operations. In order to support fast 
copies with more parallelism, CUDA provides a cudaMemcpyAsync() function.

In order to use cudaMemcpyAsync() function, the host memory buffer must 
be allocated as a pinned memory buffer. This is done in Lines 19–22 for the host 
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memory buffers of the left boundary, right boundary, left halo, and right halo slices. 
These buffers are allocated with the cudaHostAlloc() function, which ensures that 
the allocated memory are pinned or page locked from paging activities. Note that 
the cudaHostAlloc() function takes three parameters. The first two are the same as 
cudaMalloc(). The third specifies some options for more advanced usage. For most 
basic use cases, we can simply use the default value cudaHostAllocDefault.

The second advanced CUDA feature is streams, which supports managed concur-
rent execution of CUDA API functions. A stream is an ordered sequence of opera-
tions. When a host code calls a cudaMemcpyAsync() function or launches a kernel, it 
can specify a steam as one of its parameters. All operations in the same stream will be 
done sequentially. Operations from two different streams can be executed in parallel.

Line 23 of Fig. 18.12 declares two variables that are of CUDA built-in type 
cudaStream_t. Recall that the CUDA built-in types are declared in cuda.h. These 
variables are then used in calling the cudaStreamCreate() function. Each call to the 
cudaStreamCreate() creates a new stream and deposits a pointer to the stream into 
its parameter. After the calls in Lines 24 and 25, the host code can use either steram0 
or stream1 in subsequent cudaMemcpyAsync() calls and kernel launches.

Fig. 18.14 shows Part 3 of the compute process. Lines 27 and 28 calculate the 
process id of the left and right neighbors of the compute process. The left_neigh-
bor and right_neighbor variables will be used by compute processes as parameters 
when they send message to and receive messages from their neighbors. For Process 

26. MPI_Status status;
27. int left_neighbor  = (pid > 0)    ? (pid - 1) : MPI_PROC_NULL;
28. int right_neighbor = (pid < np - 2) ? (pid + 1) : MPI_PROC_NULL;
 
    /* Upload stencil cofficients */
    upload_coefficients(coeff, 5);

29. int left_halo_offset   = 0;
30. int right_halo_offset  = dimx * dimy * (4 + dimz);
31. int left_stage1_offset  = 0;
32. int right_stage1_offset = dimx * dimy * (dimz - 4);
33. int stage2_offset       = num_halo_points;

34. MPI_Barrier( MPI_COMM_WORLD );
35. for(int i=0; I < nreps; i++) {
    /* Compute boundary values needed by other nodes first */
36.    launch_kernel(d_output + left_stage1_offset, 
    d_input + left_stage1_offset, dimx, dimy, 12, stream0);
37.    launch_kernel(d_output + right_stage1_offset,
    d_input + right_stage1_offset, dimx, dimy, 12, stream0);

    /* Compute the remaining points */
38.    launch_kernel(d_output + stage2_offset, d_input + 
stage2_offset,

FIGURE 18.14

Compute process code (Part 3).
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0, there is no left neighbor, so Line 27 assigns an MPI constant MPI_PROC_NULL to 
left_neighbor to note this fact. For Process np-2, there is no right neighbor, so 
Line 28 assigns MPI_PROC_NULL to right_neighbor. For all the internal processes, 
Line 27 assigns pid-1 to left_neighbor and pid+1 to right_neighbor.

Lines 29–33 set up several offsets that will be used to launch kernels and exchange 
data so that the computation and communication can be overlapped. These offsets 
define the regions of grid points that will need to be calculated at each stage of Fig. 
18.13. They are also visualized in Fig. 18.15.

Note that the total number of slices in each device memory is four slices 
of left halo points (dashed white), plus four slices of left boundary points, plus 
dimx*dimy*(dimz-8) internal points, plus four slices of boundary points, and four 
slices of right halo points (dashed white). Variable left_stage1_offset defines the 
starting point of the slices that are needed in order to calculate the left boundary 
slices. This includes 12 slices of data: 4 slices of left-neighbor halo points, 4 slices 
of boundary points, and 4 slices of internal points. These slices are the leftmost in 
the partition so the offset value is set to 0 by Line 31. Variable right_stage2_off-
set defines the starting point of the slices that are needed for calculating the right 
boundary slices. This also includes 12 slices: 4 slices of internal points, 4 slices of 
right boundary points, and 4 slices of right halo cells. The beginning point of these 
12 slices can be derived by subtracting the total number of slices dimz+8 by 12. 
Therefore, the starting offset for these 12 slices is dimx*dimy*(dimz-4).

Line 34 is an MPI barrier synchronization, which is similar to the CUDA __
syncthreads(). MPI barrier forces all MPI processes specified by the parameter 
to wait for each other. None of the processes can continue their execution beyond 
this point until everyone has reached this point. The reason why we want to barrier 
synchronization here is to ensure that all compute nodes have received their input 
data and are ready to perform the computation steps. Since they will be exchanging 
data with each other, we would like to make them all start at about the same time. 
This way, we will not be in a situation where a few tardy processes delay all other 
processes during the data exchange. MPI_Barrier() is a collective communication 
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FIGURE 18.15

Device memory offsets used for data exchange with neighbor processes.
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function. We will discuss more details about collective communication API functions 
in the next section.

Line 35 starts a loop that performs the computation steps. For each iteration, each 
compute process will perform one cycle of the two-stage process in Fig. 18.13.

Line 36 calls a function that will generate the four slices of the left boundary 
points in Stage 1. We assume that there is a kernel that performs one computation 
step on a region of grip points. The launch_kernel() function takes several parame-
ters. The first parameter is a pointer to the output data area for the kernel. The second 
parameter is a pointer to the input data area. In both cases, we add the left_stage1_
offset to the input and output data in the device memory. The next three parameters 
specify the dimensions of the portion of the grid to be processed, which is 12 slices in 
this case. Note that we need to have four slices on each side in order to correctly per-
form four computation steps for all the points in the four left boundary slices. Line 
37 does the same for the right boundary points in Stage 1. Note that these kernels will 
be launched within stream0 and will be executed sequentially.

Line 38 launches a kernel to generate the dimx*dimy*(dimz-8) internal points 
in Stage 2. Note that this also requires four slices of input boundary values on each 
side so the total number of input slices is dimx*dimy*dimz. The kernel is launched 
in stream1 and will be executed in parallel with those launched by Lines 36 and 37.

Fig. 18.16 shows Part 4 of the compute process code. Line 39 copies the four 
slices of left boundary points to the host memory in preparation for data exchange 
with the left neighbor process. Line 40 copies the four slices of the right boundary 
points to the host memory in preparation for data exchange with the right neighbor 
process. Both are asynchronous copies in Stream 0 and will wait for the two ker-
nels in Stream 0 to complete before they copy data. Line 41 is a synchronization 
that forces the process to wait for all operations in Stream 0 to complete before it 
can continue. This makes sure that the left and right boundary points are in the host 
memory before the process proceeds with data exchange.

During the data exchange phase, we will have all MPI processes to send their 
boundary points to their left neighbors. That is, all processes will have their right 
neighbors sending data to them. It is therefore convenient to have an MPI func-
tion that sends data to a destination and receives data from a source. This reduces 
the number of MPI function calls. MPI_Sendrecv() function in Fig. 18.17 is such a 

 /* Copy the data needed by other nodes to the host */
39. cudaMemcpyAsync(h_left_boundary, d_output + num_halo_points,
   num_halo_bytes, cudaMemcpyDeviceToHost, stream0 );
40. cudaMemcpyAsync(h_right_boundary,
     d_output + right_stage1_offset + num_halo_points,
     num_halo_bytes, cudaMemcpyDeviceToHost, stream0 );
41. cudaStreamSynchronize(stream0);

FIGURE 18.16

Compute process code (Part 4).
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function. It is essentially a combination of MPI_Send() and MPI_Recv() so we will 
not further elaborate on the meaning of the parameters.

Fig. 18.18 shows Part 5 of the compute process code. Line 42 sends four slices of left 
boundary points to the left neighbor and receives four slices of right halo points from the 
right neighbors. Line 43 sends four slices of right boundary points to the right neighbor 

 /* Send data to left, get data from right */
42. MPI_Sendrecv(h_left_boundary, num_halo_points, MPI_FLOAT,
    left_neighbor,  i, h_right_halo,  
    num_halo_points, MPI_FLOAT, right_neighbor, i,
    MPI_COMM_WORLD, &status );
 /* Send data to right, get data from left */
43. MPI_Sendrecv(h_right_boundary, num_halo_points, MPI_FLOAT,
    right_neighbor, i, h_left_halo,
    num_halo_points, MPI_FLOAT, left_neighbor,  i,
    MPI_COMM_WORLD, &status );

44. cudaMemcpyAsync(d_output+left_halo_offset,  h_left_halo,
    num_halo_bytes, cudaMemcpyHostToDevice, stream0);
45. cudaMemcpyAsync(d_output+right_ghost_offset, h_right_ghost,
    num_halo_bytes, cudaMemcpyHostToDevice, stream0 );
46. cudaDeviceSynchronize();
  
47. float *temp = d_output;
48. d_output = d_input; d_input = temp;
   }

FIGURE 18.18

Compute process code (Part 5).

• int MPI_Sendrecv(void *sendbuf, int sendcount, 
MPI_Datatype sendtype, int dest, int sendtag, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status *status)
– Sendbuf: Initial address of send buffer (choice) 
– Sendcount: Number of elements in send buffer (integer)
– Sendtype: Type of elements in send buffer (handle) 
– Dest: Rank of destination (integer) 
– Sendtag: Send tag (integer)
– Recvcount: Number of elements in receive buffer (integer)
– Recvtype: Type of elements in receive buffer (handle) 
– Source: Rank of source (integer)
– Recvtag: Receive tag (integer)
– Comm: Communicator (handle)
– Recvbuf: Initial address of receive buffer (choice)
– Status: Status object (Status). This refers to the receive

operation.

FIGURE 18.17

Syntax for the MPI_Sendrecv() function.
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and receives four slices of left halo points from the left neighbor. In the case of Process 
0, its left_neighbor has been set to MPI_PROC_NULL in Line 27 so the MPI runtime will 
not send out the message in Line 42 or receive the message in Line 43 for Process 0. 
Likewise, the MPI runtime will not receive the message in Line 42 or send out the mes-
sage in Line 43 for Process np-2. Therefore, the conditional assignments in Lines 27 and 
28 eliminate the need for special if-the-else statements in Lines 42 and 43.

After the MPI messages have been sent and received, Lines 44 and 45 transfer the 
newly received halo points to the d_output buffer of device memory. These copies are 
done in stream0 so they will execute in parallel with the kernel launched in Line 38.

Line 46 is a synchronize operation for all device activities. This call forces the 
process to wait for all device activities, including kernels and data copies to com-
plete. When the cudaDeviceSynchronize() function returns, all d_output data from 
the current computation step are in place: left halo data from the left neighbor pro-
cess, boundary data from the kernel launched in Line 36, internal data form the ker-
nel launched in Line 38, right boundary data from the kernel launched in Line 37, and 
right halo data from the right neighbor.

Lines 47 and 48 swap the d_input and d_output pointers. This changes the 
output of the d_ouput data of the current computation step into the d_input data 
of the next computation step. The execution then proceeds to the next computa-
tion step by going to the next iteration of the loop of Line 35. This will continue 
until all compute processes complete the number of computations specified by the 
parameter nreps.

Fig. 18.19 shows Part 6, the final part of the compute process code. Line 49 is 
a barrier synchronization that forces all processes to wait for each other to finish 

 /* Wait for previous communications */
49. MPI_Barrier(MPI_COMM_WORLD);

50. float *temp = d_output;
51. d_output = d_input;
52. d_input = temp;

 /* Send the output, skipping halo points */
53. cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);
 float *send_address = h_output + num_ghost_points; 
54. MPI_Send(send_address, dimx * dimy * dimz, MPI_REAL,
     server_process, DATA_COLLECT, MPI_COMM_WORLD);
55. MPI_Barrier(MPI_COMM_WORLD);

 /* Release resources */
56. free(h_input); free(h_output);
57. cudaFreeHost(h_left_ghost_own); cudaFreeHost(h_right_ghost_own);
58. cudaFreeHost(h_left_ghost); cudaFreeHost(h_right_ghost);
59. cudaFree( d_input ); cudaFree( d_output );
}

FIGURE 18.19

Compute process code (Part 6).
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their computation steps. Lines 50–52 swap d_output with d_input. This is because 
Lines 47 and 48, in Fig. 18.18, swapped d_output with d_input in preparation for 
the next computation step. However, this is unnecessary for the last computation 
step. So, we use Lines 50–52 to undo the swap. Line 53 copies the final output to 
the host memory. Line 54 sends the output to the data server. Line 55 waits for all 
processes to complete. Lines 56–59 free all the resources before returning to the 
main program.

Fig. 18.20 shows Part 3, the final part of the data server code, which continues 
from Fig. 18.10. Line 20 is a barrier synchronization that waits for all compute nodes 
to complete their computation steps and send their outputs. This barrier corresponds 
to the barrier at Line 55 of the compute process (Fig. 18.19). Line 22 receives the 
output data from all the compute processes. Line 23 stores the output into an external 
storage. Lines 24 and 25 free resources before returning to the main program.

18.6  �MESSAGE PASSING INTERFACE COLLECTIVE 
COMMUNICATION

The second type of MPI communication is collective communication, which involves 
a group of MPI processes. We have already seen an example of the second type 
of MPI communication API in the previous section: MPI_Barrier. The other com-
monly used group collective communication types are broadcast, reduction, gather, 
and scatter [Gropp 1999].

Barrier synchronization MPI_Barrier() is perhaps the most commonly used col-
lective communication function. As we have seen the stencil example, barriers are 
used to ensure that all MPI processes are ready before they begin to interact with 

 /* Wait for nodes to compute */
20. MPI_Barrier(MPI_COMM_WORLD);

 /* Collect output data */
21. MPI_Status status;
22. for(int process = 0; process < num_comp_nodes; process++)
    MPI_Recv(output + process * num_points / num_comp_nodes,
    num_points / num_comp_nodes, MPI_REAL, process,
    DATA_COLLECT, MPI_COMM_WORLD, &status );
 
 /* Store output data */
23. store_output(output, dimx, dimy, dimz);

 /* Release resources */
24. free(input);
25. free(output);
}

FIGURE 18.20

Data server code (Part 3).
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MPI_SendRecv(d_output + num_halo_points, num_halo_points, MPI_FLOAT,
left_neighbor, i, d_output + left_halo_offset, num_halo_points,
MPI_FLOAT, right_neighbor, i, MPI_COMM_WORLD, &status);

MPI_SendRecv(d_output + right_stage1_offset, num_halo_points, 
num_halo_points, MPI_FLOAT, right_neighbor, i, 
d_output + right_halo_offset, num_halo_points,
MPI_FLOAT, left_neighbor, i, MPI_COMM_WORLD, &status);

FIGURE 18.21

Revised MPI SendRec calls when using CUDA-aware MPI.

each other. We will not elaborate on the other types of MPI collective communication 
functions, but encourage the reader to read up on the details of these functions. In 
general, collective communication functions are highly optimized by the MPI runt-
ime developers and system vendors. Using them usually leads to better performance 
as well as readability and productivity than trying to achieve the same functionality 
with combinations of send and receive calls.

18.7  CUDA-AWARE MESSAGE PASSING INTERFACE
Modern MPI implementations are aware of the CUDA Programming model and are 
designed to minimize the communication latency between GPUs. Currently, direct 
interaction between CUDA and MPI is supported by MVAPICH2, IBM Platform 
MPI, and OpenMPI.

CUDA-aware MPI implementations are capable of sending messages from the 
GPU memory in one node to the GPU memory in a different node. This effectively 
removes the need of device-to-host data transfers before sending MPI messages, and 
host-to-device data transfers after receiving an MPI message. This has the potential 
of simplifying the host code and memory data layout. Following with our stencil 
example, if we use a CUDA-aware MPI implementation we no longer need host-
pinned memory allocations and asynchronous memory copies.

The first simplification is that we no longer need host-pinned memory buffers to 
transfer the halo points to the host memory. This means that we can safely remove 
Lines 19–22 in Fig. 18.12. However, we still need to use CUDA streams and two 
separate GPU kernels to start communicating across nodes as soon as the halo ele-
ments have been computed.

The second simplification is that we no longer need to asynchronously copy the 
halo data from the device to the host memory. As a result, we can also remove Lines 
39 and 40 in Fig. 18.16. Since the MPI calls now accept device memory addresses, 
we need to modify the calls to MPI_SendRecv to use them. Note that these memory 
addresses actually correspond to the device addresses of the asynchronous memory 
copies in the previous versions (Fig. 18.21).

Since the CUDA-aware MPI implementations will directly update the contents of 
the GPU memory, we also remove Lines 44 and 45 in Fig. 18.18.
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Besides removing the data transfers during the halo exchange using MPI_
SendRecv(), it would be also possible to remove the initial and final memory copies 
receiving/sending the input/output directly from the GPU memory.

18.8  SUMMARY
We have covered basic patterns of joint CUDA/MPI Programming for HPC clusters 
with heterogeneous computing nodes. All processes in an MPI application run the 
same program. However, each process can follow different control flow and function 
call paths to specialize their roles, as illustrated by the data server and the compute 
processes in our example. We have also presented a common pattern where compute 
processes exchange data. We presented the use of CUDA streams and asynchronous 
data transfers to enable the overlap of computation and communication. We would 
like to point out that while MPI is a very different Programming system, all major 
MPI concepts that we covered in this chapter, SPMD, MPI ranks, and barriers have 
counterparts in the CUDA Programming model. This confirms our belief that by 
teaching parallel Programming with one model well, our students can quickly pick 
up other Programming models easily. We would like to encourage the reader to build 
on the foundation from this chapter and study more advanced MPI features and other 
important patterns.

18.9  EXERCISES

1.	 For vector addition, if there are 100,000 elements in each vector and we are 
using three compute processes, how many elements are we sending to the last 
compute process?
a.	 5
b.	 300
c.	 333
d.	 334

2.	 If the MPI call MPI_Send(ptr_a, 1000, MPI_FLOAT, 2000, 4, MPI_COMM_
WORLD) resulted in a data transfer of 40,000 bytes, what is the size of each 
data element being sent?
a.	 1 byte
b.	 2 bytes
c.	 4 bytes
d.	 8 bytes

3.	 Which of the following statements is true?
a.	 MPI_Send() is blocking by default.
b.	 MPI_Recv() is blocking by default.
c.	 MPI messages must be at least 128 bytes.
d.	 MPI processes can access the same variable through shared memory.
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4.	 Use the code base in Appendix A and examples in Chapters 3, 4, 5, and 
6, Scalable parallel execution, Memory and data locality, Performance 
considerations, and Numerical considerations, to develop an OpenCL version 
of the matrix-matrix multiplication application.

5.	 Modify the example code to remove the calls to cudaMemcpy() on the 
compute node code by using GPU memory addresses on MPI_Send and MPI_
Recv.
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Now that we have learned to design and express parallel algorithms in CUDA C, we 
are in a strong position to understand and use parallel programming interfaces to rely 
on the compiler to do the detailed work. OpenACC is a specification of compiler 
directives and API routines for writing data parallel code in C, C++, or Fortran that 
can be compiled to parallel architectures, such as GPUs or multicore CPUs. Rather 
than requiring the programmer to explicitly decompose the computation into paral-
lel kernels, such as is required by CUDA C, the programmer annotates the existing 
loops and data structures in the code so that an OpenACC compiler can target the 
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code to different devices. For CUDA devices, the OpenACC compiler generates the 
kernels, creates the register and shared memory variables, and applies some of the 
performance optimizations that we have discussed in the previous chapters. The goal 
of OpenACC is to provide a programming model that is simple to use for domain 
scientists, maintains a single source code between different architectures, and is per-
formance portable, meaning that code that performs well on one architecture will 
perform well on other architectures. In our experience, OpenACC also provides a 
convenient programming interface for highly skilled CUDA programmers to quickly 
parallelize large applications. The main communication channel between the user 
and the compiler is the set of annotations on the source code. One can think of the 
user being a supervisor giving directions to the compiler as employees. Just like in 
any other managerial scenarios, having first-hand experience in the work that an 
employee does helps the manager to give better advice and directions. Now that we 
have learned and practiced the work that the OpenACC compiler does, we are ready 
to learn the effective ways to annotate the code for an OpenACC compiler.

19.1  THE OPENACC EXECUTION MODEL
The OpenACC specification was initially developed by CAPS Enterprise, Cray Inc., 
The Portland Group (PGI), and NVIDIA with support from multiple universities and 
national laboratories, but has since grown to include additional vendors, universities, 
companies, and labs. At the time of writing, the current version of the specification 
is version 2.5.

OpenACC has been designed to run on modern high-performance computing 
(HPC) systems, which generally include multicore CPUs and frequently include dis-
tinct parallel accelerators, such as GPUs. The programming model assumes that the 
program execution will begin on a host CPU which may offload execution and data 
to an accelerator device. The accelerator may in fact be the same physical device as 
the host, as is the case with multicore CPUs, or may be an attached device, such as 
a GPU that is connected to the CPU via the PCI Express (PCIe) bus. Additionally, 
the programming model allows for the host and device to have physically separate 
memories or a shared memory. As such, the most portable way to write OpenACC 
code is to assume a physically distinct accelerator with physically distinct memory, 
as it is simpler to map these assumptions back onto machines with shared memory 
or shared compute resources than to do the reverse. Fig. 19.1 shows the abstract 
machine model assumed by the OpenACC specification.

Fig. 19.2 illustrates this offloading execution model. By default, OpenACC 
enforces synchronous behavior between the host and accelerator device, where exe-
cution and requisite data are migrated from the host to the device and both return to 
the host upon completion of the OpenACC region. At the end of each parallel execu-
tion on the device, the host and device performs a synchronization unless the user 
removes the synchronization with an explicit annotation. This is, in many ways, simi-
lar to the fork/join behavior provided by traditional threaded programming models 
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FIGURE 19.1

OpenACC abstract machine model.
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FIGURE 19.2

The OpenACC offloading execution model.

such as posix-threads, except that the forked threads may exist on a different device 
and the data required by those threads may need to be copied between two physical 
memories.

Since offloading computation may also require copying of data, which can be 
time consuming when the host and accelerator have physically separate memories, 
OpenACC also provides a means for controlling how data is moved between the host 
and device and how it is shared between different offloaded regions. Conceptually 
speaking, even though most common accelerator architecture at the time of writing 
has physically separate memories, OpenACC treats data as if there is always one 
quintessential copy of the data that lives either on the host or a device, and modifica-
tions in one place will at some point in time be reflected on the other too.
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In other words, programmers cannot assume that they can modify the same data 
both on the host and the device at the same time, as the execution model makes 
no guarantees that the host and device will have physically distinct memories. On 
machines where the host and device share a memory, the program may behave in an 
unpredictable or incorrect way if both the host and device are allowed to modify the 
same memory. Likewise programmers should not assume that all architectures will 
support shared memory between the host and device; they should use the appropriate 
directives to synchronize host and device memory when necessary.

OpenACC exposes three levels of parallelism on the accelerator device: gangs, 
workers, and vectors. Gangs are fully independent execution units, where no two 
gangs may synchronize nor may they exchange data, except through the globally 
accessible memory. Since gangs work completely independently of each other, the 
programmer can make no assumptions about the order in which gangs will execute 
or how many gangs will be executed simultaneously. A CUDA C programmer should 
recognize the similarity between gangs and CUDA thread blocks.

Each gang contains one or more workers. Workers have access to a shared cache 
memory and may be synchronized by the compiler to ensure correct behavior. A 
CUDA C programmer should recognize the similarity between workers and CUDA 
threads. Workers operate on vectors of work. A vector is an operation that is com-
puted on multiple data elements in the same instruction; the number of elements cal-
culated in the instruction is referred to as the vector length. Additionally OpenACC 
allows loops to be run sequentially within any of these levels of parallelism.

Imagine a house that is getting its rooms painted. The painting company may send 
multiple groups of painters, assigning each group different rooms. Each group has its 
own bucket of paint, and painters within a group can easily talk to each other to plan 
how to paint their room, but in order for different groups to collaborate they would 
need to leave their rooms to discuss things with the other teams. Each painter has a 
roller or brush, the width of which roughly determines how much of the wall he or 
she can paint per stroke. In this example, the groups of painters represent OpenACC 
gangs, the painters represent OpenACC workers, the paint brushes or rollers repre-
sent OpenACC vectors, and the size of the brushes and rollers is the vector length. 
Achieving the best time to completion involves balancing the resources correctly 
among the levels of parallelism. Typically an OpenACC compiler will make a first, 
educated guess about how to balance these resources based on its knowledge of the 
target hardware and the information it has about the code, but the programmer is free 
to override these decisions to optimize the performance.

19.2  OPENACC DIRECTIVE FORMAT
The main difference between OpenACC and CUDA C is the use of compiler direc-
tives in OpenACC. OpenACC provides directives (pragmas in C and C++ or com-
ment directives in Fortran) for offloading parallel execution, management data 
offloading, and optimizing loop performance. OpenACC programmers can often 
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start with writing a sequential version and then annotate their sequential program 
with OpenACC directives. They leave most of the heavy lifting to the OpenACC 
compiler. The details of data transfer between host and accelerator memories, data 
caching, kernel launching, thread scheduling, and parallelism mapping are all han-
dled by OpenACC compiler and runtime. The entry barrier for programming accel-
erators becomes much lower with OpenACC.

Fig. 19.3 illustrates the basic format for the OpenACC directives. In C and C++, 
the #pragma keyword is a standardized method to provide to the compiler informa-
tion that is not specified in the standard language. This mechanism is used by many 
directive-based language extensions including OpenACC. In C and C++, OpenACC 
directives start with the sentinel “acc”. The use of sentinels allows each compiler to 
only pay attention to the directives intended for that compiler. Fig. 19.3 also shows 
that in Fortran, the OpenACC directives start with “!$acc” to indicate that the direc-
tive is only of interest to an OpenACC compiler.

An OpenACC directive specifies the type of directive and sometimes additional 
clauses to provide more information. Several OpenACC directives and clauses will 
be demonstrated in the sections that follow. Most OpenACC directives are applied 
to blocks of code, often referred to as OpenACC regions, depicted as the code sur-
rounded by the curly brackets. Some directives, particularly data management direc-
tives, are standalone, behaving much like a function call.

By supporting the use of directives on an existing code, OpenACC provides an 
incremental path for moving existing code to accelerators. This is attractive because 
adding directives disturbs the existing code less than other approaches. Some exist-
ing scientific applications are large and their developers cannot afford to rewrite them 
for accelerators. OpenACC lets these developers keep their applications looking like 
the original C, C++, or Fortran code, and insert the directives in the code where they 
are needed one place at a time.

The code of an OpenACC application remains correct when a compiler ignores 
the directives. Because OpenACC directives are implemented in pragmas, which are 
treated as comments by compilers that do not support these directives, the code can 
be compiled by other compilers and be expected to work correctly. This allows the 
application code to remain as a single source that can be compiled by various com-
pilers. The ability to maintain a single source code with and without OpenACC is 

// C or C++

#pragma acc <directive> <clauses>

{ … }

! Fortran

!$acc <directive> <clauses>

…
!$acc end <directive>

FIGURE 19.3

Basic format for OpenACC directives.



418 CHAPTER 19  Parallel programming with OpenACC

frequently one of the key reasons programmers choose OpenACC. OpenACC also 
specifies runtime API functions that can be used for device and memory management 
above and beyond what is possible in directives.

19.3  OPENACC BY EXAMPLE
OpenACC is best taught by example and for that reason this chapter will present the 
directives by applying them to a benchmark code. The benchmark code implements 
a Jacobi iterative method that solves the Laplace equation for heat transfer. As we 
have seen in Chapter 18: Programming a heterogeneous cluster, the Jacobi iterative 
method is a means for iteratively calculating the solution to a differential equation by 
continuously refining the solution until the answer has converged upon a stable solu-
tion or some fixed number of steps have completed and the answer is either deemed 
good enough or unconverged. The example code represents a 2D plane of material 
that has been divided into a grid of equally sized cells. As heat is applied to the outer 
edges of this plane, the Laplace equation dictates how the heat will transfer from 
grid point to grid point over time. Fig. 19.4 shows the problem that the example code 
solves. To calculate the temperature of a given grid point for the next time iteration, 
one simply calculates the average of the temperatures of the neighboring grid points 
from the current iteration. Once the next value for each grid point is calculated, those 
values become the current temperature and the calculation continues. At each step 
the maximum temperature change across all grid points will determine if the problem 
has converged upon a steady state.

Fig. 19.5 shows the example code that will be used in this chapter. The example 
code consists of a while loop (line 53) that carries out the Jacobi iteration. This loop 
will end if either the maximum change reaches below a set threshold (i.e., convergence) 
or a fixed number of iterations have completed. All performance results in this chapter 
were obtained by running for 1000 iterations. The while loop contains two loop nests 
(lines 55 and 64), the first of which calculates the Laplace equation to determine each 
cell’s next temperature and the second copies the next values into the working array for 
the next iteration. The array copy loop is frequently replaced with pointer manipulation 
(ping-pong buffering, Chapter 12: Parallel patterns, graph search) when implemented 
in production science codes, but writing it as a data copy simplifies the example code.

A(i,j+1)

A(i–1,j) A(i+1,j)
A(i,j)

A(i,j–1)

4
Ak(i–1,j) + Ak(i+1,j) + Ak(i,j–1) + Ak(i,j+1)

Ak+1(i,j) =

FIGURE 19.4

A Laplace equation example.



41919.3  OpenACC by example

The reader might notice that the structure of the example code is actually quite 
similar to that of the while-loop of the BFS_sequential function in Fig. 12.7. Indeed, 
the while-loop in Fig. 12.7 checks for a convergence condition. The roles of the 
c_frontier and p_frontier arrays are actually switched through pointer manipula-
tion. Interested readers can apply the same idea of pointer manipulation to the current 
code example to make it more efficient.

THE OPENACC KERNELS DIRECTIVE
The simplest method for accelerating loops with OpenACC is the kernels directive. 
This directive informs the compiler of the programmer’s desire to accelerate loops 
within a given region, but places the responsibility on the compiler to identify which 
loops can be safely parallelized and how to do so. Simply put, it instructs the compiler 
that the region that follows contains interesting loops that should be transformed into 
one or more accelerator kernels. As discussed in previous chapters, a kernel is a func-
tion that performs independent operations on different parts of the data, thus allowing 
these operations to be run in parallel. In a more explicit programming paradigm, such 
as CUDA or OpenCL, it would be the programmer’s responsibility to decompose the 
work into parallel operations in each kernel, but OpenACC places this burden on the 
compiler and allows the programmer to maintain the existing loop structure.

Notice in Fig. 19.6 that a kernels directive is added at line 55, which informs the 
compiler that the code block from lines 56 to 72 contains loops that should be ana-
lyzed and considered for acceleration. The compiler will analyze this region of code, 

53. while ( err > tol && iter < iter_max ) {

54. err=0.0;

55. for( int j = 1; j < n-1; j++) {

56. for(int i = 1; i < m-1; i++) {

57.

58. Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

59. A[j -1][i] + A[j+1][i]);

60.

61. err = max(err, abs(Anew[j][i] - A[j][i]));

62. }

63. }

64. for( int j = 1; j < n-1; j++) {

65. for( int i = 1; i < m-1; i++ ) {

66. A[j][i] = Anew[j][i];      

67. }

68. }

69. iter++;

70. }

FIGURE 19.5

Jacobi Iterative Method example code.
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looking for loops that are free of data dependencies (one loop iteration that depends 
upon the results of another) to parallelize, and determining what arrays would need 
to be transferred if run on a device with a discrete memory. In addition to determin-
ing which loops are candidates for acceleration and how to decompose the loops into 
parallel kernels, it is the compiler’s responsibility to identify the data used within 
those loops and to migrate the data to and from the accelerator device if necessary.

The code in Fig. 19.6 can be built with any OpenACC compiler, but for the 
purpose of this example the PGI compiler, version 16.4 will be used, targeting an 
NVIDIA Tesla GPU. OpenACC acceleration is enabled with the −ta = tesla com-
piler option, and because we would like to understand how the compiler transforms 
the code for the accelerator, the −Minfo =all compiler option is added. The compiler 
output is in Fig. 19.7.

The compiler output informs us that the compiler found parallelizable loops at 
lines 57, 59, 67, and 69 of the example code. Additionally it tells us that accelerator 
kernels were generated for the two loop nests, even showing that the loops at lines 
57 and 67 were distributed to gangs and the loops at lines 59 and 69 were distributed 
across gangs and vectorized with a vector length of 128. Note the lack of a worker 
loop implies that each gang has just one worker. Lastly the output shows that at line 
55 the compiler implicitly generated directives to offload the A and Anew arrays to 

53. while ( err > tol && iter < iter_max ) {
54. err=0.0;
55. #pragma acc kernels
56. {

57. for( int j = 1; j < n-1; j++) {

58. for(int i = 1; i < m-1; i++) {
59.

60. Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
61. A[j-1][i] + A[j+1][i]);
62.

63. err = max(err, abs(Anew[j][i] - A[j][i]));
64. }

65. }
66.
67. for( int j = 1; j < n-1; j++) {

68. for( int i = 1; i < m-1; i++ ) {
69. A[j][i] = Anew[j][i];

70. }
71. }
72. }

73. iter++;
74. }

FIGURE 19.6

Example code with OpenACC kernels directive.
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the device and back to the host. More information about this data offloading fol-
lows. Executing this code on a benchmark machine containing an Intel Xeon(R) 
CPU E5-2698 v3 CPU and NVIDIA K40 GPU, we see in Fig. 19.11 that even though 
our loops are now running as kernels on the GPU, the runtime benchmark actually 
slowed down. This is due to the compiler being overly cautious about the movement 
of the two arrays, something that we will correct later in this chapter. The PGProf 
profiler that comes with the PGI compiler can be used to generate a timeline of the 
program execution, which shows that at each iteration of the method our arrays are 
copied to and back from the GPU (MemCpy (HtoD) and Memcpy(DtoH)), requiring 
more time than the actual kernel execution, as shown in Fig. 19.8.

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c
main:

40, Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits
55, Generating copyout(Anew[1:4094][1:4094])

Generating copyin(A[:][:])
Generating copyout(A[1:4094][1:4094])
Generating Tesla code

57, Loop is parallelizable
59, Loop is parallelizable

Accelerator kernel generated
57, #pragma acc loop gang /* blockIdx.y */
59, #pragma acc loop gang, vector(128) /* blockIdx.x 

threadIdx.x */
63, Max reduction generated for error

67, Loop is parallelizable
69, Loop is parallelizable

Accelerator kernel generated
67, #pragma acc loop gang /* blockIdx.y */
69, #pragma acc loop gang, vector(128) /* blockIdx.x 

threadIdx.x */

FIGURE 19.7

Compiler output from example kernels code.

FIGURE 19.8

GPU timeline of kernels directive example code.
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THE OPENACC PARALLEL DIRECTIVE
OpenACC provides an alternative, more programmer-driven approach to writing par-
allel code: the parallel directive. Whereas the programmer only declares a desire for 
loops to be accelerated when using the kernels directive, when the parallel directive 
is used the programmer declares that the compiler should generate parallelism and 
when combined with the loop directive, makes assertions about the feasibility of 
loops for acceleration without requiring detailed analysis by the compiler.

Compilers are still required to determine the data requirements for the loops and 
make decisions about how best to parallelize the loop iterations to the targeted hard-
ware, but it is the programmer’s responsibility to determine and assert that the loops 
are able to be parallelized; if the programmer asserts incorrectly, then it is his/her 
fault if wrong answers result. The parallel directive is usually paired with the loop 
directive, with the former indicating that the compiler should generate parallelism on 
the device and the latter specifying that the iterations of the loop that follow should 
be mapped to that parallelism.

Unlike the kernels directive, which encloses a region that may hold lots of loops 
to be accelerated, the parallel and loop directives are added to each loop nest that 
is to be accelerated. The parallel directive generates a parallel kernel, which redun-
dantly executes the containing code until a loop directive is reached, which will then 
parallelize the affected loop. These two directives are frequently used together on the 
same pragma. Fig. 19.9 shows the same benchmark code using the parallel and loop 

53. while ( err > tol && iter < iter_max ) {
54. err=0.0;
55. #pragma acc parallel loop reduction(max:err) collapse(2)
56. for( int j = 1; j < n -1; j++) {
57. for(int i = 1; i < m -1; i++) {
58.
59. Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
60. A[j-1][i] + A[j+1][i]);
61.
62. err = max(err, abs(Anew[j][i] - A[j][i]));
63. }
64. }
65. #pragma acc parallel loop collapse(2)
66. for( int j = 1; j < n-1; j++) {
67. for( int i = 1; i < m-1; i++ ) {
68. A[j][i] = Anew[j][i];
69. }
70. }
71. }
72.
73. iter++;
74. }

FIGURE 19.9

Jacobi Iterative Method code using parallel directive.
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directives. The directives at lines 55 and 65 generate parallelism on the accelerator, 
which will be turned into accelerator kernels.

Additionally, by using the collapse clause the programmer has declared that, not 
only the outer loop is free of data races and available to parallelize, but the direc-
tive should apply to the inner loop too. It should be noted that the collapse clause 
can only be used on tightly nested loops (nested loops with no code in between, see 
Chapter 14: Application case study - non-Cartesian MRI), but the loop directive can 
be added to individual loops to declare the independence of loop iterations when col-
lapse cannot be used. Whenever collapse can be used, the compiler can potentially 
generate a multi-dimensional kernel like the one generated for the calculation of 
electrostatic potential energy at the 2D energy grid in Chapter 15, Application case 
study—molecular visualization and analysis.

The first loop nest has one small complication that needs to be addressed, however: 
the calculation of the maximum error. Each iteration of the loop will calculate its own 
error value based on the difference between the value at the current iteration and the next 
iteration. Not all values of error are needed, however, only the maximum of all errors 
is needed. This is known as a reduction, meaning the (n-2)*(m-2) different values for 
error are reduced down to one by using the max operation to choose which value to 
return (see Chapter 5: Performance considerations). While some compilers will detect 
the existence of this reduction, it is best that the user specify the reduction to be sure.

In Fig. 19.10, we once again see that the compiler has generated accelerator ker-
nels and data motion for the code. Careful examination shows that the compiler has 

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c
main:

41, Loop not fused: function call before adjacent loop
Loop not vectorized: may not be beneficial
Unrolled inner loop 4 times
Generated 3 prefetches in scalar loop

52, Loop not vectorized/parallelized: potential early exits
56, Accelerator kernel generated

Generating Tesla code
56, Generating reduction(max:error)
57, #pragma acc loop gang, vector(128) collapse(2) /* 

blockIdx.x threadIdx.x */
59,   /* blockIdx.x threadIdx.x collapsed */

56, Generating copyout(Anew[1:4094][1:4094])
Generating copyin(A[:][:])

67, Accelerator kernel generated
Generating Tesla code
68, #pragma acc loop gang, vector(128) collapse(2) /* 

blockIdx.x threadIdx.x */
70,   /* blockIdx.x threadIdx.x collapsed */

67, Generating copyin(Anew[1:4094][1:4094])
Generating copyout(A[1:4094][1:4094])

FIGURE 19.10

Compiler feedback for Jacobi Iterative Method using parallel directive.
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generated data movement directives at the beginning and end of each parallel loop 
(lines 56 and 67), resulting in twice as much data motion as the kernels version. 
Fig. 19.11 shows that the performance of this version of the code is slower than the 
kernels version, due to the additional data transfers. Fig. 19.12 shows a portion of 
the GPU timeline for this run. A comparison between Figs. 19.8 and 19.12 shows 
additional data motion between successive kernel calls in Fig. 19.12. It is obvious 
that whether the kernels directive or the parallel directive is used to accelerate the 
loops, the programmer will need to improve the data movement of the code to obtain 
higher performance.

COMPARISON OF KERNELS AND PARALLEL DIRECTIVES
Some may wonder why OpenACC needs both the kernels and parallel directives, since 
they are so similar. The kernels directive requires a lot of work from the compiler to 
determine whether the contained loops are safe and profitable to parallelize. It can 
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FIGURE 19.11

Performance speed-up from OpenACC kernels and parallel (higher is better).

FIGURE 19.12

GPU timeline of parallel loop code.
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also be used around large blocks of codes to generate many compute kernels from 
the contained loops. The parallel directive, on the other hand, requires analysis by the 
programmer to be sure that the affected loops are both safe and profitable to acceler-
ate. When the programmer uses the parallel directive the compiler is expected to obey, 
whether the programmer is correct or not. Parallel also requires the programmer to 
annotate each loop whose iterations should be executed in parallel by the accelerator.

The loop directive highlights the differences between the two directives fairly 
nicely. The loop directive has quite a few potential clauses, but two of them in par-
ticular highlight the differences between kernels and parallel: auto and independent. 
The auto clause, which is implicitly added to loop directives used in kernels regions, 
informs the compiler that the loop is interesting, but that the compiler should analyze 
it to automatically determine whether the loop can and should be parallelized.

The independent clause, which is implicitly added to loop directives used within 
parallel regions, asserts to the compiler that all iterations of the loop are independ-
ent (free of data dependencies) with regards to each other, so the compiler need not 
analyze them. The loop independent clause is frequently used to override compiler 
decisions when a compiler incorrectly thinks that a loop has data dependencies, but 
because it is implied or assumed on loops within parallel regions, it is the user’s 
responsibility to ensure correct parallelization when the parallel directive is used. 
If the code gives wrong answers when parallelized using kernels, it is a compiler 
bug, but if it gives wrong answers with the parallel directive it very well may be a 
programmer bug.

So far, we have used the parallel and loop directives together. When the parallel 
directive is used by itself, one must be aware of an important detail. The statement 
region that follows will be executed redundantly in parallel except for any explicitly 
marked loop regions. The loops in the loop regions will not be executed redundantly; 
their iterations will be executed in parallel. This is the behavior when a region is 
annotated with both parallel and loop.

OPENACC DATA DIRECTIVES
When accelerating loops the compiler will always do what it believes will be neces-
sary to ensure correct results based on the limited information it has, which is typically 
limited to what it can see in the current function or the current source file. As a gen-
eral rule of thumb, this means that if a variable appears to the right of an assignment 
(“=”) it will be copied to the accelerator, and if it appears to the left of an assignment 
it will be copied back. The programmer will generally have a better understanding 
of the big picture of an application, particularly how data is used between functions, 
so by providing more information to the compiler it is often possible to substantially 
reduce the cost of data movement compared to the compiler’s choices.

In the above examples we observed that the compiler is copying the A and Anew 
arrays at the beginning and end of each of the OpenACC regions, since it believes 
that any variable that is changed on the accelerator may be needed later on the host, 
and any data used on the accelerator could have been changed on the host, so it must 
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be refreshed to ensure correctness. Looking more closely at the code, the program-
mer should observe that A and Anew are not changed between successive iterations 
of the while loop, nor are they changed between the for loop nests. In fact, the only 
time A needs to be copied to or from the accelerator is at the beginning and end of the 
while loop. What may not be obvious from the abbreviated code above is that Anew 
is declared within the scope of this function, meaning that it is really just a temporary 
array that need not be copied at all; it only needs to exist on the device to be used as 
a temporary scratchpad. Given this, it is possible for the programmer to reduce data 
movement significantly by overriding the compiler’s data movement with a more 
optimized scheme.

OpenACC’s data directives and clauses enable the programmer to express the 
appropriate data motion to the compiler. The data region works much like the kernels 
and parallel regions, in that it identifies a block of code and augments the movement 
of data for the lifetime of that region. Additional information is given to the compiler 
through the use of data clauses. These clauses control the allocation and deletion of 
space on the accelerator and also the movement of data at the beginning and end of 
the region. Fig. 19.13 lists the five most common data clauses and their meanings.

It should be added that as of OpenACC 2.5 each of these data clauses first 
checks whether the variable is already present on the device and only does the 
specified action for variables that are not already on the device. The OpenACC 
runtime keeps a reference count of each variable, only performing memory actions 
when the reference count for the variable increases from 0 to 1 or decreases from 1 
to 0. The reference count is kept for the base address of the variable, meaning that 
there is only one reference for an entire array. The reference count atomically incre-
ments by 1 at the beginning of data regions and decrements by 1 at the end of data 
regions. Copies from the host to device only occur when the count for a variable 

Create Allocate space for the listed variable on the accelerator device at the
beginning of the region and delete the space at the end.

Copyin Create the listed variables on the device, then copy the values of that 
variable into the device variable at the beginning of the region. The
space will be deleted at the end of the region.

Copyout Create the listed variables on the device, then copy the values of that
variable from the device variable at the end of the region. The space will
be deleted at the end of the region.

Copy Behaves like a combined copyin and copyout.

Present Declares that the variables can be assumed to already exist on the
device, so no allocation, deletion, or data movement is necessary.

FIGURE 19.13

Five common data clauses and their meanings.
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C/C++ clause(start:count), start may be excluded if starting at 0

Fortran clause(start:end), start or end maybe excluded if they are the
beginning or end of the array

FIGURE 19.14

Data clause array size notation.

is incremented to 1 and copies from the device only occur when the count for a 
variable is decremented from 1 to 0. Frequently the programmer must inform the 
compiler of the size and shape of array variables, particular in C and C++, where 
arrays are simply pointers to memory. This is achieved using the syntax shown in 
Fig. 19.14, where start gives the beginning index of the array and count gives the 
number of elements in the array.

At times the compiler may be able to determine the size and shape of arrays based 
on the loop bounds, but it is generally a best practice to provide this information to 
ensure that the compiler uses the correct information. Fig. 9.15 shows the earlier 
parallel loop code with a data region applied to the convergence loop. With the data 
directives, the compiler will simply follow these directives to generate the specified 
data movements for A and Anew, rather than conducting its own analysis and insert-
ing its own data movements. The same modification can be made to the kernels ver-
sion, resulting in the same reduction in data movement costs.

53. #pragma acc data create(Anew[:n][:m]) copy(A[:n][:m])  
54. while ( err > tol && iter < iter_max ) {
55. err=0.0;
56. #pragma acc parallel loop reduction(max:error) collapse(2)
57. for( int j = 1; j < n-1; j++) {
58. for(int i = 1; i < m-1; i++) {
59.
60. Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]+
61. A[j-1][i] + A[j+1][i]);
62.
63. err = max(err, abs(Anew[j][i] - A[j][i]));
64. }
65. }
66. #pragma acc parallel loop collapse(2)
67. for( int j = 1; j < n-1; j++) {
68. for( int i = 1; i < m-1; i++ ) {
69. A[j][i] = Anew[j][i];
70. }
71. }
72.
73. iter++;
74. }

FIGURE 9.15

Jacobi Iterative Method with data region.
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Rebuilding and rerunning the code with this optimization added results in the 
speed-up shown in Fig. 19.16. This result demonstrates the importance of using data 
regions in OpenACC kernel and parallel regions.

Fig. 9.17 shows the new PGProf GPU timeline, demonstrating that the A and 
Anew arrays are no longer copied between iterations. Note that there is still a small 
amount of data copy; the value for error still needs to be copied so that it can be used 
in evaluating for convergence.

Because data regions can only be applied to structured blocks of code, the data 
directive is not always usable, particularly in the case of C++ classes, where data is 
frequently allocated in a constructor, deallocated in a destructor, and used elsewhere. 
In these situations the unstructured enter data and exit data directives allow data to 
be managed anywhere in the code. Fig. 19.18 demonstrates use of enter data and exit 
data in a C++ class constructor and destructor, respectively.
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FIGURE 19.16

Speed-up with addition of data directive (higher is better).

FIGURE 9.17

GPU timeline after optimizing data motion.
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Unstructured data directives take data clauses, like structured data regions, but 
due to their unstructured nature the list of available data clauses is slightly different. 
Fig. 19.19 shows the data clauses that can be used on each directive and their mean-
ings. As with their structured counterparts, these data clauses implement a reference 
count, where the reference count for a variable is incremented by enter data and 
decremented by exit data. Creation of device variables and copying data to the device 
only occurs when a reference count is incremented from 0 to 1 and the copying data 
back from the device to the host and deletion of device variables only occurs when 
the reference count is decremented from 1 to 0. The one exception to this rule is the 
delete clause, as explained in Fig. 19.19.

It would be impractical to require users to create or destroy device variables each 
time it is necessary to perform data copies, so OpenACC also provides an update 
directive for copying data to or from the accelerator device. The update directive is 
used to make the device and host copies of a variable, when on machines with dis-
tinct host and device memories, coherent with each other. On machines with shared 
memories between the host and device the runtime is allowed to ignore update direc-
tives. The update directive is analogous to the various cudaMemcpy function calls in 
CUDA. To update the device memory, the update device clause is given, describing 

1. template <class ctype> class Data

2. {

3. private:

4. /// Length of the data array

5. int len ; 

6. /// Data array

7. ctype *arr;

8.

9. public:

10. /// Class constructor

11. Data(int length)

12. {

13. len = length;

14. arr = new ctype[len];

15. #pragma acc enter data create(arr[0:len])

16. }

17. /// Class destructor

18. ~Data()

19. {

20. #pragma acc exit data delete(arr)

21. delete arr;

22. len = 0;

23. }

24. }

FIGURE 19.18

Example of unstructured data directives in C++ class.
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the variable or subsection of a variable that should be updated. When updating the 
host copy, the self clause (formerly called host) is used instead. Fig. 19.20 shows the 
use of update directives around an MPI halo exchange (see Chapter 18: Programming 
a heterogeneous cluster) of the top and bottom rows of a local array, where the host 
copies of the halo rows are first updated, then exchanged with neighboring processors, 
and finally the device copy is updated with the new values.

OPENACC LOOP OPTIMIZATIONS
While the OpenACC compiler will make a best effort to optimize the code for the 
target device, it is frequently possible for the developer to override the compiler’s 
decisions and obtain higher performance. The OpenACC loop directive, which has 
already been discussed in the context of the parallel directive, enables the developer to 

Enter 
data

Create Allocate space for the listed variable on the accelerator, but
do not initiate any data transfer. Increments reference count.

Copyin Create the listed variables on the device, then copy the
values of that variable into the device variable. Increments
reference count.

Exit data Copyout Copy the values of that variable from the device variable
and delete the device copy. Decrements reference count.

Delete Immediately set the reference count to 0 and remove the
device copy of the variable without any data transfer.

Release Decrement the reference count for the variable and behave
as a delete if the reference count is decremented to zero.

FIGURE 19.19

Data clauses for unstructured data directives.

1. #pragma acc update host(u_new[offset_first_row:m-

2],u_new[offset_last_row:m-2])

2. MPI_Sendrecv(u_new+offset_first_row, m-2, MPI_DOUBLE,

3. t_nb, 0, u_new+offset_bottom_boundary, m-2,

4. MPI_DOUBLE, b_nb, 0, 

5. MPI_COMM_WORLD, MPI_STATUS_IGNORE);

6. MPI_Sendrecv(u_new+offset_last_row, m-2, MPI_DOUBLE,

7. b_nb, 1, u_new+offset_top_boundary, m-2,

8. MPI_DOUBLE, t_nb, 1, 

9. MPI_COMM_WORLD, MPI_STATUS_IGNORE);

10. #pragma acc update device(u_new[offset_top_boundary:m-
2],u_new[offset_bottom_boundary:m-2])

FIGURE 19.20

Example of update directive with MPI halo exchange.
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suggest optimizations for particular loops, such as how to better decompose the loop 
iterations for the accelerator device. The loop auto, independent, and collapse clauses 
have been discussed previously, so they will not be discussed further in this section.

The first set of loop optimization clauses are the gang, worker, vector, and seq 
clauses. These clauses inform the compiler that the loop immediately following the 
loop directive should have the listed forms of parallelism applied to it. For instance, 
in Fig. 19.21, the l loop is distributed to gangs, the k loop to workers, the j loop is 
run sequentially, and the i loop is vectorized. In general gang loops are found at the 
outermost levels of loop nests and vector loops at the innermost levels, where data 
is accessed in a contiguous manner. Worker and vector levels are optionally used as 
needed in between these levels.

In addition to specifying how loops are decomposed it is sometimes useful to spec-
ify the number of gangs or workers or the vector length used. When using a parallel 
directive, these parameters are provided at the beginning of the region on the parallel 
directive, as shown in Fig. 19.22. When using the kernels directive these parameters 
can be provided on the loops themselves, as shown in Fig. 19.23. OpenACC 2.5 loos-
ens these restrictions to allow either format to be used on both parallel and kernels 
regions. Any parameter not specified will be selected by the compiler.

1. #pragma acc parallel loop gang

2. for (int l=0; l < N; l++)
3. #pragma acc loop worker

4. for (int k=0; k < N; k++ )
5. #pragma acc loop seq

6. for (int j=0; j < N; j++ )
7. #pragma acc loop vector

8. for (int i=0; i < N; i++)

9. { … }

FIGURE 19.21

Example of loop directive specifying levels of parallelism.

1. #pragma acc parallel loop gang num_gangs(1024) num_workers(32)

vector_length(32)

2. for (int l=0; l < N; l++)

3. #pragma acc loop worker

4. for (int k=0; k < N; k++ )

5. #pragma acc loop seq

6. for (int j=0; j < N; j++ )

7. #pragma acc loop vector

8. for (int i=0; i < N; i++)

9. { … }

FIGURE 19.22

Adjusting loop parameters within a parallel region.
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When specifying loop parameters, which are inherently device-specific, it is gen-
erally a best practice to use a device_type clause to specialize the parameters to only 
a particular device. For instance, to only set the vector length for NVIDIA GPUs, line 
7 of Fig. 19.23 could be changed to acc loop device_type(nvidia) vector(32). Using 
the device_type clause informs the compiler of optimizations for specific devices 
without making the code less portable to other devices, where the user may not have 
optimal values.

One more notable optimization clause for loops is the tile clause, which specifies 
the two or more tightly nested loops that follow should be broken into tiles of work 
to exploit the locality of their data access pattern. As we discussed in Chapter 4, 
Memory and data locality, tiling is a technique that involves introducing additional 
loops to a loop nest to change the order of loop iterations to take advantage of local-
ized data access patterns. This transformation could be performed by the developer, 
but often makes the code less readable and more difficult to maintain, so it is desir-
able to ask the compiler to perform the transformations instead.

The Jacobi Iterative Method example belongs in the convolution parallel pattern 
(see Chapter 7: Parallel patterns: convolution) and is a good candidate for tiling, since 
each iteration accesses its neighbor values, which may already exist in cache or regis-
ters. Fig. 19.24 shows the Jacobi Iterative Method code with the two loop nests broken 
into 32× 4 tiles on NVIDIA devices, which was experimentally determined to be the 
best value on the benchmark machine, giving roughly a 10% performance improve-
ment over the previous version. Although the parallel loop version is shown here, the 
same optimization can be applied to the kernels version for a comparable speed-up.

OPENACC ROUTINE DIRECTIVE
Because the OpenACC compiler parallelizes loops based on the information avail-
able to it at compile time, function calls within OpenACC parallel or kernels regions 
can be problematic for a compiler. In fact, OpenACC 1.0 explicitly disallowed func-
tion or subroutine calls within OpenACC code regions unless the compiler was able 
to inline the function. OpenACC 2.0 removed this restriction, but requires that the 

1. #pragma acc kernels loop gang(1024)

2. for (int l=0; l < N; l++)

3. #pragma acc loop worker(32)

4. for (int k=0; k < N; k++ )

5. #pragma acc loop seq

6. for (int j=0; j < N; j++ )

7. #pragma acc loop vector(32)

8. for (int i=0; i < N; i++)

9. { … }

FIGURE 19.23

Adjusting loop parameters within a kernels region.



43319.3  OpenACC by example

programmer update the function declaration with more information about how the 
function will be used.

The routine directive is used to essentially reserve certain levels of parallelism for 
loops within that function so that the compiler will know the levels of parallelism avail-
able to use on loops that call the function. The routine directive is placed at the function 
declaration, typically in a header file in C or C++ codes or module in Fortran codes, 
and accepts the same gang, worker, vector, and seq clauses as the loop directive. In 
the case of nested function calls, it is the programmer’s responsibility to annotate each 
function in the call tree with the highest level of parallelism use in that function.

Fig. 19.25 shows the declaration for a function mandelbrot, which contains no 
parallelism, thus it is a seq function. By placing this declaration in the header file, 
the compiler knows when it encounters the source for the mandelbrot function that it 

75. while ( err > tol && iter < iter_max ) {

76. err=0.0;

77. #pragma acc parallel loop reduction(max:err) 

device_type(nvidia) tile(32,4)

78.

79. for( int j = 1; j < n-1; j++) {

80. for(int i = 1; i < m-1; i++) {

81.

82. Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

83. A[j-1][i] + A[j+1][i]);

84.

85. err = max(err, abs(Anew[j][i] - A[j][i]));

86. }

87. }

88. #pragma acc parallel loop device_type(nvidia) tile(32,4)

89. for( int j = 1; j < n-1; j++) {

90. for( int i = 1; i < m-1; i++ ) {

91. A[j][i] = Anew[j][i];      

92. }

93. }

94. }

95.

96. iter++;

97. }

FIGURE 19.24

Jacobi Iterative Method code with loop tile clause.

1. #pragma acc routine seq
2. unsigned char mandelbrot(int Px, int Py);}

FIGURE 19.25

Example of the routine directive.
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must build a sequential version of the function for the target device, and also when it 
encounters the callsite for the function that it can rely on a sequential device version 
to be available.

ASYNCHRONOUS COMPUTATION AND DATA
All of the OpenACC directives shown thus far operate synchronously with the host, 
meaning that the host CPU will wait for the accelerator operation to complete before 
proceeding. Defaulting to synchronous behavior ensures correctness, but means that 
at most, one system resource (CPU, Accelerator, PCIe bus) can be busy at any given 
time. By opting into asynchronous behavior it is possible to concurrently use any or 
all of the system resources, improving overall application performance.

For instance, the earlier example saw a significant performance boost by reduc-
ing data copies to a bare minimum, but what if the time spent copying data could be 
reduced further by overlapping the data transfer with other, unrelated computations? 
Eventually data must be copied, but data copied while computation is also occurring 
is essentially free.

OpenACC parallel, kernels, and update directives accept an async clause, which 
informs the runtime that the operation should be sent to the accelerator, but the host 
CPU should continue working as soon as this has happened. This means that the CPU 
can either enqueue more work for the accelerator, placing the operations in an asynchro-
nous work queue or even perform its own calculations on other data. When operating on 
an NVIDIA device, work queues directly map to CUDA streams. Before the CPU uses 
data that has been sent to the device asynchronously, it will need to synchronize using 
the wait directive. Fig. 19.26 shows an example using the async and wait directives.

While being able to perform work on the host and accelerator concurrently is a 
powerful feature, it becomes even more powerful when using multiple asynchro-
nous work queues to overlap independent data transfers and computation on the 
accelerator as well. Just like when working with CUDA streams (see Chapter 18: 
Programming a heterogeneous cluster), work placed in the same queue is processed 
sequentially in the order it was enqueued, but work placed in different queues can be 
overlapped. On a high-end NVIDIA GPU machine, this means that the PCIe bus can 
be copying data in each direction while the host CPU and GPU are both performing 

1. #pragma acc data create(A[N])
2. {
3. #pragma acc parallel loop async
4. for (int i=0; i<N; i++) A[i] = 1;
5. #pragma acc update host(A[:N]) async
6. for (int j=0; j<N; j++) B[j] = 2;
7. #pragma acc wait
8. for (int k=0; k<N; k++) C[k] = A[k] + B[k];
9. }

FIGURE 19.26

Example of async and wait.
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computations. Such a process requires significant care by the developer to imple-
ment, but can result in significant performance gains.

In order to exploit different work queues, both the async and wait keywords 
accept an optional integer parameter to denote the queue number. If the async clause 
does not have a parameter, work will go into the default queue. If wait does not have a 
parameter, it will wait on all previously submitting asynchronous work on the current 
device. Fig. 19.27 demonstrates using three queues to pipeline blocks of work, thus 
overlapping all by the first and last data transfer.

19.4  COMPARING OPENACC AND CUDA
Since both OpenACC and CUDA can be used to accelerate applications on GPUs 
it is natural to wonder why both approaches are necessary. CUDA is a low-level 
approach to parallelizing a code for GPUs, which requires the developer to explic-
itly decompose the work into parallel parts and map the parallel parts to the GPU 
resources. OpenACC, on the other hand, is designed to express the parallelism of 
the code at a high enough level that compilers can parallelize the application to any 
parallel hardware. Each of these approaches has its own tradeoffs.

PORTABILITY
In terms of portability, OpenACC is generally considered the more portable approach 
to writing parallel code. CUDA is supported on only NVIDIA GPUs and thus 
requires maintaining both a host CPU and GPU version of the code. Any bug fixes or 

1. #pragma acc data create(A[WIDTH*HEIGHT])
2. for(int block = 0; block < num_blocks; block++ ) {
3. int start = block * (HEIGHT/num_blocks),
a. end   = start + (HEIGHT/num_blocks);
4. #pragma acc update 

device(A[block*block_size:block_size]) async(block%3)
5. #pragma acc parallel loop async(block%3)
6. for(int y=start;y<end;y++) {
a. for(int x=0;x<WIDTH;x++) {
b. A[y*WIDTH+x]=x*y;
7. }
8. }
9. #pragma acc update 

self(A[block*block_size:block_size]) async(block%3)
10. }
11. #pragma acc wait

FIGURE 19.27

Example of pipelining with async and wait.
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new capabilities need to be implemented both in the CPU and CUDA versions of the 
application. OpenACC on the other hand requires just one version of the code, which 
can be built for the CPU, GPU, or any other architecture supported by the compiler 
without changes. The ability to run a single source code across a wide range of archi-
tectures is OpenACC’s most important feature to many HPC software developers, as 
it greatly reduces software development and maintenance costs and allows the code 
to run at any supercomputing center. Additionally, through use of the device_type 
clause, optimizations made for particular architectures do not affect portability, since 
they do not affect other architectures. In contrast, CUDA may require differently 
optimized kernels for different generations of GPUs.

PERFORMANCE
Because OpenACC is designed to run across a variety of architectures, it represents 
only architecture characteristics that are common everywhere. As such, there are certain 
optimizations that simply cannot be applied by the developer when using OpenACC. 
For instance, many shared memory optimizations that are commonly applied in CUDA 
are difficult or even impossible to express using OpenACC directives. CUDA however 
is a low-level approach to programming that closely follows new features in NVIDIA 
GPUs. Experienced programmers can achieve near assembly-level performance when 
writing CUDA kernels. When absolute performance on a given GPU is critical, CUDA 
is the more appropriate programming model of the two.

SIMPLICITY
OpenACC’s primary target audience is domain scientists, many of whom have 
learned only enough computer programming to express their algorithms in code. 
Frequently these developers do not have the programming background and/or time 
required to explicitly parallelize their algorithms using a lower-level programming 
model, such as CUDA. OpenACC enables these users to maintain the familiar coding 
style of loops and arrays while still parallelizing the code for modern GPUs. By sim-
plifying data management to eliminate the need for device and host arrays and trans-
forming loops automatically into GPU kernels, OpenACC is often simpler for new 
users and domain scientists to learn. Nevertheless, having learned the concepts of the 
optimizations in CUDA often helps an OpenACC user to be much more effective.

As is always the case when choosing a programming model, it is up to the 
developer to choose which programming model best fits their project and skillset. 
Fortunately, both programming models are able to co-exist in the same application, 
as discussed in the next section.

When evaluating different programming models on the same hardware, develop-
ers often find it necessary to translate the concepts and terminology of each model to 
the other. Some concepts, such as gangs and workers, have clear 1:1 correspondence, 
while others, such as vectors, can be a bit murkier. Fig. 19.28 presents a commonly 
accepted translation between CUDA and OpenACC terminology.
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19.5  INTEROPERABILITY WITH CUDA AND LIBRARIES
As noted in the previous section, choosing to use OpenACC does not preclude the 
use of CUDA. In fact, the most productive strategy for accelerating an applica-
tion to a GPU may be to combine the use of accelerated libraries, such as cuB-
LAS, CUDA, and OpenACC in the same application. This approach gives the best 
of all worlds, leveraging available libraries, rapid development with OpenACC, 
and best performance on key kernels with CUDA. For a more complete survey of 
ways to mix OpenACC with other programming models, refer to the following 
article on NVIDIA’s Parallel Forall developer blog (https://devblogs.nvidia.com/
parallelforall/3-versatile-openacc-interoperability-techniques/).

CALLING CUDA OR LIBRARIES WITH OPENACC ARRAYS
The most common example of OpenACC interoperating with other programming 
models is passing device arrays from OpenACC to CUDA libraries. This is achieved 
with the host_data region. A host_data region can be thought of as a reverse data 
region. A data region exposes arrays from the host onto the accelerator, and a host_
data region exposes data that is already on the accelerator to the host. The use_
device clause to the region specifies which arrays should have their device addresses 
exposed to the host within the region.

Take for instance the code in Fig. 19.29; the data region at line 1 creates device 
copies of the x and y arrays on the accelerator, which get populated in the kernels 
region at line 3. The host_data region at line 12 exposes the device addresses of  

CUDA OpenACC

Grid Gangs

Threadblock Gang

Thread Worker or vector lane

Warp Vector

Threadblock size Number of workers * vector length

Shared memory Cache

Stream Asynchronous work queue

CUDA memcpy Update

FIGURE 19.28

Table of CUDA and OpenACC terminology.

https://devblogs.nvidia.com/parallelforall/3-versatile-openacc-interoperability-techniques/
https://devblogs.nvidia.com/parallelforall/3-versatile-openacc-interoperability-techniques/


438 CHAPTER 19  Parallel programming with OpenACC

x and y to the host to be passed into the cublasSaxpy function, which comes from the 
NVIDIA cuBLAS library. This allows developers to implement the majority of their 
code using OpenACC, but use accelerated libraries or CUDA functions selectively 
for the best performance.

USING CUDA POINTERS IN OPENACC
It is also possible to expose CUDA pointers to OpenACC regions in cases where 
CUDA is already being used in part of the application, but OpenACC is used in 
another. In this case, the deviceptr data clause can be used on data, kernels, or 
parallel directives to inform the compiler that any time the listed variables are 
seen, they are device pointers. For instance, if a developer wanted to provide an 
OpenACC version of the same SAXPY routine as above, one could use the code in 
Fig. 19.30, which accepts device pointers for x and y and passes them directly to 
the OpenACC region.

1. #pragma acc data create(x[0:n]) copyout(y[0:n])
2. {
3. #pragma acc kernels
4. {
5. for( i = 0; i < n; i++)
6. {
7. x[i] = 1.0f;
8. y[i] = 0.0f;
9. }
10. }
11.
12. #pragma acc host_data use_device(x,y)
13. {
14. cublasSaxpy(n, 2.0, x, 1, y, 1);
15. }
16. }

FIGURE 19.29

Example using host_data with NVIDIA cuBLAS.

1. void saxpy(int n, float a, float * restrict x, float * restrict y)
2. {
3. #pragma acc kernels deviceptr(x,y)
4. {
5. for(int i=0; i<n; i++)
6. {
7. y[i] += a*x[i];
8. }
9. }
10. }

FIGURE 19.30

Example of deviceptr clause.
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CALLING CUDA DEVICE KERNELS FROM OPENACC
Lastly, it is even possible to use CUDA device kernels within OpenACC compute regions 
to hand-tune the performance for critical functions within the region. In this case the pre-
viously discussed routine directive can be used to inform the compiler that a copy of the 
declared function already exists for the device and at what level of parallelism it was built. 
When mixing OpenACC and CUDA in this way it is generally simplest to implement a 
seq routine, which will be called from each loop iteration. Fig. 19.31 demonstrates both 
the declaration of the device function, typically in a separate header file, at line 2 and the 
implementation of the device kernel, typically in a source file, beginning at line 6. Fig. 19.32 
then shows the device kernel being called from a parallel loop at line 15.

1. // Declaration from header file

2. #pragma acc routine seq

3. extern "C" float saxpy_dev(float, float, float);

4.

5. // Implementation from source file.

6. extern "C"

7. __device__ 

8. float saxpy_dev(float a, float x, float y)

9. {

10. return a * x + y;

11. }

FIGURE 19.31

Example using OpenACC routine directive with CUDA device kernel.

1. #pragma acc data create(x[0:n]) copyout(y[0:n])

2. {

3. #pragma acc kernels

4. {

5. for( i = 0; i < n; i++)

6. {

7. x[i] = 1.0f;

8. y[i] = 0.0f;

9. }

10. }

11.

12. #pragma acc parallel loop

13. for( i = 0; i < n; i++ )

14. {

15. y[i] = saxpy_dev(2.0, x[i], y[i]);

16. }

17. }

FIGURE 19.32

Example calling CUDA device kernel from OpenACC.



440 CHAPTER 19  Parallel programming with OpenACC

The interoperability features of OpenACC make it a part of a much larger eco-
system of accelerated and parallel computing. There are additional interoperability 
features that are not shown in this chapter. As such, developers should remember 
when choosing a programming model that their choice isn’t “OpenACC or” but 
rather “OpenACC and” the other available tools.

19.6  THE FUTURE OF OPENACC
OpenACC began its life as a unification of emerging and competing compiler-
based solutions that existed at the time, particularly from CAPS, Cray, and PGI 
targeting NVIDIA GPUs. First implementations of OpenACC focused on GPUs 
from NVIDIA, but with an eye toward the trend of increasingly parallel processor 
architectures. As a result, OpenACC is frequently mistaken as a GPU program-
ming model, when in fact it is designed as a modern parallel programming model 
that builds on programming models that came before it. OpenACC is not designed 
to address all forms of parallelism or replace all other programming models, but 
instead is focused on loop-level data parallelism that is commonly found in HPC 
applications.

The most significant challenge that the OpenACC committee is still working to 
solve is the representation data structures that are more complex than simple arrays, 
such as C++ classes, Fortran derived types, and C structures containing pointers. 
These data structures are a significant challenge to the compiler, since they may not 
fit completely in device memory, may be shared between the host and the device, and 
may not contain sufficient information for the compiler to understand how to manage 
them effectively.

So-called deep copy, that is the copying of not only the pointers contained within a 
structure but what they point to, remains a topic of active discussion in the OpenACC 
community and is considered the most important feature to be added to OpenACC 
3.0. As many supercomputing centers have adopted multi-device nodes, it will also 
be necessary for the OpenACC community to suggest new and better ways to man-
age multiple devices. With these larger compute nodes also come richer and more 
complex memory hierarchies, yet another challenge the technical committee intends 
to address. With the changing landscape of computing, there will be no shortage of 
challenges for the OpenACC specification to address.

There are some who believe that with the addition of offloading features to the 
more established OpenMP specification, OpenACC is no longer necessary. Others 
believe that OpenACC, as the more modern specification, provides value above and 
beyond what is available in OpenMP. It is the author’s belief that programmers are 
used to choosing programming models based on the needs of their project, avail-
ability of tools, and personal preference and that both specifications provide devel-
opers with value while pushing each other forward through both collaboration and 
competition.
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19.7  EXERCISES

1.	 The code below implements a simple matrix copy routine. Parallelize these 
loops using either OpenACC kernels or parallel loop such that the inner loop 
is a vector loop with a length of 128 and the outer loop is a gang loop of 1024 
gangs.

  for( int j = 1; j < n-1; j++ ) {
    for( int i = 1; i < m-1; i++ ) {
      B[j*m+i] = A[j*m+i];
    }
  }

2.	 List two differences between the kernels and parallel constructs.
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Our main focus has been on scalable parallel programming. CUDA C and graphics 
processing unit (GPU) hardware have mostly played the role of programming platform 
for our examples and exercises. As we have demonstrated through the later chapters, 
parallel programming concepts and skills learned based on CUDA C can be easily 
adapted into other parallel programming platforms. In Chapter 18, Programming a 
heterogeneous computing cluster, for instance, most key concepts of MPI, such as 
processes, rank, and barriers have counterparts in CUDA C. Meanwhile, as was also 
discussed in Chapter 18, Programming a heterogeneous computing cluster, CUDA-
enabled GPUs have become widely available in HPC systems. For many readers, 
CUDA C will likely be an important application development and deployment plat-
form rather than a mere learning vehicle. In this case, the reader should understand 
advanced CUDA C features that have been designed to support high-performance 
programming at the application level. To illustrate, in Chapter 18, Programming a 
heterogeneous computing cluster, CUDA streams enable an MPI HPC application 
to overlap communication with computation. Such capability can achieve whole-
application performance goals. With this considered, this chapter will provide an 
overview of the advanced features of CUDA C and GPU computing hardware that 
are essential in achieving high performance and maintainability of your applications. 
For each feature, we will present basic concepts as well as a brief history of its evo-
lution through different generations of GPU computing. A sufficient understanding 
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of the concepts and history of each will help clear confusion surrounding them. The 
goal is to help you establish a conceptual framework for more detailed studies of 
these features.

20.1  MODEL OF HOST/DEVICE INTERACTION
We have thus far assumed a fairly simple model of interaction between a host and a 
device in a heterogeneous computing system. As presented in Chapter 2, Data paral-
lel computing, each device in this model contains a device memory (CUDA global 
memory) that is separate from the host memory or the system memory. The data to be 
processed by a kernel running on a device must be transferred from the host memory 
to the device memory by calling the cudaMemcpy() function. The data produced by the 
device also need to be transferred from the device memory to the host by calling the 
cudaMemcpy() function before they can be utilized by the host. While the model exhibits 
simplicity and is easy to understand, it leads to several problems at the application level.

First, I/O devices such as disk controllers and network interface cards are designed 
to operate efficiently on the host memory. Since the device memory is separate from 
the host memory, input data have to be transferred from the host memory to the 
device memory, and output data need to be transferred from the device memory to 
the host memory. Such additional transfers increase the I/O latency and reduces the 
achievable throughput of the I/O operations. For a number of applications, the ability 
for I/O devices to operate directly on the device memory would improve the overall 
application performance and simplify the application code.

Second, the host memory is where the traditional programming systems place 
their application data structures. Some data structures are very large. The device 
memory in early generations of CUDA-enabled GPUs was small compared with 
the host memory, compelling application developers to partition their large data 
structures into chunks that fit into the device memory. To illustrate, in Chapter 15, 
Application case study—molecular visualization and analysis, the 3D electrostatic 
energy grid array was partitioned into 2D slices that are transferred between the host 
memory and the device memory. For many applications, having the entire data struc-
tures reside in the device memory would be preferable. For some, there may not be a 
satisfactory way to partition the data structure into smaller chunks. For these applica-
tions, it would be best if the GPU can directly access the data in the host memory 
or have the CUDA runtime system software migrate the data that are actually used 
during kernel execution.

These limitations of the host/device interaction model were rooted in the limita-
tions of the memory architecture of early generations of CUDA-enabled GPUs. In 
these early devices, the only viable host/device interaction model for applications 
was the simple model that was assumed in the previous chapters. As more applica-
tions adopt GPU computing, CUDA system software developers, and GPU hardware 
designers have been motivated to provide better solutions. Researchers have been 
well aware of these needs and have proposed solutions since the early days of CUDA 
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[GSC 2010]. The remainder of this section will discuss a brief history of advance-
ments that address these limitations.

Zero-copy memory and unified virtual address space (UVAS). In 2009, CUDA 2.2 
introduced zero-copy access to system memory. This operation enables the host code 
to supply a special device data pointer to host the memory to a kernel. The code run-
ning on the device can use this pointer to directly access the host memory through the 
system interconnect, such as the PCIe bus without calling to cudaMemcpy(). Zero-
copy memory is pinned host memory (see chapter: Programming a heterogeneous 
computing cluster) and is allocated by calling cudaHostAlloc(), with cudaHostAl-
locMapped as the value of the flag argument. The other values of the flag argument 
are for more advanced usage, such as zero-copy memory allocation. The data pointer 
returned by cudaHostAlloc() cannot be directly passed to the kernel; the host code 
has to obtain first a valid device data pointer using cudaHostGetDevicePointer()and 
then pass the device data pointer returned by this function to the kernel. This process 
shows that different data pointers for host and device codes are used to access the 
same physical memory.

As explained in Chapter 18, Programming a heterogeneous computing cluster, 
the host memory pages must be pinned to prevent the operating system from acci-
dentally paging out the data while the GPU is accessing them. Obviously, the access 
will suffer from the long latency and limited bandwidth of the system interconnect. 
The bandwidth of the system interconnect is typically less than 10% of the global 
memory bandwidth. As we have learned in Chapter 5, Performance considerations, 
the performance of a kernel is typically limited by the global memory bandwidth 
unless tiling techniques are used to drastically reduce the number of global memory 
accesses per floating-point operation. If the majority of the memory accesses of a 
kennel are to zero-copy memory, the execution speed of the kernel can even be more 
severely limited by the bandwidth of the system interconnect. Therefore, zero-copy 
memory should be used for application data structures that are occasionally and 
sparsely accessed by a kernel running on a GPU.

In 2011, CUDA 4 introduced Unified Virtual Addressing. Until this CUDA release, 
the host and the device had their own virtual address spaces, with each of them map-
ping host or device data pointers to physical host or device memory locations. These 
disjoint virtual address spaces imply that the same physical memory location could 
be accessed by different data pointers in the host and the device, which effectively 
happens when zero-copy memory is used. The UVAS, first introduced by the GMAC 
library [GSC 2010] and adopted in CUDA 4, uses a single virtual address space shared 
by the host and the device. The UVAS ensures that each physical memory address is 
only mapped to one virtual memory location. This restriction in mapping enables the 
CUDA runtime to determine whether a data pointer is referencing the host or device 
memory by merely inspecting its virtual memory address on the host. This feature 
eliminates the need to specify the data copy direction on cudaMemcpy() calls.

Notably, the UVAS in CUDA 4 does not guarantee the accessibility of the data 
referenced by a pointer. To illustrate, the host code cannot use a device pointer 
returned by cudaMalloc() to directly access the device memory, and vice versa. 
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Zero-copy memory is the exception: the host code can directly pass a pointer to 
zero-copy memory as a kernel launch parameter to the device. When the kernel code 
dereferences this zero-copy pointer, the pointer value is translated to a physical host 
memory location and accessed directly through the PCIe. This approach does not 
necessarily allow the kernel code to dereference a pointer value read from a memory 
location, such as following a chain of pointers while traversing a linked data struc-
ture, unless all memory has been allocated using cudaHostAlloc().

The limitations in both the types of data structures that can be supported and the 
bandwidth of data accesses of zero-copy memory motivate further improvements in 
the memory model of GPU architectures beyond UVAS.

Large virtual and physical address spaces. One fundamental limitation of early 
CUDA-enabled GPUs is the size of their virtual and physical addresses. These early 
devices support 32-bit virtual addresses and up to 32-bit physical addresses. For these 
devices, the size of the device memory is limited to 4 GB, the maximal amount of memory 
that can be addressed with 32 physical address bits. Furthermore, the CUDA kernels can 
only operate on data sets whose sizes are less than 4 GB, the maximal number of virtual 
memory locations that can be accessed through 32-bit pointers, regardless of whether the 
data set resides in the host memory or the device memory. Furthermore, modern CPUs 
are based on 64-bit virtual addresses with 48 bits actually utilized. These host virtual 
addresses cannot be accommodated by the 32-bit virtual addresses used by GPUs, which 
further restricts the types of data structures supported by zero-copy memory.

To remove this limitation, recent GPU generations, starting with the Kepler GPU 
architecture introduced in 2013, have adopted a modern virtual memory architecture 
with 64-bit virtual addresses and physical addresses of at least 40 bits. Among the 
obvious benefit are that that these GPUs can incorporate more than 4 GB of device 
memory and CUDA kernels can now operate on very large data sets. While the 
enlarged virtual and physical address spaces obviously enable the use of large device 
memories, they also allow for much improved host/device interaction models. The 
host and the device can now use exactly the same pointer value to access a piece of 
data, whether it is in the host memory or the device memory.

The large GPU physical address space allows the CUDA system software to place 
the device memory of different GPUs in the system into a unified physical address 
space. The benefit is that one GPU can directly access the memory of any other GPU 
attached to the same PCIe bus by simply dereferencing a data pointer mapped to the 
physical address of such GPU. Prior to the Kepler GPU, communication among dif-
ferent GPUs (e.g., halo exchange in the stencil example in see chapter: Programming 
a heterogeneous computing cluster) was only possible through device–to–device 
memory copies triggered by the host code. This resulted in extra memory consumed 
to store the data being copied from other GPUs and extra performance overheads 
because of the memory copy operations. Direct access to other device memories in 
the system enables merely passing the device pointer to the other GPU on the kernel 
launch and using it to load and/or store the data set that needs to be communicated.

Unified Memory. In 2013, CUDA 6 introduced Unified Memory, which creates a 
pool of managed memory shared between the CPU and GPU, thus bridging the CPU–
GPU divide. Managed memory is accessible to both the CPU and GPU with the use 
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of a single pointer. Variables in the managed memory can reside in the CPU physical 
memory, the GPU physical memory, or even both. The CUDA runtime software and 
hardware implement data migration and coherence support such as the GMAC system 
[GSC 2010]. The net effect is that the managed memory resembles a CPU memory to 
code running on the CPU and GPU memory to code running on the GPU. The appli-
cation must certainly perform appropriate synchronization operations such as barriers 
or atomic operations to coordinate any concurrent accesses to the managed memory 
locations. A shared global virtual address space allows all variables in an application 
to have unique addresses. Such memory architecture, when exposed by programming 
tools and runtime system to applications, can provide major benefits.

One such benefit is the reduced amount of effort required to port a CPU code to 
CUDA. In Fig. 20.1, we present a simple CPU code on the right side. With Unified 
Memory, the code can be ported to CUDA with two simple changes. The first change 
is to use cudaMallocManaged() and cudaFree() instead of malloc() and free(). 
The second change is to launch a kernel and perform device synchronization rather 
than call the qsort_char() function. Obviously, one still needs to write or have 
access to a parallel qsort_char kernel. What is shown here is that the change to the 
host code is straightforward and easy to maintain.

However, the performance of the CUDA 6 Unified Memory was limited by the 
hardware capabilities of Kepler and Maxwell GPU architectures: The contents of all 
managed memory locations modified by the CPU had to be flushed out to the GPU 
device memory before any kernel launch. The CPU and GPU could not simultane-
ously access a managed memory allocation and the Unified Memory address space 
was limited to the size of the GPU physical memory. These limitations exist because 
these GPU architectures lacked the ability to support coherence between the host and 
device memories, and data migration was mostly performed by software.

In 2016, the Pascal GPU architecture added features to further simplify program-
ming and sharing of memory between CPU and GPU, and further reduce the effort 

void sortfile(FILE *fp, int N) {

char *data; 

data = (char *)malloc(N);

fread(data, 1, N, fp); 

qsort_char(data, N, 1); 

use_data(data);

free(data);

}

void sortfile(FILE *fp, int N) {

char *data; 

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

qsort_char<<<…>>>(data, N, 1); 

cudaDeviceSynchronize()

use_data(data);

cudaFree(data);

}

CPU code CUDA 6  code with unified memory

FIGURE 20.1

Unified Memory simplifies porting of CPU code (left) to CUDA code (right).
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required to use GPUs for significant speedups. Two main hardware features enable 
these improvements: support for large address spaces and handling of page faults.

The Pascal GPU architecture extends GPU addressing capabilities to 49-bit virtual 
addressing. Such extension can sufficiently cover the 48-bit virtual address spaces of 
modern CPUs, as well as GPU memory. This enhancement allows Unified Memory 
programs to access the full address spaces of all CPUs and GPUs in the system as a 
single virtual address space rather than be limited by the amount of data that can be 
copied to the device memory. Consequently, the CPUs and GPUs can truly share the 
pointer values, enabling the GPUs to traverse linked data structures in the host memory.

Memory page fault handling support in the Pascal GPU architecture is a crucial 
feature that provides a more seamless Unified Memory functionality. Combined with 
the system-wide virtual address space, the ability to handle page faults eliminates 
the need for the CUDA system software to synchronize (flush) all managed memory 
contents to the GPU before each kernel launch. The CUDA runtime can implement a 
coherence mechanism by allowing the host and the device to invalidate each other’s 
copy when they modify a variable in the managed memory. Invalidation can be done 
using the page mapping and protection mechanisms. When launching a kernel, the 
CUDA system software no longer has to bring all GPU copies of the managed mem-
ory data up to date. If the kernel accesses a piece of data whose copy in the device 
memory has been invalidated by the host, the GPU will handle a page fault to bring 
the data up to date and resume execution.

If a kernel running on the GPU accesses a page that does not reside in its device 
memory, it also will take a page fault, allowing the page to be automatically migrated 
to the GPU memory on-demand. Alternatively, the page may be mapped into the 
GPU address space for access over the system interconnects (mapping on access can 
sometimes be faster than migration) if the data are to be accessed only occasionally. 
Unified Memory is system-wide: GPUs (and CPUs) can fault and migrate memory 
pages either from the CPU memory or from the memory of other GPUs in the sys-
tem. If a CPU function dereferences a pointer and accesses a variable mapped to the 
GPU physical memory, the data access would still be serviced, although perhaps 
at a longer latency. Such capability allows the CUDA programs to more easily call 
legacy libraries that have not been ported to GPUs. In the current CUDA memory 
architecture, the developer must manually transfer data from the device memory to 
the host memory in order to use legacy library functions to process them on the CPU.

The Unified Memory with a page fault handling capability enables a much more 
general CPU/GPU interaction mechanism compared with zero-copy memory. It 
allows the GPU to traverse large data structures in the host memory. Starting with 
the Pascal architecture, a GPU device can traverse a linked data structure even if 
the data structure does not reside in zero-copy memory. The reason is that the same 
pointer value is used in the host and device codes to refer to the same variable. Thus, 
the embedded pointer values of a linked data structure built by the host can be tra-
versed by the device, and vice versa. In some application areas such as CAD, the host 
physical memory system may have hundreds of gigabytes of capacity. These physical 
memory systems are needed because the applications require the entire data set to 
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be “in core.” With the ability to directly access very large CPU physical memories, 
GPUs can feasibly accelerate these applications.

20.2  KERNEL EXECUTION CONTROL
Function calls within kernel functions. Early CUDA versions did not allow func-
tion calls during kernel execution. Although the source code of kernel functions can 
appear to have function calls, the compiler must be able to inline all function bodies 
into the kernel object so that function calls are present in the kernel function at runt-
ime. Although this function inlining model works reasonably well for performance-
critical portions of various applications, it does not support the software engineering 
practices in more sophisticated applications. In particular, the model does not support 
system calls, dynamically linked library calls, recursive function calls, and virtual 
functions in object oriented languages such as C++.

More recent device architectures such as Kepler support function calls in ker-
nel functions at runtime. This feature is supported in CUDA 5 and beyond. The 
compiler is no longer required to put inline the function bodies, but it can still do 
so as a performance optimization. This capability is partly enabled by cached, fast 
implementation of massively parallel call frame stacks for CUDA threads. It makes 
CUDA device code much more “composable” by allowing different authors to write 
different CUDA kernel components and assemble them all together without heavy 
re-design costs. It also allows software vendors to release device libraries without a 
source code for intellectual property protection.

Support for function calls at runtime allows recursion and will significantly 
ease the burden on programmers as they transition from legacy CPU-oriented algo-
rithms toward GPU-tuned code for divide-and-conquer types of computation. The 
QuadTree example in Chapter  13, CUDA dynamic parallelism, demonstrates the 
benefit of recursively launching kernel functions in accordance with the data char-
acteristics discovered at runtime. This also allows easier implementation of graph 
algorithms where data structure traversal often naturally involves recursion. In some 
cases, developers will be able to “cut and paste” a CPU code into a CUDA kernel and 
then obtain a reasonably performing kernel, although continued performance tuning 
would still be beneficial.

With the function call support, kernels can now call standard library functions 
such as printf() and malloc(). In our experience, the ability to call printf() in 
a kernel provides a subtle but important aid in debugging and supporting kernels in 
production software. Many end users are nontechnical and cannot be easily trained 
to run debuggers in order to provide developers with more details on what occurred 
before a crash. The ability to execute printf() in the kernel allows the developers to 
add a mode to the application to dump internal state so that the end users can submit 
meaningful bug reports.

Exception handling in kernel functions. Early CUDA systems did not sup-
port exception handling in kernel code. While not a significant limitation for 
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performance-critical portions of many high-performance applications, it often incurs 
software engineering costs in production quality applications that rely on exceptions 
to detect and handle rare conditions without executing a code to explicitly test for 
such conditions.

With the availability of limited exception handling support, CUDA debuggers 
allow a user to perform a step-by-step execution, set breakpoints, and/or run a kernel 
until an invalid memory access occurs. In each case, the user can inspect the values 
of kernel local and global variables when the execution is suspended. In our experi-
ence, the CUDA debugger is a very helpful tool for detecting out-of-bounds memory 
accesses and potential race conditions.

Simultaneous execution of multiple kernels. Early CUDA systems allow only one 
kernel to execute on each GPU device at any point in time. Multiple kernel functions 
can be submitted for execution. However, they are buffered in a queue that releases 
the next kernel after the current one completes execution. The Fermi GPU architec-
ture and its successors allow the simultaneous execution of multiple kernels from 
the same application, which reduces the pressure for the application developer to 
“batch” multiple kernels into a larger kernel in order to more fully utilize a device. In 
addition, it is at times beneficial to partition work into chunks that can execute with 
different levels of priority.

A typical benefit is for parallel cluster applications that segment work into “local” 
and “remote” partitions, where remote work is involved in interactions with other nodes 
and reside on the critical path of global progress (see chapter: Programming a hetero-
geneous computing cluster). In previous CUDA systems, kernels needed to perform 
a lot of work to ensure that the device is utilized efficiently, and one had to be careful 
not to launch local work such that global work could be blocked. This limitation meant 
choosing between underutilizing the device while waiting for remote work to arrive, 
or eagerly starting on local work to keep the device productive at the cost of increased 
latency for completing remote work units [PS 2009]. With multiple kernel executions, 
the application can use much smaller kernel sizes for launching work. Consequently, 
when high-priority remote work arrives, the application can start running with low 
latency instead of being stuck behind a large kernel of local computation.

Hardware queues and dynamic parallelism. In Kepler and CUDA 5, the multi-
ple kernel launch facility is extended by the addition of multiple hardware queues, 
which allow considerably more efficient scheduling of thread blocks from multiple 
kernels, including kernels in multiple streams. In addition, the CUDA dynamic par-
allelism feature (see Chapter  13: CUDA dynamic parallelism) allows GPU work 
creation: GPU kernels can launch child kernels, asynchronously, dynamically, 
and in a data-dependent or compute load-dependent fashion. This process reduces 
CPU–GPU interaction and synchronization because the GPU can now manage more 
complex workloads independently. The CPU is, in turn, free to perform other useful 
computations.

Interruptible kernels. The Fermi GPU architecture allows a running kernel to be 
“canceled,” enabling the creation of CUDA-accelerated apps that allow the user to 
abort a long-running calculation at any time, without requiring significant design 
effort on the part of the programmer. This property enables the implementation of 
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user-level task scheduling systems that can more efficiently perform load balance 
between GPU nodes of a computing system and allows a smoother handling of cases 
where one GPU is heavily loaded and may be running more slowly than its peers 
[SHG 2009].

20.3  MEMORY BANDWIDTH AND COMPUTE THROUGHPUT
Double-precision speed. Early devices perform double-precision floating arithmetic 
with significant speed reduction (around eight times slower) compared with single 
precision. The floating-point arithmetic units of Fermi and its successors have been 
significantly strengthened to perform double-precision arithmetic at about half the 
speed of a single-precision arithmetic. Applications that are intensive in double-
precision floating-point arithmetic benefit tremendously. Other applications that use 
double precision carefully and sparingly observe less performance impact.

In practice, the most significant benefit will likely be obtained by developers 
who are porting CPU-based numerical applications to GPUs. With improved double-
precision speed, developers will have little incentive to spend the effort to evaluate 
whether their applications or portions of their applications can fit into single preci-
sion. The ability to use double-precision arithmetic without significant performance 
penalty can significantly reduce the development cost for porting CPU applications 
to GPUs and address a major criticism of GPUs by the high-performance computing 
community.

Some applications that are operating on smaller input data types (8-bit, 16-bit, or 
single-precision floating point) may continue to benefit from using single-precision 
arithmetic, because of the reduced bandwidth in using 32 vs 64-bit data. Applications 
such as medical imaging, remote sensing, radio astronomy, seismic analysis, and 
other natural data frequently fit into this category. The Pascal GPU architecture intro-
duces a new hardware support for computing with 16-bit half-precision numbers to 
further improve the performance and energy efficiency of these applications.

Better control flow efficiency. Starting with the Fermi GPU architecture, CUDA 
systems have adopted a general compiler-driven predication technique [MHM 1995] 
that can more effectively handle control flow than previous CUDA systems. While 
this technique was moderately successful in VLIW systems, it can provide even 
more dramatic speed improvements in GPU warp-style SIMD execution systems. 
This capability broadens the range of applications that can take advantage of GPUs. 
In particular, major performance benefits can potentially be realized for applications 
that are highly data-driven, such as ray tracing, quantum chemistry visualization, and 
cellular automata simulation.

Configurable caching and scratchpad. The shared memory in early CUDA sys-
tems served as programmer-managed scratch memory and increased the speed of 
applications where key data structures have localized, predictable access patterns. 
Starting with the Fermi GPU architecture, the shared memory has been enhanced to a 
larger on-chip memory that can be configured to be partially cache memory and par-
tially shared memory, which allows coverage of both predictable and less predictable 
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access patterns to benefit from on-chip memory. This configurability allows pro-
grammers to apportion the resources according to the best fit for their application.

Applications in an early-stage design ported directly from the CPU code will 
benefit greatly from caching as the dominant part of on-chip memory. This would 
further smooth performance tuning by increasing the level of “easy performance” 
when a developer ports a CPU application to GPU.

Existing CUDA applications and those with predictable access patterns will have 
the ability to increase their use of fast shared memory by a factor of three while 
retaining the same device “occupancy” they had on previous-generation devices. For 
CUDA applications whose performance or capabilities are limited by the size of 
shared memory, the three times increase in size will be a welcome improvement. 
For example, in stencil computation (see chapters: Parallel patterns: convolution and 
Programming a heterogeneous computing cluster) such as finite difference meth-
ods for computational fluid dynamics, the state loaded into the shared memory also 
includes “halo” elements from neighboring areas.

The relative portion of halo decreases as the size of the stencil increases. In 3D 
simulation models, the halo cells can be comparable in data size as the main data for 
currently shared memory sizes. This can significantly reduce the effectiveness of the 
shared memory because of the significant portion of the memory bandwidth spent 
on loading halo elements. To illustrate, if the shared memory allows a thread block 
to load an 83 (=512)-cell stencil into the shared memory, with one layer of halo ele-
ments on every surface, only 63 (=216), or less than half of the loaded cells are the 
main data. The bandwidth spent on loading the halo elements is larger than that spent 
on the main data. A threefold increase in shared memory size allows some of these 
applications to have a more favorable stencil size where the halo accounts for a much 
smaller portion of the data in shared memory. In our example, the increased size 
would allow an 113 (=1331) tile to be loaded by each thread block. With one layer 
of halo elements on each surface, a total of 93 (=729) cells, or more than half of the 
loaded elements, are main data. This enhancement improves the memory bandwidth 
efficiency and the performance of the application.

Enhanced atomic operations. The atomic operations in the Fermi GPU architec-
ture are much faster than those in previous CUDA systems, and the atomic operations 
in Kepler are still faster. In addition, the Kepler atomic operations are more general. 
The atomic operations over shared memory variables in the Maxwell GPU archi-
tecture are further enhanced in their throughput. Atomic operations are frequently  
used in random scatter computation patterns such as histograms (see Chapter  9: 
Parallel patterns—parallel histogram computation). Faster atomic operations reduce 
the need for algorithm transformations such as prefix sum (see chapter: Parallel  
patterns: prefix sum) [SHZ 2007] and sorting [SH 2009] to implement such random 
scattering computations. These transformations tend to increase the number of ker-
nel invocations and the total number of operations required to perform the target  
computation. Faster atomic operations can also reduce the need to involve the host 
CPU in algorithms that perform collective operations or where multiple thread blocks 
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update shared data structures, thereby reducing the data transfer pressure between 
CPU and GPU.

Enhanced global memory access. The speed of random memory access is much 
faster in Fermi and Kepler than in earlier GPU architectures. Programmers can be 
less concerned about memory coalescing. This improvement allows more CPU algo-
rithms to be directly used in the GPU as an acceptable base, further smoothing the 
path of porting applications that access diverse data structures, such as ray tracing, 
and other applications that are heavily object-oriented and may be difficult to convert 
into perfectly tiled arrays.

The Pascal GPU architecture incorporates high-bandwidth memory version 2 
3D-stacked DRAM, which provides up to thrice the memory bandwidth of previous-
generation NVIDIA Maxwell architecture GPUs. Pascal is also the first architecture 
to support the new NVLink processor interconnect, which gives Tesla P100 up to five 
times the GPU–GPU and GPU–CPU communication performance of PCI Express 
3.0. This new interconnect greatly improves the scalability of multi-GPU computa-
tion within a node, as well increases the efficiency of data sharing between GPUs and 
NVLink-capable CPUs.

20.4  PROGRAMMING ENVIRONMENT
Unified device memory space. In early CUDA devices, shared, memory, local memory, 
and global memory form their own separate address spaces. The developer can use 
pointers into the global memory but not others. Starting with the Fermi Architecture 
introduced in 2009, these memories are parts of a unified address space. This unified 
address space enables a single set of load/store instructions and pointer addresses to 
access any of the GPU memory spaces (global, local, or shared memory) rather than 
different instructions and pointers for each. This makes it easier to abstract which 
memory contains a particular operand, allowing the programmer to deal with this 
only during allocation, and making it simpler to pass CUDA data objects into other 
procedures and functions, irrespective of which memory area they come from.

It makes CUDA code modules much more “composable”; i.e., a CUDA device 
function can now accept a pointer that may point to any of these memories. To illus-
trate, without a unified GPU address space, a device function needs to have one 
implementation for each type of memory that one of its arguments can reside in. 
Unified GPU address space allows variables in all main types of GPU memories to 
be accessed similarly, thus allowing one device function to accept arguments that 
can reside in different types of GPU memory. The code would run faster if a func-
tion argument pointer points to a shared memory location and slower if it points to 
a global memory location. The programmer can still perform manual data place-
ment and transfers as a performance optimization. This capability has significantly 
reduced the cost of building production-quality CUDA libraries. It also enabled full 
C and C++ pointer support, which was a significant advancement at the time.
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Future CUDA compilers will include enhanced support for C++ templates and 
virtual function calls in kernel functions. Although hardware enhancements, such the 
runtime function calling capability, are in place, enhanced C++ language support 
in the compiler has been taking more time. With these enhancements, future CUDA 
compilers will support most mainstream C++ features. For instance, using C++ fea-
tures such as new, delete, constructors, and destructors in kernel functions is already 
supported in recent compiler releases.

New and evolved programming interfaces will continue to improve the produc-
tivity of heterogeneous parallel programmers. As shown in Chapter 19, Parallel pro-
gramming with OpenACC, OpenACC allows developers to annotate their sequential 
loops with compiler directives to enable a compiler to generate CUDA kernels. 
Appendix B shows that one can use the Thrust library of parallel type-generic func-
tions, classes, and iterators to describe their computation and have the underlying 
mechanism generate and configure the kernels that implement the computation. In 
Appendix C, we presented CUDA FORTRAN that allows FORTRAN programmers 
to develop CUDA kernels in their familiar language. In particular, CUDA FORTRAN 
offers strong support for indexing into multidimensional arrays. Appendix D pro-
vides an overview of the C++AMP interface that allows developers to describe their 
kernels as parallel loops that operate on logical data structures such as multidimen-
sional arrays in a C++ application. We fully expect that new innovations will con-
tinue to arise to further boost the productivity of developers in this exciting area.

Profiling with critical-path analysis. In heterogeneous applications that perform 
significant computations on both CPUs and GPUs, locating the best place to spend 
optimization effort presents a challenge. Ideally, when optimizing a code, one would 
like to target the locations in the application that will provide the highest speedup for 
the least effort. To this end, CUDA 7.5 introduced Program Counter (PC) sampling, 
providing instruction-level profiling so that the user could pinpoint specific lines of 
code that require the most time in his/her application.

However, a challenge facing the users of such profilers is that the longest-run-
ning kernel in an application is not always the most critical optimization target. As 
Fig. 20.2 shows, kernel X is the longer running kernel. However, its execution time 
is fully overlapped with the CPU execution activity A. Any further improvement in 
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Importance of critical-path analysis for identifying the key kernels to optimize.
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the execution time of kernel X will unlikely improve the application performance. 
While the execution time of kernel Y is not as long as kernel X, it is on the critical 
path of the application execution. The CPU is idling while waiting for the completion 
of kernel Y; speeding up kernel Y will reduce the time the CPU spends waiting. Thus, 
it is the best optimization target.

In 2016, the Visual Profiler in CUDA 8 provides critical-path analysis between 
GPU kernels and CPU CUDA API calls, enhancing the precise targeting of optimi-
zation efforts. Fig. 20.3 shows critical path analysis in the CUDA 8 Visual Profiler. 
GPU kernels, copies, and API calls that are not on the critical path are grayed out. 
Only the activities on the critical path of the application execution are highlighted in 
color. This allows the user to easily identify the kernels and other activities to target 
his/her optimization efforts.

20.5  FUTURE OUTLOOK
The evolution of CUDA continues to increase its support for developer productiv-
ity and modern software engineering practices. With the new capabilities, the range 
of applications that will satisfactorily perform at minimal development costs will 
expand significantly. Developers have experienced the reduction in application 
development, porting, and maintenance costs compared with previous CUDA sys-
tems. The existing applications developed with Thrust and similar high-level tools 
that automatically generate CUDA code will also likely get an immediate boost in 
their performance. The benefit of hardware enhancements in memory architecture, 
kernel execution control, and compute core performance will be visible in the asso-
ciated Software Development Kit (SDK) releases; however, the true potential of 
these enhancements may take years to be fully exploited in the SDKs and runtimes.  

FIGURE 20.3

Application critical-path analysis in CUDA 8 Visual Profiler.
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For example, the true potential of the hardware virtual memory capability will likely 
be fully achieved only when a shared global address space runtime that supports 
direct GPU I/O and peer-to-peer data transfer for multi-GPU systems becomes 
widely available. We predict an exciting time for innovations from both industry and 
academia in programming tools and runtime environments for GPU computing in 
the next few years.
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You made it! We have arrived at the finish line. In this final chapter, we will briefly 
review the learning goals that you have achieved through this book. Instead of drawing 
a conclusion, we will offer our vision for the future of massively parallel computing 
and how its advancements will impact the future course of science and technology.

21.1  GOALS REVISITED
As we stated in the Introduction, our primary goal is to teach you, the reader, how 
to program massively parallel processors. We promised that it would become easy 
once you develop the right intuition and go about it the right way. In particular, we 
promised to focus on computational thinking skills that would enable you to think 
about problems in ways that are amenable to parallel computing.

We delivered on these promises through four steps. In step one, Chapters 2–4, 
Data parallel computing, Scalable parallel execution, and Memory and data locality, 
introduces the essential concepts of parallel computing and CUDA C. Chapter  5, 
Performance considerations, introduces the key performance considerations in devel-
oping massively parallel code in CUDA. These chapters also introduce the pertinent 
computer architecture concepts needed to understand the hardware limitations that 
must be addressed in high-performance parallel programming. With this knowledge, 
developers can be confident in writing their parallel code and reason about the rela-
tive merit of alternative threading arrangements, loop structures, and coding styles.

The second step is to introduce six major parallel patterns (see chapters: Parallel pat-
terns: convolution, Parallel patterns: prefix sum, Parallel patterns—parallel histogram 
computation, Parallel patterns: sparse matrix computation, Parallel patterns: merge 
sort, and Parallel patterns: graph search) that have been proven useful in introducing 
parallelism into many applications. These chapters cover the concepts behind the most 
useful patterns of parallel computation. Each pattern is illustrated with concrete code 
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examples. Each pattern is also used to introduce important techniques for overcoming 
frequently encountered performance obstacles in parallel programming.

The third step is to reinforce the knowledge with high-level thinking in parallel 
programming. The first part is an introduction to dynamic parallelism (see chapter 
13: CUDA dynamic parallelism) that allows parallel programmers to more easily 
address more complex parallel algorithms with dynamically varying workload in 
many real-world applications. The second part consists of three detailed application 
case studies (see chapters 14, 15, and 16: Application case study—non-Cartesian 
magnetic resonance imaging, Application case study—molecular visualization and 
analysis, and Application case study—machine learning) that show how the parallel 
programming techniques presented in this book can be applied to real applications. 
The third part is a chapter dedicated to computational thinking skills (see chapter 17: 
Parallel programming and computational thinking) that help the reader to generalize 
the concepts learned in the previous chapters into the high-level thinking required to 
tackle a new problem. With these insights, high-performance parallel programming 
becomes a well-structured thought process, rather than a black art.

The fourth step is to expose the reader to related parallel programming activi-
ties. Chapter 18, Programming a heterogeneous computing cluster presents the basic 
skills required to program an HPC cluster using MPI and CUDA C. Chapter  19, 
Parallel programming with OpenACC is an introduction to parallel programming 
using OpenACC, where the compiler does most of the detailed heavy-lifting. While 
this approach alleviates the need for the programmer to write detailed kernel code 
and data transfer code, the reader is in a much better position to give the compiler 
good directions with all the skills covered by this book. Chapter 20, More on CUDA 
and GPU Computing, provides further insight, and wraps up some loose ends left 
from earlier in the book. To help you to branch out to other programming models, we 
further introduce OpenCL (Appendix A), Thrust (Appendix B), CUDA FORTRAN 
(Appendix C), C++AMP (Appendix D). In each case, we explain how the program-
ming model/language relates to CUDA and how you can apply the skills you learned 
based on CUDA to these models/languages.

We hope that you have enjoyed the book and agree with us that you are now well 
equipped for programming massively parallel computing systems.

21.2  FUTURE OUTLOOK
Since the introduction of the first CUDA-enabled GPU G80 in 2007, the capability of 
GPUs as massively computing devices has improved at an amazing 12× in comput-
ing throughput and 8× in memory bandwidth. These advancements have stimulated 
tremendous progress in science, engineering, financing, and big data analytics. For 
example, as we have seen in Chapter 16, Application case study—machine learning, 
GPUs have ignited a revolution in deep learning from very large data sets, with appli-
cations in image recognition, speech recognition, and video analytics.

Since the first edition of this book in 2010, the field of parallel computing has 
also advanced at an amazing pace. The spectrum of problems that can be solved with 



45921.2  Future outlook

scalable algorithms has broadened significantly. While the use of GPUs was ini-
tially concentrated on regular, dense matrix computation and Monte Carlo methods, 
their use has quickly expanded into sparse methods, graph computation, and adaptive 
refinement methods. In many areas, there has also been fast advancement in algo-
rithms. Some of the algorithms presented in the parallel pattern chapters represent 
significant recent advancements.

It is only natural for some of us to wonder if we have reached the end of the fast 
advancement in parallel computing. From all indications, the answer is a definite 
no. We are only at the beginning of the parallel computing revolution. The amazing 
advancement in computing in the past three decades has triggered a paradigm shift 
in the industry. The major innovations used to be driven by physical instruments 
assisted by computing devices. They are now driven by computing assisted by physi-
cal instruments.

For example, the semiconductor industry used to rely on advancement in physical 
light sources assisted by computing methods that enforce design rules in their push to 
reduce the device feature size in the manufacturing process. Today, the advancement 
in physical light sources has practically stopped. The advancement in feature size 
reduction is primarily driven by lithography masks that are computationally designed 
to orchestrate the interference of light waves to result in extremely precise etching 
patterns on the chips.

For another example, two decades ago, GPS revolutionized the way we drive. 
GPS is primarily based on satellite signal sensing assisted by computing methods 
that determine the shortest path between two locations, using algorithms similar to 
the one we showed in Chapter 12, Parallel patterns—graph search. Today, the most 
exciting revolution in the automobile industry is self-driving cars, which is primarily 
based on machine-learning computing methods assisted by physical sensors.

For yet another example, MRI and PET revolutionized medicine in the past two 
decades. These technologies are primarily based on electromagnetic and light sen-
sors assisted by computational image reconstruction methods. They allow doctors to 
see the pathology inside human bodies without surgery. Today, the field of medicine 
is going through the revolution of individualized medicine, which is primarily driven 
by computational genomics methods assisted by sequencing sensors.

The same kind of paradigm shift has been taking place in many other areas. 
Computing has become the primary driving force for virtually all exciting innova-
tions in our society. This has created an insatiable demand for faster computing sys-
tems. As we discussed in Chapter  1, Introduction, parallel computing is the only 
viable approach to the growth of computing performance. This powerful demand 
will continue to motivate the industry to innovate and create more powerful parallel 
computing devices.

In conclusion, we are at the dawn of a golden age of computing. The industry will 
continue to recruit and reward highly skilled parallel programmers. Your work will 
make a real difference in the field of your choice.

Enjoy the ride!
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In this appendix, we will give a brief overview of OpenCL for CUDA programers. 
The fundamental programing model of OpenCL is so similar to CUDA that there is 
a one-to-one correspondence for most features. With your understanding of CUDA, 
you will be able to start writing OpenCL programs with the material presented in this 
appendix. In our opinion, the best way to learn OpenCL is actually to learn CUDA 
first and then map the OpenCL features to their CUDA equivalents.

A.1  BACKGROUND
OpenCL is a standardized, cross-platform parallel computing API based on the C 
language. It is designed to enable the development of portable parallel applications 
for systems with heterogeneous computing devices. The development of OpenCL 
was motivated by the need for a standardized high-performance application devel-
opment platform for the fast growing variety of parallel computing platforms. In 
particular, it addresses significant application portability limitations of the previous 
programing models for heterogeneous parallel computing system.

CPU-based parallel programing models have been typically based on standards 
such as OpenMP but usually do not encompass the use of special memory types or 
SIMD execution by high-performance programers. Joint CPU–GPU heterogeneous 
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parallel programing models such as CUDA have constructs that address complex 
memory hierarchies and SIMD execution but have been platform-, vendor-, or 
hardware-specific. These limitations make it difficult for an application developer 
to access the computing power of CPUs, GPUs, and other types of processing units 
from a single multiplatform source code base.

The development of OpenCL was initiated by Apple and managed by the Khronos 
Group, the same group that manages the OpenGL standard. On one hand, it draws 
heavily on CUDA in the areas of supporting a single code base for heterogeneous par-
allel computing, data parallelism, and complex memory hierarchies. This is the reason 
why a CUDA programer will find these aspects of OpenCL familiar once we con-
nect the terminologies. The reader will especially appreciate the similarities between 
OpenCL and the low-level CUDA driver model, which was not used in this book.

On the other hand, OpenCL has a more complex platform and device manage-
ment model that reflects its support for multiplatform and multivendor portability. 
OpenCL implementations already exist on AMD/ATI and NVIDIA GPUs, × 86 
CPUs as well as some digital signal processors (DSPs) and field programable gate 
arrays (FPGAs). While the OpenCL standard is designed to support code portabil-
ity across devices produced by different vendors, such portability does not come 
for free. OpenCL programs must be prepared to deal with much greater hardware 
diversity and thus will exhibit additional complexity. Also, many OpenCL features 
are optional and may not be supported on all devices. A portable OpenCL code will 
need to avoid using these optional features. However, some of these optional fea-
tures allow applications to achieve significantly more performance in devices that 
support them. As a result, a portable OpenCL code may not be able to achieve its 
performance potential on any of the devices. Therefore, one should expect that a 
portable application that achieves high performance on multiple devices will employ 
sophisticated runtime tests and choose among multiple code paths according to the 
capabilities of the actual device used.

The objective of this chapter is not to provide full details on all programing fea-
tures of OpenCL. Rather, the objective is to give a CUDA programer a conceptual 
understanding of the basic OpenCL programing model features. It also provides 
some basic host and kernel code patterns for jump starting an OpenCL coding pro-
ject. With this foundation, the reader can immediately start to program in OpenCL 
and consult the OpenCL specification [KHR, 2011] and programing guides [AMD, 
NVIDIA] on a needs basis.

A.2  DATA PARALLELISM MODEL
OpenCL employs a data parallel execution model that has direct correspondence 
with CUDA. An OpenCL program consists of two parts: kernels that execute on 
one or more OpenCL devices, and a host program that manages the execution of 
kernels. Fig. A.1 summarizes the mapping of OpenCL data parallelism concepts to 
their CUDA equivalents. Like CUDA, the way to submit work for parallel execu-
tion in OpenCL is to launch kernel functions. We will discuss the additional kernel 
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preparation, device selection and management work that an OpenCL host program 
needs to do as compared to its CUDA counterpart in Section A.4.

When a kernel function is launched, its code is run by work items, which correspond 
to CUDA threads. An index space defines the work items and how data are mapped to 
the work items. That is, OpenCL work items are identified by global dimension index 
ranges (NDRanges). Work items form work groups that correspond to CUDA thread 
blocks. Work items in the same work group can synchronize with each other using 
barriers that are equivalent to __syncthreads() in CUDA. Work items in different 
work groups cannot synchronize with each other except by terminating the kernel 
function and launching a new one. As we discussed in Chapter 3, Scalable parallel 
execution, this limited scope of barrier synchronization enables transparent scaling.

Fig. A.2 illustrates the OpenCL data parallel execution model. The NDRange 
(CUDA grid) contains all work items (CUDA threads). For this example, we assume 
that the kernel is launched with a 2D NDRange.

OpenCL Parallelism Concept CUDA Equivalent

Kernel Kernel

Host program Host program

NDRange (index space) Grid

Work item Thread

Work group Block

FIGURE A.1

Mapping between OpenCL and CUDA data parallelism model concepts.

Lo
ca

l s
iz

e(
1)

Local size(0)

Work group

Group ID
0,0 0,1 …

…

………

1,11,0

G
lo

ba
l s

iz
e(

1)

Global size(0)

Work item

FIGURE A.2

Overview of the OpenCL parallel execution model.
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All work items have their own unique global index values. There is a minor dif-
ference between OpenCL and CUDA in the way they manage these index values. 
In CUDA, each thread has blockIdx values and threadIdx values. These values 
are combined to form a global thread ID value for the thread. For example, if a 
CUDA grid and its blocks are organized as 2D arrays, the kernel code can form 
a unique global thread index value in the x dimension as blockIdx.x*blockDim.
x+threadIdx.x. These blockIdx and threadIdx values are accessible in a CUDA 
kernel as predefined variables.

In an OpenCL kernel, a thread can get its unique global index values by calling an 
API function get_global_id() function with a parameter that identifies the dimen-
sion. See get_global_id(0) entry in Fig. A.3. The functions get_global_id(0) and 
get_global_id(1) return the global thread index values in the x dimension and the 
y dimension respectively. The global index value in the x dimension is equivalent to 
the blockIdx.x*blockDim.x+threadIdx.x in CUDA. See Fig. A.3 for get_local_
id(0) function which is equivalent to threadIdx.x. We did not show the parameter 
values in Fig. A.3 for selecting the higher dimension indices: 1 for the y dimension 
and 2 for the z dimension.

An OpenCL kernel can also call an API function get_global_size() with 
a parameter that identifies the dimensional sizes of its NDRanges. The calls get_
global_size(0) and get_global_size(1) return the total number of work items in 
the x and y dimensions of the NDRanges. Note that this is slightly different from the 
CUDA gridDim values which are in terms of blocks. The CUDA equivalent for the 
get_global_size(0) return value would be gridDim.x * blockDim.x.

A.3  DEVICE ARCHITECTURE
Like CUDA, OpenCL models a heterogeneous parallel computing system as a host 
and one or more OpenCL devices. The host is a traditional CPU that executes the 
host program. Fig. A.4 shows the conceptual architecture of an OpenCL device. 

OpenCL API Call Explanation CUDA Equivalent
get_global_id(0) Global index of the

work item in the x
dimension

blockIdx.x*blockDim
x+threadIdx.x

get_local_id(0) Local index of the work
item within the work
group in the x
dimension

threadIdx.x

get_global_size(0) Size of NDRange in
the x dimension

gridDim.x*blockDim.x

get_local_size(0) Size of each work
group in the x
dimension

blockDim.x

FIGURE A.3

Mapping of OpenCL dimensions and indices to CUDA dimensions and indices.
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Each device consists of one or more compute units (CUs) that correspond to CUDA 
streaming multiprocessors (SMs). However, a CU can also correspond to CPU cores 
or other types of execution units in compute accelerators such as DSPs and FPGAs.

Each CU, in turn, consists of one or more processing elements (PEs), which cor-
responds to the streaming processors in CUDA. Computation on a device ultimately 
happens in individual PEs.

Like CUDA, OpenCL also exposes a hierarchy of memory types that can be used 
by programers. Fig. A.4 illustrates these memory types: global, constant, local, and 
private. Fig. A.5 summarizes the supported use of OpenCL memory types and the 
mapping of these memory types to CUDA memory types. The OpenCL global mem-
ory corresponds to the CUDA global memory. Like CUDA, the global memory can 
be dynamically allocated by the host program and supports read/write access by both 
host and devices.

Unlike CUDA, the constant memory can be dynamically allocated by the host. 
Like CUDA, the constant memory supports read/write access by the host and read-
only access by devices. To support multiple platforms, OpenCL provides a device 
query that returns the constant memory size supported by the device.

The mapping of OpenCL local memory and private memory to CUDA memory 
types is more interesting. The OpenCL local memory actually corresponds to CUDA 
shared memory. The OpenCL local memory can be dynamically allocated by the 
host or statically allocated in the device code. Like the CUDA shared memory, the 
OpenCL local memory cannot be accessed by the host and supports shared read/
write access by all work items in a work group. The private memory of OpenCL cor-
responds to the CUDA automatic variables.

Compute device

Compute unit 1 Compute unit N

Private
memory 1

Local
memory 1

Local
memory N

Global/constant memory data cache

Global memory

Constant memory

Compute device memory

Private
memory 1

PE 1 PE M PE 1 PE M

Private
memory M

Private
memory M

… … …

FIGURE A.4

Conceptual OpenCL device architecture. The host is not shown.
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A.4  KERNEL FUNCTIONS
OpenCL kernels have identical basic structure as CUDA kernels. All openCL ker-
nel declarations start with a “__kernel” keyword, which is equivalent to the “__
global__” keyword in CUDA. Fig. A.6 shows a simple OpenCL kernel that performs 
vector addition.

The kernel takes three arguments: pointers to the two input arrays and one pointer 
to the output array. The “__global” declarations in the function header indicate that 
the input and output arrays all reside in the global memory. Note that this keyword 
has the same meaning in OpenCL as in CUDA, except that there are two underscore 
characters (__) after the global keyword in CUDA.

The body of the kernel function is instantiated once for each work item. In 
Fig. A.6, each work item calls the get_global_id(0) function to receive their unique 
global index. This index value is then used by the work item to select the array ele-
ments to work on. Once the array element index i is formed, the rest of the kernel is 
virtually identical to the CUDA kernel.

A.5  DEVICE MANAGEMENT AND KERNEL LAUNCH
OpenCL defines a much more complex model of device management than CUDA. 
The extra complexity stems from the need for OpenCL to support multiple hard-
ware platforms. OpenCL supports runtime construction and compilation of kernels 

Memory 
Type

Host Access Device Access CUDA 
Equivalent

Global
memory

Dynamic allocation;
read/write access

No allocation; read/write
access by all work items in 
all work groups, large and 
slow but may be cached in 
some devices.

Global memory

Constant 
memory

Dynamic allocat ion; 
read/write access

Static allocation; r ead-only 
access by all work items.

Constant memory

Local
memory

Dynamic allocation; 
no access

Static allocation; s hared 
read-write access by all 
work items in a work 
group. 

Shared memory

Private
memory

No alloc ation; no 
access

Static allocation; 
read/write access by a 
single work item. 

Registers and local
memory

FIGURE A.5

Mapping between OpenCL and CUDA memory types.
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to maximize an applications ability to address portability challenges across a wide 
range of CPUs and GPUs. Interested readers should refer to OpenCL specification 
for more insight into the work that went into the OpenCL specification to cover as 
many types of potential OpenCL devices as possible [KHR, 2011].

In OpenCL, devices are managed through contexts. Fig. A.7 illustrates the main 
concepts of device management in OpenCL. In order to manage one or more devices 
in the system, the OpenCL programer first creates a context that contains these 
devices. A context is essentially an address space that contains the accessible mem-
ory locations to the OpenCL devices in the system. This can be done by calling either 
clCreateContext() or clCreateContextFromType() in the OpenCL API.

Fig. A.8 shows a simple host code pattern for managing OpenCL devices. In 
Line 4, we use clGetContextInfo() to get the number of bytes needed (parmsz) to 
hold the device information, which is used in Line 5 to allocate enough memory to 
hold the information about all the devices available in the system. This is because 
the amount of memory needed to hold the information depends on the number of 
OpenCL devices in the system. We then call clGetContextInfo() again in Line 
6 with the size of the device information and a pointer to the allocated memory 
for the device information so that the function can deposit information on all the 
devices in the system into the allocated memory. An application could also use the 

__kernel void  vadd(__global const float *a,
__global const float *b, __global float *result) {

int i = get_global_id(0);
result[i] = a[i] + b[i];

}

FIGURE A.6

A simple OpenCL kernel.

Application Kernel

Kernel

OpenCL context

Cmd queue

Cmd queue

OpenCL device OpenCL device

FIGURE A.7

OpenCL contexts are needed to manage devices.
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clGetDeviceIDs() API function to determine the number and types of devices that 
exist in a system. The reader should read the OpenCL programing guide on the 
details of the parameters to be used for these functions [Khronos].

In order to submit work for execution by a device, the host program must first 
create a command queue for the device. This can be done by calling the clCreate-
CommandQueue() function in the OpenCL API. Once a command queue is created for 
a device, the host code can perform a sequence of API function calls to insert a kernel 
along with its execution configuration parameters into the command queue. When 
the device is available for executing the next kernel, it removes the kernel at the head 
of the queue for execution.

Fig. A.8 shows a simple host program that creates a context for a device and 
submits a kernel for execution by the device. Line 2 shows a call to create a context 
that includes all OpenCL available devices in the system. Line 4 calls clGetContext 
Info() function to inquire about the number of devices in the context. Since Line 
2 asks that all OpenCL available devices be included in the context, the application 
does not know the number of devices actually included in the context after the con-
text is created. The second argument of the call in Line 4 specifies that the informa-
tion being requested is the list of all devices included in the context. However, the 
fourth argument, which is a pointer to a memory buffer where the list should be 
deposited, is a NULL pointer. This means that the call does not want the list itself. 
The reason is that the application does not know the number of devices in the context 
and does not know the size of the memory buffer required to hold the list.

Rather, Line 4 provides a pointer to the variable parmsz. After Line 4, the parmsz 
variable holds the size of the buffer needed to accommodate the list of devices in the 
context. The application now knows the amount of memory buffer needed to hold the 
list of devices in the context. It allocates the memory buffer using parmsz and assigns 
the address of the buffer to pointer variable cldevs at Line 5.

Line 6 calls clGetContextInfo() again with the pointer to the memory buffer 
in the fourth argument and the size of the buffer in the third argument. Since this is 

…
1. cl_int clerr = CL_SUCCESS;

2. cl_context clctx=clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, 
 NULL, NULL, &clerr);

3. size_t parmsz;
4. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz); 

5. cl_device_id* cldevs= (cl_device_id *) malloc(parmsz); 
6. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL); 

7. cl_command_queue clcmdq=clCreateCommandQueue(clctx, cldevs[0], 0, &clerr); 

FIGURE A.8

Creating OpenCL context and command queue.
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based on the information from the call at Line 4, the buffer is guaranteed to be the 
right size for the list of devices to be returned. The clGetContextInfo function now 
fills the device list information into the memory buffer pointed to by cldevs.

Line 7 creates a command queue for the first OpenCL device in the list. This 
is done by treating cldevs as an array whose elements are descriptors of OpenCL 
devices in the system. Line 7 passes cldevs[0] as the second argument into the 
clCreateCommandQueue(0) function. Therefore, the call generates a command queue 
for the first device in the list returned by the clGetContextInfo() function.

The reader may wonder why we did not see this complex sequence of API calls 
in our CUDA host programs. The reason is that we have been using the CUDA runt-
ime API that hides all this type of complexity for the common case where there 
is only one CUDA device in the system. The kernel launch in CUDA handles all 
the complexities on behalf of the host code. If the developer wanted to have direct 
access to all CUDA devices in the system, he/she would need to use the CUDA driver 
API, where similar API calling sequences would be used. To date, OpenCL has not 
defined a higher-level API that is equivalent to the CUDA runtime API. Until such 
a higher-level interface is available, OpenCL will remain much more tedious to use 
than the CUDA runtime API. The benefit, of course, is that an OpenCL application 
can execute on a wide range of devices.

A.6  ELECTROSTATIC POTENTIAL MAP IN OPENCL
We now present an OpenCL case study based the DCS kernel in Fig. 15.9. This case 
study is designed to give a CUDA program a practical, top to bottom experience with 
OpenCL. The first step in porting the kernel to OpenCL is to design the organization of 
the NDRange, which is illustrated in Fig. A.8. The design is a straightforward mapping 
of CUDA threads to OpenCL work items and CUDA blocks to OpenCL work groups. 
As shown in Fig. A.9, each work item will calculate up to eight grid points and each work 
group will have 64–256 work items. All the efficiency considerations in Chapter 15, 
Application case study—molecular visualization and analysis also apply here.

The work groups are assigned to the CUs the same way that CUDA blocks are 
assigned to the SMs. Such assignment is illustrated in Fig. A.10. One can use the 
same methodology used in Chapters  5 and 15, Performance considerations and 
Application case study—molecular visualization and analysis to derive high perfor-
mance OpenCL DCS kernel. Although the syntax is different, the underlying thought 
process involved in developing a high-performance OpenCL kernel is very similar 
to CUDA.

Fig. A.10 assumes the work assignment and work group organization shown in 
Fig. A.9. These work groups are assigned to CUs. The number of work groups that 
can be assigned to each CU depends on the resource requirements of each group and 
the resources available in each CU.

The OpenCL kernel function implementation matches closely the CUDA imple-
mentation. Fig. A.11 shows the key differences. One is the __kernel keyword in 
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OpenCL vs. the __global keyword in CUDA. The main difference lies in the way 
the data access indices are calculated. In this case, the OpenCL get_global_id(0) 
function returns the equivalent of CUDA blockIdx.x*blockDim.x+threadIdx.x.

Fig. A.12 shows the inner loop of the OpenCL kernel. The reader should com-
pare this inner loop with the CUDA code in Fig. 15.9. The only difference is that 

(unrolled, coalesced)

Grid of thread blocks:

Work groups:

Work items compute up to
eight potentials, skipping by
memory coalescing width

Padding waste

0,0 0,1

1,11,0

… … …

…

…64–256 work items

Unrolling increases
computational tile size

FIGURE A.9

DCS kernel version 3 NDRange configuration.

NDRange containing
all work items,
decomposed into
work groups

Atomic
coordinates

charges

Host

GPUConstant memory

Texture Texture Texture Texture

Global memory

Texture Texture

Work items compute
up to eight potentials,
skipping by coalesced

memory width

Lattice padding

Work groups
64–256 work items

Parallel data 
cache

Parallel data 
cache

Parallel data 
cache

Parallel data 
cache

Parallel data 
cache

Parallel data 
cache

FIGURE A.10

Mapping DCS NDRange to OpenCL Device.
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__rsqrt() call has been changed to native_rsqrt() call, the OpenCL way for using 
the hardware implementation of math functions on a particular device.

OpenCL adopts a dynamic compilation model. Unlike CUDA, the host program 
can explicitly compile and create a kernel program at run time. This is illustrated in 
Fig. A.13 for the DCS kernel. Line 1 declares the entire OpenCL DCS kernel source 
code as a string. Line 3 delivers the source code string to the OpenCL runtime system 
by calling the clCreateProgramWith Source() function. Line 4 sets up the compiler 
flags for the runtime compilation process. Line 5 invokes the runtime compiler to 
build the program. Line 6 requests that the OpenCL runtime create the kernel and its 
data structures so that it can be properly launched. After Line 6, clkern points to the 
kernel that can be submitted to a command queue for execution.

Fig. A.14 shows the host code that launches the DCS kernel. It assumes that the 
host code for managing OpenCL devices in Fig. A.8 has been executed. Lines 1 and 

Device
OpenCL:
__kernel voidclenergy(…) {
unsigned int xindex= get_global_id(0);
unsigned int yindex= get_global_id(1);
unsigned int outaddr= get_global_size(0) * UNROLLX
*yindex+xindex;

CUDA:
__global__ void cuenergy(…) {
Unsigned int xindex= blockIdx.x *blockDim.x +threadIdx.x;
unsigned int yindex= blockIdx.y *blockDim.y +threadIdx.y;
unsigned int outaddr= gridDim.x *blockDim.x *
UNROLLX*yindex+xindex

FIGURE A.11

Data access indexing in OpenCL and CUDA.

…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory -atominfo[atomid].y;
float dyz2= (dy * dy) + atominfo[atomid].z;
float dx1 = coorx –atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge* native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge* native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge* native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge* native_rsqrt(dx4*dx4 + dyz2);
}

FIGURE A.12

Inner loop of the OpenCL DCS kernel.
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FIGURE A.13

Building OpenCL kernel.

1.  doutput= clCreateBuffer(clctx, CL_MEM_READ_WRITE,volmemsz, 
 NULL, NULL); 
2.  datominfo= clCreateBuffer(clctx, CL_MEM_READ_ONLY, 
 MAXATOMS *sizeof(cl_float4), NULL, NULL); 
…
3.  clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);
4.  clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);
5.  clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);
6.  clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);
7.  cl_event event; 
8.  clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL,
 Gsz,Bsz, 0, NULL, &event);
9.  clerr= clWaitForEvents(1, &event);
10. clerr= clReleaseEvent(event);
…
11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0,
 volmemsz, energy, 0, NULL, NULL); 
12. clReleaseMemObject(doutput); 
13. clReleaseMemObject(datominfo); 

FIGURE A.14

OpenCL Host code for kernel launch and parameter passing.

2 allocate memory for the energy grid data and the atom information. The clCreate-
Buffer() function corresponds to the cudaMalloc() function. The constant memory 
is implicitly requested by setting the mode of access to ready only for the atominfo 
array. Note that each memory buffer is associated with a context, which is specified 
by the first argument to the clCreateBuffer() function call.
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Lines 3–6 in Fig. A.14 set up the arguments to be passed into the kernel function. 
In CUDA, the kernel functions are launched with C function call syntax extended 
with <<<>>>, which is followed by the regular list of arguments. In OpenCL, there 
is no explicit call to kernel functions. Therefore, one needs to use the clSetKernel-
Arg() functions to set up the arguments for the kernel function.

Line 8 in Fig. A.14 submits the DCS kernel for launch. The arguments to the 
clEnqueueNDRangeKernel() function specify the command queue for the device that 
will execute the kernel, a pointer to the kernel, and the global and local sizes of the 
NDRange. Lines 9 and 10 check for errors if any.

Line 11 transfers the contents of the output data back into the energy array in 
the host memory. The OpenCL clEnqueueReadBuffer() copies data from the device 
memory to the host memory and corresponds to the device to host direction of the 
cudaMemcpy() function.

The clReleaseMemObject() function is a little more sophisticated than cudaFree(). 
OpenCL maintains a reference count for data objects. OpenCL host program modules 
can retain (clRetainMemObject()) and release (clReleaseMemObject()) data objects. 
Note that clCreateBuffer() also serves as a retain call. With each retain call, the refer-
ence count of the object is incremented. With each release call, the reference count is 
decremented. When the reference count for an object reaches 0, the object is freed. This 
way, a library module can “hang on” to a memory object even though the other parts of 
the application no longer need the object and thus have released the object.

A.7  SUMMARY
OpenCL is a standardized, cross-platform API designed to support portable paral-
lel application development on heterogeneous computing systems. Like CUDA, 
OpenCL addresses complex memory hierarchies and data parallel execution. It 
draws heavily on the CUDA driver API experience. This is the reason why a CUDA 
programer finds these aspects of OpenCL familiar. We have seen this through the 
mappings of the OpenCL data parallelism model concepts, NDRange API calls, and 
memory types to their CUDA equivalents.

On the other hand, OpenCL has a more complex device management model that 
reflects its support for multiplatform and multivendor portability. While the OpenCL 
standard is designed to support code portability across devices produced by differ-
ent vendors, such portability does not come for free. OpenCL programs must be 
prepared to deal with much greater hardware diversity and thus will exhibit more 
complexity. We see that the OpenCL device management model, the OpenCL kernel 
compilation model, and the OpenCL kernel launch are much more complex than 
their CUDA counterparts.

We have by no means covered all the programing features of OpenCL. The reader 
is encouraged to read the OpenCL specification [KHR, 2011] and tutorials [Khronos] 
for more OpenCL features. In particular, we recommend that the reader pay special 
attention to the device query, object query, and task parallelism model. Further, the 
reader is encouraged to learn the new featuresntroduced in OpenCL 2.0.
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A.8  EXERCISES

1.	 Use the code base in Appendix A and examples in Chapters 2–5, Data parallel 
computing, Scalable parallel execution, Memory and data locality, and 
Performance considerations, to develop an OpenCL version of the matrix–
matrix multiplication application.

2.	 Read the “OpenCL Platform Layer” section of the OpenCL specification. 
Compare the platform querying API functions with what you have learned in 
CUDA.

3.	 Read the “Memory Objects” section of the OpenCL specification. Compare 
the object creation and access API functions with what you have learned in 
CUDA.

4.	 Read the “Kernel Objects” section of the OpenCL specification. Compare the 
kernel creation and launching API functions with what you have learned in 
CUDA.

5.	 Read the “OpenCL Programing Language” section of the OpenCL 
specification. Compare the keywords and types with what you have learned in 
CUDA.

REFERENCES
AMD OpenCL Resources. <http://developer.amd.com/gpu/ATIStreamSDK/pages/Tutorial 

OpenCL.aspx>.
Khronos Group. (2011). The OpenCL Specification version 1.1, rev44. <http://www.khronos.

org/registry/cl/specs/opencl-1.1.pdf>.
Khronos OpenCL samples, tutorials, etc. <http://www.khronos.org/developers/resources/

opencl/>.
NVIDIA OpenCL Resources. <http://www.nvidia.com/object/cuda_opencl.html>.
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This chapter demonstrates how to leverage the Thrust parallel template library to 
implement high-performance applications with minimal programming effort. Based 
on the C++ Standard Template Library (STL), Thrust brings a familiar high-level 
interface to the realm of GPU Computing while remaining fully interoperable with 
the rest of the CUDA software ecosystem. Thrust provides a set of type-generic 
parallel algorithms that can be used with user-defined data types. These parallel 
algorithms can significantly reduce the effort of developing parallel applications. 
Applications written with Thrust are concise, readable, efficient, and portable.

B.1  BACKGROUND
C++ provides a way for programmers to define generics, functions that can be 
invoked on any data types. In situations when a programming problem has the same 
solution for many different data types, the solution can be written once and for all 
using generics. For example, the two C++ functions shown below sum a float array 
and an int array. They are defined without using type-generics. The only difference 
between the first and second function is that “float” is changed to “int.”
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float sum(int n, float *p) {
 float a = 0;
 for (int i = 0; i < n; i++) a += p[i];
 return a;
}

int sum(int n, int *p) {
 int a = 0;
 for (int i = 0; i < n; i++) a += p[i];
 return a;
}

Instead of writing a different version of “sum” for each data type, the following 
generic “sum” function can be used with any data type. The idea is that the program-
mer prepares a template of sum function that can be instantiated on different types of 
array. The “template” keyword indicates the beginning of a type-generic definition. 
From this point on, we will use type-generic and generic interchangeably.

template<typename T>
T sum(int n, T *p) {
 T a = 0;
 for (int i = 0; i < n; i++) a += p[i];
 return a;
}

The code uses T as a placeholder where the actual type needs to be. Replacing 
“T” by “float” in the generic code yields one of the two definitions of “sum”, while 
replacing “T” by “int” yields the other. “T” could also be replaced by other types, 
including user-defined types. A C++ compiler will make the appropriate replace-
ment each time the “sum” function is used. Consequently, “sum” behaves much like 
the overloaded C++ function above, and it can be used as if it were an overloaded 
function. The central concept of generic programming is the use of type parameters, 
like “T” in this example that can be replaced by arbitrary types.

Thrust is a library of generic functions. By providing generic functions for each 
type of computation to be supported, Thrust does not need to have multiple versions 
of each function replicated for each eligible data type.

In reality, not all data types can be used with a generic function. Because sum 
uses addition and initializes “a” to 0, it requires the type T to behave (broadly 
speaking) like a number. Replacing T by the numeric types int or float produces 
a valid function definition, but replacing T by void or FILE* does not. Such require-
ments are called concepts, and when a type satisfies a requirement it is said to 
model a concept. In “sum”, whatever replaces T must model the “number” concept. 
That is, “sum” will compute a sum provided that it’s given a pointer to some type 
T that acts like a numeric type. Otherwise, it may produce an error or return a 
meaningless result. Generic libraries like Thrust rely on concepts as part of their 
interface.

C++ Classes can be generic as well. The idea is similar to generic functions, 
with the extra feature that a class’s fields can depend on type parameters. Generics 
are commonly used to define reusable container classes, such as those in the STL 
[HB 2011]. Container classes are implementations of data structures, such as queues, 
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linked lists, and hash tables that can be used to hold arbitrary data types. For instance, 
a very simple generic array container class could be defined as follows:

template<typename T>
class Array {
 T contents[10];

public:
 T read(int i) {return contents[i];}
 void write(int i, T x) {contents[i] = x;}

};

Containers for different data types can be created using this generic class. Their 
types are written as the generic class name followed by a type in angle brackets: 
Array<int> for an array of int, Array<float *> for an array of float*, and so 
forth. The type given in angle brackets replaces the type parameter in the class 
definition.

While this is not a complete description of how generics work, it conveys the 
essential ideas for understanding the use of generics in this chapter.

We will introduce one more background concept: iterators. In the same way that 
pointers are used to access arrays, iterators are used to access container classes. The 
term “iterator” refers to both a C++ concept and a value whose type is a model of 
this concept. An iterator represents a position within a container: it can be used to 
access the element at that position, used to go to neighboring position, or compared 
to other positions.

Pointers model the iterator concept, and they can be used to loop over an array 
as shown below:

int a[50];
for (int *i = a; i < a + 50; i++) *i = 1;

Iterators can be used to loop over an STL vector in a very similar way:

vector<int> a(50);
for (vector<int>::iterator i = a.begin(); i < a.end(); i++) *i = 1;

The member functions begin() and end() return iterators referencing the begin-
ning and just past the end of the vector. The ++, <, and * operators are overloaded 
to act like their pointer counterparts. Because many container classes provide an 
iterator interface, generic C++ code using iterators can be reused to process different 
kinds of containers.

B.2  MOTIVATION
CUDA C allows developers to make detailed decisions about how computations 
are decomposed into parallel threads and executed on the device. The level of con-
trol offered by CUDA C is an important feature: it facilitates the development of 
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high-performance algorithms for a variety of computationally demanding tasks 
which (1) merit significant optimization and (2) profit from low-level control of the 
mapping onto hardware. For this class of computational tasks CUDA C is an excel-
lent solution.

Thrust [HB 2011] solves a complementary set of problems, namely those that 
are (1) implemented efficiently without a detailed mapping of work onto the target 
architecture or those that (2) do not merit or simply will not receive significant opti-
mization effort by the developers. With Thrust, developers describe their computa-
tion using a collection of high-level algorithms and completely delegate the decision 
of how to implement the computation to the library. This abstract interface allows 
programmers to describe what to compute without placing any additional restrictions 
on how to carry out the computation. By capturing the programmer’s intent at a high 
level, Thrust has the discretion to make informed decisions on behalf of the program-
mer and select the most efficient implementation.

The value of high-level libraries is broadly recognized in high-performance com-
puting. For example, the widely used BLAS standard provides an abstract interface 
to common linear algebra operations. First conceived more than three decades ago, 
BLAS remains relevant today in large part because it allows valuable, platform- 
specific optimizations to be introduced behind a uniform interface.

Whereas BLAS is focused on numerical linear algebra, Thrust provides an 
abstract interface to fundamental parallel algorithms such as scan, sort, and reduction 
that we have introduced in this book. Thrust leverages the power of C++ templates to 
make these algorithms generic, enabling them to be used with arbitrary user-defined 
types and operators. Thrust establishes a durable interface for parallel computing 
with emphasis on generality, programmer productivity, and real-world performance.

B.3  BASIC THRUST FEATURES
Before going into greater details, let us consider the program in Fig. B.1, which illus-
trates the salient features of Thrust.

Thrust provides two vector containers: host_vector and device_vector. As the 
names suggest, host_vector is stored in host memory while device_vector lives in 
device memory on the GPU. Like the vector container in the C++ STL, host_vec-
tor and device_vector are generic containers (i.e., they are able to store any data 
type) that can be resized dynamically. As the example shows, containers automate 
the allocation and de-allocation of memory and simplify the process of exchanging 
data between the host and the device.

The program acts on the vector containers using the generate, sort, and copy 
algorithms. Here, we adopt the STL convention of specifying ranges using pairs of 
iterators. In this example, the iterators h_vec.begin() and h_vec.end() point to 
the first element and the element that is one past the end of the array respectively. 
Together the pair defines a range of integers of size h_vec.end()–h_vec.begin().
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Note that even though the computation implied by the call to the sort algorithm 
suggests one or more CUDA kernel launches, the programmer has not specified a 
launch configuration. Thrust’s interface abstracts these details. The choice of per-
formance-sensitive variables such as grid and block size of the library, the details of 
memory management, and even the choice of sorting algorithm are left to the discre-
tion of the implementer.

ITERATORS AND MEMORY SPACE
Although vector iterators are similar to pointers, they carry additional information. 
Notice that in Fig. B.1, we did not have to instruct the thrust::sort function that 
it was operating on the elements of a device_vector or hint that the copy was from 
device memory to host memory. In Thrust the memory spaces of each range are auto-
matically inferred from the iterator arguments and used to dispatch the appropriate 
implementation.

In addition to memory space, Thrust’s iterators implicitly encode a wealth of 
information which can guide the dispatch process. For instance, our sort example 
in Fig. B.1 operates on int, a primitive data type with a fundamental comparison 
operation. In this case, Thrust dispatches a highly tuned radix sort algorithm [MG 

#include <thrust/host vector.h> 
#include <thrust/device vector.h> 
#include <thrust/generate.h>
#include <thrust/sort.h> 
#include <thrust/copy.h>
#include <cstdlib>

int main(void) 
{
 // generate 16M random numbers on the host 

 thrust::host vector<int> h vec(1 << 24); 
 thrust::generate(h vec.begin(), h vec.end(), rand); 

  // transfer  data  to  the  device 
thrust::device vector<int>  d_vec  =  h vec;

 // sort data on the device 

 thrust::sort(d vec.begin(), d vec.end()); 

  // transfer  data  back  to  host 
 thrust::copy(d vec.begin(),  d_vec.end(),  h_vec.begin());

 return  0;
}

FIGURE B.1

A complete Thrust program which sorts data on the GPU.
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2010] which is considerably faster than alternative comparison-based sorting algo-
rithms such as the merge sort discussed in Chapter 11, Parallel patterns: merge sort. 
It is important to realize that this dispatch process incurs no performance or storage 
overhead: metadata encoded by iterators exists only at compile time, and dispatch 
strategies based on it are selected statically. In general, Thrust’s static dispatch strate-
gies may capitalize on any information that is derivable from the type of an iterator.

INTEROPERABILITY
Thrust is implemented entirely within CUDA C/C++ and maintains interoperabil-
ity with the rest of the CUDA ecosystem. Interoperability is an important feature 
because no single language or library is the best tool for every problem. For exam-
ple, although Thrust algorithms use CUDA features like shared memory internally, 
there is no mechanism for users to exploit shared memory directly through Thrust. 
Therefore, it is sometimes necessary for applications to access CUDA C directly to 
implement a certain class of specialized algorithms, as illustrated in the software 
stack of Fig. B.2. Interoperability between Thrust and CUDA C allows the program-
mer to replace a Thrust kernel with a CUDA kernel and vice versa by making a small 
number of changes to the surrounding code.

Interfacing Thrust to CUDA C is straightforward and analogous to the use of 
the C++ STL with standard C code. Data that resides in a Thrust container can be 
accessed by external libraries by extracting a “raw” pointer from the vector. The code 
example in Fig. B.3 illustrates the use of raw pointer cast to obtain an int pointer to 
the contents of a device vector.

In Fig. B.3A, the function raw_pointer_cast() function takes the address of 
element 0 of a device vector d_vec and return a raw C pointer raw_ptr. This pointer 
can then be used to call CUDA C API functions (cudaMemset() in this example) or 
passed as a parameter to a CUDA C kernel (my_kernel in this example).

Application

Thrust BLAS, FFT ...

CUDA C/C++

CUDA 

FIGURE B.2

Thrust is an abstraction layer on top of CUDA C/C++.
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Applying Thrust algorithms to raw C pointers is also straightforward. Once the 
raw pointer has been wrapped by a device_ptr it can be used like an ordinary Thrust 
iterator. In Fig. B.3B, the C pointer raw_ptr points to a piece of device memory 
allocated by cudaMalloc(). It can be converted or wrapped into a device pointer to 
a device vector by function device_pointer_cast() function. The wrapped pointer 
provides the memory space information Thrust needs to invoke the appropriate algo-
rithm implementation and also allows a convenient mechanism for accessing device 
memory from the host. In this case, the information indicates that dev_ptr points to 
a vector in the device memory and the elements are of type int.

Thrust’s native CUDA C interoperability ensures that Thrust always complements 
CUDA C and that a Thrust plus CUDA C combination is never worse than either 
Thrust or CUDA C alone. Indeed, while it may be possible to write whole parallel 
applications entirely with Thrust functions, it is often valuable to implement domain-
specific functionality directly in CUDA C. The level of abstraction targeted by native 
CUDA C affords programmers fine-grained control over the precise mapping of 
computational resources to a particular problem. Programming at this level provides 
developers the flexibility to implement exotic or otherwise specialized algorithms. 
Interoperability also facilitates an iterative development strategy: (1) quickly proto-
type a parallel application entirely in Thrust, (2) identify the application’s hot spots, 
and (3) write more specialized algorithms in CUDA C and optimize as necessary.

int
sizeof int

int

(B) 

int

int

sizeof int

(A) 
FIGURE B.3

Thrust interoperates smoothly with CUDA C/C++. (A) Interfacing Thrust to CUDA and  
(B) Interfacing CUDA to Thrust.
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B.4  GENERIC PROGRAMMING
Thrust presents a style of programming emphasizing code reusability and compos-
ability. Indeed, the vast majority of Thrust’s functionality is derived from four fun-
damental parallel algorithms: for_each, reduce, scan, and sort. For example, the 
transform algorithm is a derivative of for each while inner product is implemented 
with reduce.

Thrust algorithms are generic in both the type of the data to be processed and 
the operations to be applied to the data. For instance, the reduce algorithm may be 
employed to compute the sum of a range of integers (a plus reduction applied to int 
data) or the maximum of a range of floating point values (a max reduction applied to 
float data). This generality is implemented via C++ templates, which allow user-
defined types and functions to be used in addition to built-in types such as int or 
float or Thrust operators such as plus.

Generic algorithms are extremely valuable because it is impractical to antici-
pate precisely which particular types and operators a user will require. Indeed, 
while the computational structure of an algorithm is fixed, the number of instantia-
tions of the algorithm is limitless. However, it is also worth mentioning that while 
Thrust’s interface is general, the abstraction affords implementers the opportunity 
to specialize for specific types and operations known to be important use cases. 
These opportunities may be exploited statically.

In Thrust, user-defined operations take the form of C++ function objects, or 
functors (see sidebar). Functors allow the programmer to adapt a generic algorithm 
to perform a specific user-defined operation. For example, the code samples in  
Fig. B.4 implement SAXPY, the well-known BLAS operation, using CUDA C and 
Thrust respectively. The CUDA C code should be very familiar and is provided for 
comparison.

The Thrust code in Fig. B.4 has two parts. In the first part, the code sets up a 
SAXPY functor that receives an input floating value a and maintains it as a state. It 
can then be called as an operator that performs a*x +y on two input values x and y. 
Finally, the generic transform algorithm is called with the user-defined saxpy_func-
tor func. The iterators provided to the transform algorithm will apply func to each 
pair of the x and y elements and produce the saxpy results. Note that the operator 
defined in the saxpy_functor declaration can be overloaded so that different types 
of a, x, y can be passed into the transform algorithm and the correct operator will be 
invoked to generate the expected output values for each type of inputs. This makes it 
possible to create a generic SAXPY function.

C++ FUNCTION OBJECTS
A C library developer can set up a generic function by allowing the user to 
provide a callback function. For example, a sort function can allow the user 
to pass a function pointer as a parameter to perform the comparison operation 
for determining the order between two input values. This allows the user to 
pass any types of input as long as he/she can define a comparison function 
between two input values.
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global
void saxpy kernel(int n, float a, “float*” x, “float*” y) 
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;

if  (i  <  n)  y[i]  =  a * x[i]  +  y[i];
}

void saxpy(int n, float a, “float*” x, “float*” y) 
{
// set launch configuration parameters int block size = 256;
int grid size = (n + block_size - 1) / block size;

//  launch  saxpy  kernel

saxpy kernel<<<  grid_size, block_size>>>(n, a, x, y);
}

(A)

struct saxpy_functor 
{
  const float a;

  saxpy_functor(float   _a)  :  a(_a)  {}

  __host__   __device__   
  float operator() (float x, float y) 
  {
   return  a * x + y;
  }
}

void saxpy(float a, device_vector <float> &x, device_vector<float>&y)

{
   // setup functor 
  saxpy_functor  func(a); 

   // call  transform 
  transform(x.begin(), x.end(), y.begin(), y.end(), func);
}

(B)

FIGURE B.4

SAXPY implementations in (A) CUDA C and (B) Thrust.

It is sometimes desirable for a callback function to maintain a state. The C++ 
function object, or functor, provides a convenient way to do so. A functor is really 
a function defined on an object which holds a state. The function that is passed as 
the callback function is just a member function defined in the class declaration of 
the object. In the case of the saxpy_functor class, a is the class data and operator 
is the member function defined on the data. When an instance of saxpy_functor, 
func(), is passed to a generic algorithm function such as transform(), the opera-
tor will be called to operate on each pair of x and y elements.
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B.5  BENEFITS OF ABSTRACTION
In this section we will describe the benefits of Thrust’s abstraction layer with respect 
to programmer productivity, robustness, and real-world performance.

PROGRAMMER PRODUCTIVITY
Thrust’s high-level algorithms enhance programmer productivity by automating the 
mapping of computational tasks onto the GPU. Recall the two implementations of 
SAXPY shown in Fig. B.4. In the CUDA C implementation of SAXPY the program-
mer has described a specific decomposition of the parallel vector operation into a 
grid of blocks with 256 threads per block. In contrast, the Thrust implementation 
does not prescribe a launch configuration. Instead, the only specifications are the 
input and output ranges and a functor to apply to them. The kernel launch will be 
performed as part of the transform implementation. Otherwise, the two codes are 
roughly the same in terms of length and code complexity.

Delegating the launch configuration to Thrust has a subtle yet profound implica-
tion: the launch parameters can be automatically chosen based on a model of machine 
performance. Currently, Thrust targets maximal occupancy and will compare the 
resource usage of the kernel (e.g., number of registers, amount of shared memory) 
with the resources of the target GPU to determine a launch configuration with highest 
occupancy. While the maximal occupancy heuristic is not necessarily optimal, it is 
straightforward to compute and effective in practice. Furthermore, there is nothing to 
preclude the use of more sophisticated performance models. For instance, a run-time 
tuning system that examined hardware performance counters could be introduced 
behind this abstraction without altering client code.

Thrust also boosts programmer productivity by providing a rich set of algorithms 
for common patterns. For instance, the map-reduce pattern is conveniently imple-
mented with Thrust’s sort by key and reduce by key algorithms, which implement 
key-value sorting and reduction respectively.

ROBUSTNESS
Thrust’s abstraction layer also enhances the robustness of CUDA applications. In 
the previous section we noted that by delegating the launch configuration details 
to Thrust we could automatically obtain maximum occupancy during execution. In 
addition to maximizing occupancy, the abstraction layer also ensures that algorithms 
“just work,” even in uncommon or pathological use cases. For instance, Thrust auto-
matically handles limits on grid dimensions (no more than 64K in current devices), 
works around limitations on the size of global function arguments, and accommo-
dates large user-defined types in most algorithms. To the degree possible, Thrust 
circumvents such factors and ensures correct program execution across the full spec-
trum of CUDA-capable devices.
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REAL-WORLD PERFORMANCE
In addition to enhancing programmer productivity and improving robustness, the 
high-level abstractions provided by Thrust can improve performance in real-world 
use cases. In this section we examine two instances where the discretion afforded by 
Thrust’s high-level interface is exploited for meaningful performance gains.

To begin, consider the operation of filling an array with a particular value. In 
Thrust, this is implemented with the fill algorithm. Unfortunately, a straightfor-
ward implementation of this seemingly simple operation is subject to severe per-
formance hazards. Early generations of GPUs such as the G80 architecture (i.e., 
Compute Capability 1.0 and 1.1) impose strict conditions on which memory access 
patterns may benefit from memory coalescing (see chapter: Performance considera-
tions). In particular, memory accesses of sub-word granularity (i.e., less than 4 bytes) 
are not coalesced by these processors. This artifact is detrimental to performance 
when initializing arrays of char or short types.

Fortunately, the iterators passed to fill implicitly encode all the information nec-
essary to intercept this case and substitute an optimized implementation. Specifically, 
when fill is dispatched for smaller types, Thrust selects a “wide” version of the 
algorithm that issues word-sized accesses per thread. While this optimization is 
straightforward to implement, users are unlikely to invest the effort of making this 
optimization themselves. Nevertheless, the benefit, shown in Table B.1, is worth-
while, particularly on earlier architectures. Note that with the relaxed coalescing 
rules on the more recent processors, the benefit of the optimization has somewhat 
decreased but is still significant.

Like fill, Thrust’s sorting functionality exploits the discretion afforded by 
the abstract sort and stable sort functions. As long as the algorithm achieves 

Table B.1  Memory Bandwidth of Two Fill Kernels

GPU Data Type naive fill thrust::fill Speedup

GeForce 8800 GTS Char 1.2 GB/s 41.2 GB/s 34.15x
short 2.4 GB/s 41.2 GB/s 17.35x
int 41.2 GB/s 41.2 GB/s 1.00x
long 40.7 GB/s 40.7 GB/s 1.00x

GeForce GTX 280 char 33.9 GB/s 75.0 GB/s 2.21x
short 51.6 GB/s 75.0 GB/s 1.45x
int 75.0 GB/s 75.0 GB/s 1.00x
long 69.2 GB/s 69.2 GB/s 1.00x

GeForce GTX 480 char 74.1 GB/s 156.9 GB/s 2.12x
short 136.6 GB/s 156.9 GB/s 1.15x
int 146.1 GB/s 156.9 GB/s 1.07x
long 156.9 GB/s 156.9 GB/s 1.00x



486 APPENDIX B  THRUST: a productivity-oriented library for CUDA

the promised result, we are free to utilize sophisticated static (compile-time) and 
dynamic (run-time) optimizations to implement the sorting operation in the most 
efficient manner.

As mentioned in Section B.3, Thrust statically selects a highly optimized radix 
sort algorithm [MG 2010] for sorting primitive types (e.g., char, int, float, and 
double) with the standard less and greater comparison operators. For all other 
types (e.g., user-defined data types) and comparison operators, Thrust uses a general 
merge sort algorithm. Because sorting primitive types with radix sort is considerably 
faster than merge sort, this static optimization has significant value.

Thrust also applies dynamic optimizations to improve sorting performance. Since 
the cost of radix sort is proportional to the number of significant key bits, we can 
exploit unused key bits to reduce the cost of sorting. For instance, when all integer 
keys are in the range (0, 16), only four bits must be sorted, and we observe a 2.71 
speedup versus a full 32-bit sort. The relationship between key bits and radix sort 
performance is plotted in Fig. B.5.

B.6  BEST PRACTICES
In this section we highlight three high-level optimization techniques that program-
mers may employ to yield significant performance speedups when using Thrust.
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FIGURE B.5

Sorting integers on the GeForce GTX 480: Thrust’s dynamic sorting optimizations improve 
performance by a considerable margin in common use cases where keys are less than 
32 bits.
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FUSION
The balance of computational resources on modern GPUs implies that algorithms are 
often bandwidth limited. Specifically, the execution speed of kernels with low com-
putation intensity, the ratio of calculations per memory access, are constrained by the 
available memory bandwidth and do not fully utilize the computational resources of 
the GPU. One technique for increasing the computational intensity of an algorithm 
is to fuse multiple pipeline stages together into a single operation. In this section we 
demonstrate how Thrust enables developers to exploit opportunities for kernel fusion 
and better utilize GPU memory bandwidth.

The simplest form of kernel fusion is scalar function composition. For exam-
ple, suppose we have the functions f(x)→y and g(y)→z and would like to compute 
g( f(x))→z for a range of scalar values. The most straightforward approach is to read 
x from memory, compute the value y = f(x), write y to memory, and then do the same 
to compute z = g(y). In Thrust this approach would be implemented with two sepa-
rate calls to the transform algorithm, one for f and one for g. While this approach 
is straightforward to understand and implement, it needlessly wastes memory band-
width, which is a scarce resource.

A better approach is to fuse the functions into a single operation g( f(x)) and halve 
the number of memory transactions. Unless f and g are computationally expensive 
operations, the fused implementation will run approximately twice as fast as the first 
approach. In general, scalar function composition is a profitable optimization and 
should be applied liberally.

Thrust enables developers to exploit other less obvious opportunities for fusion. 
For example, consider the following two Thrust implementations of the BLAS 
function Snrm2 shown in Fig. B.6, which computes the Euclidean norm of a float 
vector.

Note that Snrm2 has low arithmetic intensity: each element of the vector par-
ticipates in only two floating-point operations, one multiply (to square the value) 
and one addition (to sum values together). Therefore, an implementation of Snrm2 
using the transform reduce algorithm, which fuses the square transformation 
with a plus reduction, should be considerably faster. Indeed this is true and 
snrm2_fast is fully 3.8 times faster than snrm2 slow for a 16 M element vector on 
a Tesla C1060.

While the previous examples represent some of the more common opportunities 
for fusion, we have only scratched the surface. As we have seen, fusing a transfor-
mation with other algorithms is a worthwhile optimization. However, Thrust would 
become unwieldy if all algorithms came with a transform variant. For this reason 
Thrust provides transform iterator, which allows transformations to be fused with 
any algorithm. Indeed, transform reduce is simply a convenience wrapper for the 
appropriate combination of transform iterator and reduce. Similarly, Thrust provides 
permutation iterator, which enables gather and scatter operations to be fused with 
other algorithms.
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STRUCTURE OF ARRAYS
In the previous section we examined how fusion minimizes the number of off-chip 
memory transactions and conserves bandwidth. Another way to improve memory effi-
ciency is to ensure that all memory accesses benefit from coalescing, since coalesced 
memory access patterns are considerably faster than non-coalesced transactions.

Perhaps the most common violation of the memory coalescing rules arises when 
using a so-called Array of Structures (AoS) data layout. Generally speaking, access 
to the elements of an array filled with C struct or C++ class variables will be 
uncoalesced. Only explicitly aligned structures such as the uint2 or float4 vector 
types satisfy the memory coalescing rules.

An alternative to the AoS layout is the Structure of Arrays (SoA) approach, where 
the components of each struct are stored in separate arrays. Fig. B.7 illustrates the 
AoS and SoA methods of representing a range of three-dimensional float vectors. 
The advantage of the SoA method is that regular access to the x, y, and z components 
of a given vector is coalesceable (because float satisfies the coalescing rules), while 
regular access to the float3 structures in the AoS approach is not.

The problem with SoA is that there is nothing to logically encapsulate the mem-
bers of each element into a single entity. Whereas we could immediately apply Thrust 
algorithms to AoS containers like device vector<float3>, we have no direct means 

struct square 
{

      __host__ __device__ 
      float operator() (float x) const
      {

return x *x;
}

}

float snrm2_slow(const thrust::device vector<float>& x) 
{
 //  without  fusion
 device vector<float> temp(x.size()); transform(x.begin(),
 x.end(), temp.begin(), square());

return  sqrt(  reduce(temp.begin(),  temp.end())  );
}
float snrm2_fast(const thrust::device vector<float>& x) 
{
 //  with  fusion

return  sqrt(  transform_reduce(x.begin(),x.end(),square(),0.0f,
 plus<float>());
}

FIGURE B.6

SNRM2 has low arithmetic intensity and therefore benefits greatly from fusion.
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of doing the same with three separate device_vector<float> containers. Fortunately 
Thrust provides zip iterator, which provides encapsulation of SoA ranges.

The zip iterator [Boost] takes a number of iterators and zips them together into 
a virtual range of tuples. For instance, binding three device_vector<float> iterators 
together yields a range of type tuple<float,float,float>, which is analogous to 
the float3 structure.

Consider the code sample in Fig. B.8 which uses zip iterator to construct a 
range of three-dimensional float vectors stored in SoA format. Each vector is trans-
formed by a rotation matrix in the rotate tuple functor before being written out 
again. Note that zip iterator is used for both input and output ranges, transparently 
packing the underlying scalar ranges into tuples and then unpacking the tuples into 
the scalar ranges. On a Tesla C1060, this SoA implementation is 2.85× faster than 
the analogous AoS implementation (not shown).

IMPLICIT RANGES
In the previous sections we considered ways to efficiently transform ranges of values 
and ways to construct ad hoc tuples of values from separate ranges. In either case, 
there was some underlying data stored explicitly in memory. In this section we illus-
trate the use of implicit ranges, i.e., ranges whose values are defined programmati-
cally and not stored anywhere in memory.

For instance, consider the problem of finding the index of the element with the 
smallest value in a given range. We could implement a special reduction kernel for 
this algorithm, which we will call min index, but that would be time-consuming 
and unnecessary. A better approach is to implement min index in terms of existing 
functionality, such as a specialized reduction over (value, index) tuples, to achieve 
the desired result. Specifically, we can zip the range of values v[0], v[1], v[2], 
… together with a range of integer indices 0, 1, 2, ::: to form a range of tuples 

struct  float3     struct  float3_soa
{

{

float  x;    float x[100];
float  y;    float y[100];
float  z;    float z[100];

}       } 
float3  aos[100];    float3_soa soa;

...       ... 
aos[0].x  =  1.0f;    soa.x[0]  =  1.0f;

(A) (B)

FIGURE B.7

Data layouts for three-dimensional float vectors. (A) Array of structures and (B) structure of 
arrays.
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struct rotate tuple {

   __host__ __device__

   tuple<float,float,float> operator()(tuple<float,float,float>& t) {

float x = get<0>(t);

float y = get<1>(t);

float z = get<2>(t);

float rx = 0.36f * x + 0.48f * y + 0.80f * z;

float ry = 0.80f * x + 0.60f * y + 0.00f * z;

float rz = 0.48f * x + 0.64f * y + 0.60f * z;

return make_tuple(rx, ry, rz);

  }

};

device vector<float> x(N), y(N), z(N);

transform(make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),

 make_zip_iterator(make_tuple(x.end(), y.end(), z.end())),

 make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),

 rotate tuple());

FIGURE B.8

The zip iterator facilitates processing of data in structure of arrays format.

struct smaller_tuple {
tuple<float,int> operator()(tuple<float,int> a,tuple<float,int> b) {

   // return the tuple with the smaller float value
if (get<0>(a) < get<0>(b)) return a;
else  return b;

    }
};

int min_index(device vector<float>& values) {
  // [begin,end) form the implicit sequence [0,1,2, ... value.size())
   counting iterator<int> begin(0);
   counting iterator<int> end(values.size());

  // initial value of the reduction
   tuple<float,int> init(values[0], 0);

  // compute the smallest tuple
  tuple<float,int> smallest = 
   reduce(make_zip_iterator(make_tuple(values.begin(), begin)),
 make_zip_iterator(make_tuple(values.end(), end)), 
 init, smaller_tuple());
   // return the index

return get<1>(smallest);
}

FIGURE B.9

Implicit ranges improve performance by conserving memory bandwidth.
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(v[0], 0), (v[1], 1), (v[2],2), … and then implement min index with the 
standard reduce algorithm. Unfortunately, this scheme will be much slower than 
a customized reduction kernel, since the index range must be created and stored 
explicitly in memory.

To resolve this issue Thrust provides counting iterator [Boost], which acts just 
like the explicit range of values we need to implement in min index, but does not 
carry any overhead. Specifically, when counting iterator is dereferenced it gener-
ates the appropriate value “on the fly” and yields that value to the caller. An efficient 
implementation of min index using counting iterator is shown in Fig. B.9.

B.7  EXERCISES

1.	 Here counting iterator has allowed us to efficiently implement a special-
purpose reduction algorithm without the need to write a new, special-purpose 
kernel. In addition to counting iterator Thrust provides constant 
iterator, which defines an implicit range of constant value. Note that these 
implicitly defined iterators can be combined with the other iterators to create 
more complex implicit ranges. For instance, counting iterator can be used 
in combination with transform iterator to produce a range of indices with 
nonunit stride.

Read Fig. B.9 and explain the operation of the algorithm using an s small exam-
ple. In practice there is no need to implement min index since Thrust’s min element 
algorithm provides the equivalent functionality. Nevertheless the min index example 
is instructive of best practices. Indeed, Thrust algorithms such as min element, max 
element, and find if apply the exact same strategy internally.
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This appendix gives an introduction to CUDA Fortran, the Fortran interface to the 
CUDA architecture. CUDA Fortran was developed in 2009 as a joint effort between 
the Portland Group (PGI) and NVIDIA. CUDA Fortran shares much in common with 
CUDA C, as it is based on the runtime API; however there are some differences in 
how the CUDA concepts are expressed using Fortran 90 constructs. The first section 
of this appendix discusses some of the basic differences between CUDA Fortran and 
CUDA C at a high level, and subsequent sections use various examples to illustrate 
CUDA Fortran programing.

C.1  CUDA FORTRAN AND CUDA C DIFFERENCES
CUDA Fortran and CUDA C have much in common, as CUDA Fortran is based on 
the CUDA C runtime API. Just as CUDA C is C with a few language extensions, 
CUDA Fortran is Fortran with a similar set of language extensions. Before we jump 
into CUDA Fortran code, it is helpful to summarize some of differences between 
these two programing interfaces to the CUDA architecture.
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Fortran is a strongly typed language, and this strong typing carries over into the 
CUDA Fortran implementation. Device data declared in CUDA Fortran host code 
is declared with the device variable attribute, unlike CUDA C where both host and 
device data are declared the same way. Differentiating host and device data when 
variables are declared can simplify several aspects of dealing with device data. 
Allocation of device data can occur where the variable is declared, for example:

real, device :: a_d(N)

will allocate a_d to contain N elements on device 0. Device data can also be 
declared as allocatable, and allocated using the Fortran 90’s allocate statement:

real, device, allocatable :: a_d(:)
...
allocate(a_d(N))

where the Fortran allocate routine has been overloaded to allocate arrays on 
the current device in the same way cudaMalloc does in CUDA C. CUDA Fortran’s 
strong typing also affects how data transfers between host and device can be per-
formed. While one can use the cudaMempy function to perform host-to-device and 
device-to-host blocking transfers, it is far easier to use assignment statements:

real :: a(N)
real, device :: a_d(N)
...
a_d = a

where the Fortran array assignment kicks off a cudaMemcpy behind the scenes. 
Transfer via assignment statements applies only to blocking or synchronous trans-
fers, for asynchronous transfers one must use the cudaMemcpyAsync call.

CUDA Fortran makes use of other variable attributes besides the device attribute. 
The attributes shared, constant, pinned, and value also find frequent use in CUDA 
Fortran. Shared memory used in device code uses the shared variable attribute just 
as CUDA C uses the __shared__ qualifier. Constant memory must be declared in a 
Fortran module that contains the device code where it is used, and the module must be 
used in the host code where it is initialized. The initialization of constant data in host 
code is done via assignment statement rather than by function calls. Pinned host mem-
ory is declared using the pinned variable attribute, and must also be declared allocat-
able. Since Fortran passes data by reference by default and in CUDA we typically deal 
with separate memory spaces for the host and device, host parameters passed to a kernel 
via the argument list must be declared in the kernel with the value variable attribute.

CUDA Fortran also uses the attributes(global) and attributes(device) 
function attributes in the same way CUDA C uses declaration specifiers __global__ 
and __device__ to declare kernels and device functions.

Within CUDA Fortran device code the predefined variables gridDim, blockDim, 
blockIdx, and threadIdx are available as they are in CUDA C. Following typical 
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Fortran convention, the components of blockIdx and threadIdx have a unit, rather 
than 0, offset, so a typical index calculation would look like:

i = blockDim%x * (blockIdx%x - 1) + threadIdx%x

in contrast to CUDA C’s:

i = blockDim.x*blockIdx.x + threadIdx.x;

This rounds out the major differences in the expression of CUDA concepts 
between CUDA C and CUDA Fortran. The CUDA Fortran notation will become 
clearer as we go through several examples in the following sections.

C.2  A FIRST CUDA FORTRAN PROGRAM
The SAXPY (Single-Precision A Times X Plus Y) routine has been used several 
times to illustrate various aspects of CUDA programing, and we continue this tradi-
tion with our first CUDA Fortran example:

module mathOps
contains
  attributes(global) subroutine saxpy(x, y, a)
    real :: x(:), y(:)
    real, value :: a
    integer :: i, n
    n = size(x)
    i = blockDim%x * (blockIdx%x - 1) + threadIdx%x
    if (i <= n) y(i) = y(i) + a*x(i)
  end subroutine saxpy
  end module mathOps
program testSaxpy
  use cudafor
  use mathOps
  implicit none
  integer, parameter :: N = 40000
  real :: x(N), y(N), a
  real, device :: x_d(N), y_d(N)
  type(dim3) :: grid, tBlock
  tBlock = dim3(256,1,1)
  grid = dim3(ceiling(real(N)/tBlock%x),1,1)
  x = 1.0; y = 2.0; a = 2.0
  x_d = x
  y_d = y
  call saxpy<<<grid,tBlock>>>(x_d, y_d, a)
  y = y_d
  write(*,*) 'Max error: ', maxval(abs(y-4.0))
end program testSaxpy
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In this complete code the SAXPY kernel is defined in the Fortran module 
mathOps using the attributes(global) qualifier. The kernel has three arguments, 
the one-dimensional arrays x and y, and the scalar value a. The size of the x and y 
arrays does not need to be passed as a kernel argument since x and y are declared as 
assumed-shape arrays allowing the Fortran size() intrinsic to be used. Because a is  
defined on the host and must be passed by value, the value variable attribute is 
required in a’s declaration in the kernel. The predefined blockDim, blockIdx, and 
threadIdx variables are used to calculate a global index i used to access elements of 
x and y. Once again note that blockIdx and threadIdx have unit offset as opposed 
to CUDA C’s zero offset. After checking for inbound access, the SAXPY operation 
is performed.

The host code uses the cudafor module which defines CUDA runtime API rou-
tines, constants, types, such as the type(dim3) used to declare the execution con-
figuration variables grid and tBlock. In the host code, both host arrays x and y 
are declared as well as their device counterparts, x_d and y_d, where the latter are 
declared with the device variable attribute. The thread block and grid are defined in 
the first executable lines of host code, where the ceiling function is used to launch 
enough blocks to process all array elements in case that the size of the array is not 
evenly divisible by the number of threads in a thread block. After the host arrays x 
and y, as well as the parameter a, are initialized, the assignment statements x_d=x 
and y_d=y are used to transfer the data from host to device. The scalar a is not passed 
to the device in this manner, as it is passed by value as a kernel argument. Since the 
transfers by assignment statement are blocking transfers, we can call the SAXPY 
kernel after the transfers without any synchronization. The kernel invocation spec-
ifies the execution configuration in the triple chevrons placed between the kernel 
name and its argument list as is done in CUDA C. Also similar to CUDA C, integer 
expressions can be used between the triple chevrons in place of the type(dim3) vari-
ables. This is followed by a device-to-host transfer of the resultant array, which is 
then checked for correctness.

C.3  MULTIDIMENSIONAL ARRAY IN CUDA FORTRAN
Multidimensional arrays are first-class citizens in Fortran, and the ease of deal-
ing with multidimensional data in Fortran is extended to CUDA Fortran. We have 
already seen one aspect of this in array assignments used for transfers between the 
host and device. The ease of programing kernel code is evident from the following 
CUDA Fortran implementation of matrix multiply:

module mathOps
  integer, parameter :: TILE_WIDTH = 16
contains
  attributes(global) subroutine matrixMul(Md, Nd, Pd)
    implicit none
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    real, intent(in) :: Md(:,:), Nd(:,:)
    real, intent(out) :: Pd(:,:)
    real, shared :: Mds(TILE_WIDTH, TILE_WIDTH)
    real, shared :: Nds(TILE_WIDTH, TILE_WIDTH)
    integer :: i, j, k, m, tx, ty, width
    real :: Pvalue
    tx = threadIdx%x; ty = threadIdx%y
    i = (blockIdx%x-1)*TILE_WIDTH + tx
    j = (blockIdx%y-1)*TILE_WIDTH + ty
    width = size(Md,2)
    Pvalue = 0.0
    do m = 1, width, TILE_WIDTH
      Mds(tx,ty) = Md(i,m+ty-1)
      Nds(tx,ty) = Nd(m+tx-1,j)
      call syncthreads()
      do k = 1, TILE_WIDTH
        Pvalue = Pvalue + Mds(tx,k)*Nds(k,ty)
      enddo
      call syncthreads()
    enddo
    d(i,j) = Pvalue
  end subroutine matrixMul
end module mathOps
program testMatrixMultiply
  use cudafor
  use mathOps
  implicit none
  integer, parameter :: m=4*TILE_WIDTH, n=6*TILE_WIDTH, 
k=2*TILE_WIDTH
  real :: a(m,k), b(k,n), c(m,n), c2(m,n)
  real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
  type(dim3) :: grid, tBlock
  call random_number(a); a_d = a
  call random_number(b); b_d = b
  tBlock = dim3(TILE_WIDTH, TILE_WIDTH, 1)
  grid = dim3(m/TILE_WIDTH, n/TILE_WIDTH, 1)
  call matrixMul<<<grid, tBlock>>>(a_d, b_d, c_d)
  c = c_d
  ! test against Fortran 90 matmul intrinsic
  c2 = matmul(a, b)
  write(*,*) 'max error: ', maxval(abs(c-c2))
end program testMatrixMultiply

The matrixMul kernel uses shared memory tiles Mds and Nds just as in the CUDA 
C code, however passing in two-dimensional arrays as kernel arguments allows for 
a more intuitive indexing on the global arrays Md and Nd when copying to shared 
memory.
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C.4  �OVERLOADING HOST/DEVICE ROUTINES WITH GENERIC 
INTERFACES

In the above matrix multiplication, we used the Fortran 90 matmul intrinsic to check 
our results. Because of the distinction between host and device data in host code, it 
is possible to build generic interfaces that overload routines to execute either on the 
host or on the device depending on whether the arguments are host or device data. To 
illustrate how this is done, we present a generic interface to the matrix multiplication 
example in the previous section:

module mathOps
  integer, parameter :: TILE_WIDTH = 16
  interface matrixMultiply
    module procedure mmCPU, mmGPU
  end interface matrixMultiply
contains
  function mmCPU(a, b) result(c)
    implicit none
    real :: a(:,:), b(:,:), c(:,:)
    c = matmul(a,b)
  end function mmCPU
  function mmGPU(a_d, b_d) result(c)
    use cudafor
    implicit none
    real, device :: a_d(:,:), b_d(:,:)
    real :: c(:,:)
    real, device, allocatable :: c_d(:,:)
    integer :: m, n
    type(dim3) :: grid, tBlock
    m = size(c,1); n = size(c,2)
    allocate(c_d(m,n))
    tBlock = dim3(TILE_WIDTH, TILE_WIDTH, 1)
    grid = dim3(m/TILE_WIDTH, n/TILE_WIDTH, 1)
    call matrixMul<<<grid, tBlock>>>(a_d, b_d, c_d)
    c = c_d
    deallocate(c_d)
  end function mmGPU
  attributes(global) subroutine matrixMul(Md, Nd, Pd)
    implicit none
    real, intent(in) :: Md(:,:), Nd(:,:)
    real, intent(out) :: Pd(:,:)
    real, shared :: Mds(TILE_WIDTH, TILE_WIDTH)
    real, shared :: Nds(TILE_WIDTH, TILE_WIDTH)
    integer :: i, j, k, m, tx, ty, width
    real :: Pvalue
    tx = threadIdx%x; ty = threadIdx%y
    i = (blockIdx%x-1)*TILE_WIDTH + tx
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    j = (blockIdx%y-1)*TILE_WIDTH + ty
    width = size(Md,2)
    Pvalue = 0.0
    do m = 1, width, TILE_WIDTH
      Mds(tx,ty) = Md(i,m+ty-1)
      Nds(tx,ty) = Nd(m+tx-1,j)
      call syncthreads()
      do k = 1, TILE_WIDTH
        Pvalue = Pvalue + Mds(tx,k)*Nds(k,ty)
      enddo
      call syncthreads()
    enddo
    Pd(i,j) = Pvalue
  end subroutine matrixMul
end module mathOps
program testMatrixMultiply
  use cudafor
  use mathOps
  implicit none
  integer, parameter :: m=4*TILE_WIDTH, n=6*TILE_WIDTH, 
k=2*TILE_WIDTH
  real :: a(m,k), b(k,n), c(m,n), c2(m,n)
  real, device :: a_d(m,k), b_d(k,n)
  call random_number(a); a_d = a
  call random_number(b); b_d = b
  c = matrixMultiply(a_d, b_d)
  c2 = matrixMultiply(a, b)
  write(*,*) 'max error: ', maxval(abs(c-c2))
end program testMatrixMultiply

The interface to matrixMultiply in this code is overloaded using two procedures 
defined in the module, mmCPU and mmGPU. mmCPU operates on host data and simply 
calls the F90 intrinsic matmul. mmGPU takes device data for the input matrices, and 
returns a host array with the result. (It could just have easily been defined to return a 
device array.) The device array used for the result in mmGPU, c_d, is a local array that is 
declared on the 6th line of mmGPU, and allocated on the 10th line of that routine. After 
this allocation, the locally defined execution configuration parameters are determined 
and the kernel is launched, which is followed by a device-to-host transfer and the 
deallocation of c_d. The actual matrix multiple kernel is not modified from the previ-
ous section. In the host code, matrixMultiply is used to access both of these routines.

C.5  CALLING CUDA C VIA ISO_C_BINDING
In the previous section we demonstrated how an interface can be used to allow a 
single call to perform operations on either the host or device depending on where the 
input data reside. An interface can also be used to call C or CUDA C functions from 
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CUDA Fortran using the iso_c_binding module introduced in Fortran 2003. Such 
functions can either be CUDA C routines developed by the user or library routines. 
In our matrix multiplication code, for example, we might wish to call the CUBLAS 
version of SGEMM rather than our hand-coded version. This can be done in the fol-
lowing manner:

module cublas_m
  interface cublasInit
    integer function cublasInit() bind(C,name='cublasInit')
    end function cublasInit
  end interface
  interface cublasSgemm
    subroutine cublasSgemm(cta,ctb,m,n,k,alpha,A,lda,B,ldb,beta,c,
ldc) &
          bind(C,name='cublasSgemm')
      use iso_c_binding
      character(1,c_char), value :: cta, ctb
      integer(c_int), value :: k, m, n, lda, ldb, ldc
      real(c_float), value :: alpha, beta
      real(c_float), device :: A(lda,*), B(ldb,*), C(ldc,*)
    end subroutine cublasSgemm
  end interface cublasSgemm
end module cublas_m
program sgemmDevice
  use cublas_m
  use cudafor
  implicit none
  integer, parameter :: m = 100, n = 100, k = 100
  real :: a(m,k), b(k,n), c(m,n), c2(m,n)
  real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
  real, parameter :: alpha = 1.0, beta = 0.0
  integer :: lda = m, ldb = k, ldc = m
  integer :: istat
  call random_number(a); a_d = a
  call random_number(b); b_d = b
  istat = cublasInit()
  call cublasSgemm('n','n',m,n,k,alpha,a_d,lda,b_d,ldb,beta,c_d,ldc)
  c = c_d
  c2 = matmul(a,b)
  write(*,*) 'max error =', maxval(abs(c-c2))
end program sgemmDevice

Here the module cublas_m contains interfaces for the CUBLAS routines cub-
lasInit and cublasSgemm which are bound to C functions as dictated by the 
bind(C,name=’...’) clause. The iso_c_binding module is used in the cublasS-
gemm interface as this module contains the type kind parameters used in the declara-
tions for the function arguments.
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One could manually write these interfaces for all of the CUBLAS routines, but 
this has already been done in the cublas module provided with the PGI CUDA 
Fortran compiler. In the above code, one can simply remove the cublas_m module 
and change the “use cublas_m” to “use cublas” in the main program. The cublas 
module also contains generic interfaces to overload the standard BLAS functions to 
execute the CUBLAS versions when the array arguments are device arrays. So we 
can further change the above program to call sgemm rather than cublasSgemm. The 
complete program then becomes:

program sgemmDevice
  use cublas
  use cudafor
  implicit none
  integer, parameter :: m = 100, n = 100, k = 100
  real :: a(m,k), b(k,n), c(m,n), c2(m,n)
  real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
  real, parameter :: alpha = 1.0, beta = 0.0
  integer :: lda = m, ldb = k, ldc = m
  integer :: istat
  call random_number(a); a_d = a
  call random_number(b); b_d = b
  istat = cublasInit()
  call sgemm('n','n',m,n,k,alpha,a_d,lda,b_d,ldb,beta,c_d,ldc)
  c = c_d
  c2 = matmul(a,b)
  write(*,*) 'max error =', maxval(abs(c-c2))
end program sgemmDevice

C.6  �KERNEL LOOP DIRECTIVES AND REDUCTION 
OPERATIONS

There are many occasions when one wishes to perform simple operations on device 
data, such as scaling or normalization of a device array. For such operations, it can 
be cumbersome to write separate kernels, and fortunately CUDA Fortran provides 
kernel loop directives, or CUF kernels. CUF kernels essentially allow the programer 
to inline simple kernels in host code. For example, our SAXPY code using CUF 
kernels becomes:

program testSaxpy
  use cudafor
  implicit none
  integer, parameter :: N = 40000
  real :: x(N), y(N), a
  real, device :: x_d(N), y_d(N)



502 APPENDIX C  CUDA Fortran

  integer :: i
  x = 1.0; x_d = x
  y = 2.0; y_d = y
  a = 2.0
  !$cuf kernel do <<<*,*>>>
  do i = 1, N
    y_d(i) = y_d(i) + a*x_d(i)
  end do
  y = y_d
  write(*,*) 'Max error: ', maxval(abs(y-4.0))
end program testSaxpy

In this complete code, the module containing the saxpy kernel has been removed 
and in its place in host code is the loop which contains device arrays. The directive 
“!$cuf kernel do” informs the compiler to generate a kernel for the operation in 
the following do loop. The execution configuration can be manually specified in the 
“<<<...,...>>>”, or asterisks can be used to have the compiler choose an execution, 
as is done in this case. CUF kernels can operate on nested loops, and can use nonde-
fault streams.

One particular useful aspect of CUF kernels is their ability to perform reductions. 
When the left-hand side of an expression in CUF kernel loop is a host scalar variable, 
a reduction operation is performed on the device. This is useful because coding a well-
performing reduction in CUDA is not a trivial matter. The calculation of the sum of the 
device array elements using compiler generated CUF kernels looks like:

program testReduction
  use cudafor
  implicit none
  integer, parameter :: N = 40000
  real :: x(N), xsum
  real, device :: x_d(N)
  integer :: i
  x = 1.0; x_d = x
  xsum = 0.0
  !$cuf kernel do <<<*,*>>>
  do i = 1, N
    xsum = xsum + x_d(i)
  end do
  write(*,*) 'Error: ', abs(xsum - sum(x))
end program testReduction

C.7  DYNAMIC SHARED MEMORY
In our matrix multiplication example we demonstrated how static shared memory is 
used, which is essentially analogous to how it is declared in CUDA C. For dynamic 
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shared memory, there are several options in CUDA Fortran. If a single dynamic 
shared memory array is used, then once again the CUDA Fortran implementation 
parallels what is done in CUDA C:

  attributes(global) subroutine dynamicReverse1(d)
    real :: d(:)
    integer :: t, tr
    real, shared :: s(*)
    t = threadIdx%x
    tr = size(d)-t+1
    s(t) = d(t)
    call syncthreads()
    d(t) = s(tr)
  end subroutine dynamicReverse1

where the shared memory array s, used to reverse elements of a single thread 
block array in this kernel, is declared with as an assumed-size array. The size of this 
dynamic shared memory array is determined from the number of bytes of dynamic 
shared memory specified in the third execution configuration parameter:

  threadBlock = dim3(n,1,1)
  grid = dim3 (1,1,1)
  ...
  call dynamicReverse1<<<grid,threadBlock,4*threadBlock%x>>>(d_d)

When multiple dynamic shared memory arrays are used in CUDA C, essentially 
one large block of memory is allocated and pointer arithmetic is used to determine 
offsets into this block for the various variables. In CUDA Fortran, automatic arrays 
are used:

attributes (global) subroutine dynamicReverse2(d, nSize)
    real :: d(nSize)
    integer, value :: nSize
    integer :: t, tr
    real, shared :: s(nSize)
    t = threadIdx%x
    tr = nSize-t+1
    s(t) = d(t)
    call syncthreads()
    d(t) = s(tr)
  end subroutine dynamicReverse2

Here nSize is not known at compile time, hence s is not a static shared memory 
array. Any in-scope variable, such as a variable declared in the module that contains 
this kernel, can be used to determine the size of the automatic shared memory arrays. 
Multiple dynamic shared memory arrays, of different types, can be specified in this 
fashion. The total amount of dynamic shared memory must still be specified in the 
third execution configuration parameter.



504 APPENDIX C  CUDA Fortran

C.8  ASYNCHRONOUS DATA TRANSFERS
Asynchronous data transfers are performed using the cudaMemcpy*Async() API calls 
as is done in CUDA C, with a couple of differences that apply not only to these asyn-
chronous data transfer API calls but also the synchronous cudaMemcpy*() variants. 
The first difference is that the size of the transfer specified in the third argument is in 
terms of the number of elements rather than the number of bytes, and the second is 
that the direction of transfer is an optional argument as the direction can be inferred 
from the types of the first two arguments.

As with CUDA C, for asynchronous transfers the host memory must be pinned, 
which is accomplished through the pinned variable attribute rather than through a 
specific allocation function. Pinned memory in CUDA Fortran must be allocatable, 
and can be allocated and deallocated through the Fortran 90 allocate() and deal-
locate() statements.

To overlap kernel execution and data transfers, in addition to pinned host mem-
ory the data transfer and kernel must use different, nondefault streams. Nondefault 
streams are required for this overlap because memory copy, memory set functions, 
and kernel calls that use the default stream begin only after all preceding calls on 
the device (in any stream) have completed, and no operation on the device (in any 
stream) commences until they are finished. An example of overlapping kernel execu-
tion and data transfer is:

  real, allocatable, pinned :: a(:)
  ...
  integer (kind=cuda_stream_kind) :: stream1, stream2
  ...
  allocate(a(nElements))
  istat = cudaStreamCreate(stream1)
  istat = cudaStreamCreate(stream2)
  istat = cudaMemcpyAsync(a_d, a, nElements, stream1)
  call kernel <<<gridSize, blockSize, 0, stream2 >>>(b_d)

In this example, two streams are created and used in the data transfer and kernel 
executions as specified in the last arguments of the cudaMemcpyAsync() call and the 
kernels execution configuration. We make use of two device arrays, a_d and b_d, and 
assign work on a_d to stream1 and b_d to stream2.

If the operations on a single data array in a kernel are independent, then data can 
be broken into chunks and transferred in multiple stages, multiple kernels launched 
to operate on each chunk as it arrives, and each chunk’s results transferred back to the 
host when the relevant kernel completes. The following code segments demonstrate 
two ways of breaking up data transfers and kernel work in order to hide transfer time:

! baseline case - sequential transfer and execute
a = 0
istat = cudaEventRecord(startEvent, 0)
a_d = a
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call kernel <<<n/blockSize, blockSize >>>(a_d, 0)
a = a_d
istat = cudaEventRecord(stopEvent, 0)
! Setup for multiple stream processing
strSize = n / nStreams
strGridSize = strSize / blocksize
i = 1, nStreams
  istat = cudaStreamCreate(stream(i))
enddo
! asynchronous version 1: loop over {copy, kernel, copy}
a = 0
istat = cudaEventRecord(startEvent, 0)
do i = 1, nStreams
  offset = (i-1)* strSize
  istat = cudaMemcpyAsync(a_d(offset+1), a(offset+1), strSize, 
stream(i))
  call kernel <<<strGridSize, blockSize, 0, stream(i)>>>(a_d, 
offset)
  istat = cudaMemcpyAsync(a(offset+1), a_d(offset+1), strSize, 
stream(i))
enddo
istat = cudaEventRecord(stopEvent, 0)
! asynchronous version 2:
! loop over copy, loop over kernel, loop over copy
a = 0
istat = cudaEventRecord(startEvent, 0)
do i = 1, nStreams
  offset = (i-1)* strSize
  istat = cudaMemcpyAsync(a_d(offset+1), a(offset+1), strSize, 
stream(i))
enddo
do i = 1, nStreams
  offset = (i-1)* strSize
  call kernel <<<strGridSize, blockSize, 0, stream(i)>>>(a_d, 
offset)
enddo
do i = 1, nStreams
  offset = (i-1)* strSize
  istat = cudaMemcpyAsync(a(offset+1), a_d(offset+1), strSize, 
stream(i))
enddo
istat = cudaEventRecord(stopEvent, 0)

The asynchronous cases are similar to the sequential case, only that there are mul-
tiple data transfers and kernel launches which are distinguished by different streams 
and an offset corresponding to the particular stream. In this code, we limit the num-
ber of streams to four, although for large arrays there is no reason why a larger num-
ber of streams could not be used. Note that the same kernel is used in the sequential 
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and asynchronous cases in the code, as an offset is sent to the kernel to accommodate 
the data in different streams. The difference between the two asynchronous versions 
is the order in which the copies and kernels are executed. The first version loops over 
each stream and for each stream issues a host-to-device copy, kernel, and device-
to-host copy. The second version issues all host-to-device copies, then all kernel 
launches, and then all device-to-host copies. We also make use of a third approach, 
which is a variant of the second where a dummy event is recorded after each kernel 
launch:

do i = 1, nStreams
  offset = (i-1)* strSize
  call kernel <<<strGridSize, blockSize, 0, stream(i)>>>(a_d, 
offset)
  ! Add a dummy event
  istat = cudaEventRecord(dummyEvent, stream(i))
enddo

At this point you may be asking why we have three versions of the asynchronous 
case. The reason is that these variants perform differently on different hardware. 
Running this code on the NVIDIA Tesla C1060 produces:

Device: Tesla C1060
Time for sequential transfer and execute (ms): 12.92381
Time for asynchronous V1 transfer and execute (ms): 13.63690
Time for asynchronous V2 transfer and execute (ms): 8.845888
Time for asynchronous V3 transfer and execute (ms): 8.998560

and on the NVIDIA Tesla C2050 we get:

Device: Tesla C2050
Time for sequential transfer and execute (ms): 9.984512
Time for asynchronous V1 transfer and execute (ms): 5.735584
Time for asynchronous V2 transfer and execute (ms): 7.597984
Time for asynchronous V3 transfer and execute (ms): 5.735424

To decipher these results we need to understand a bit more about how devices 
schedule and execute various tasks. CUDA devices contain engines for various tasks, 
and operations are queued up in these engines as they are issued. Dependencies 
between tasks in different engines are maintained, but within any engine all depend-
ence is lost, as tasks in an engine’s queue are executed in the order they are issued 
by the host thread. For example, the C1060 has a single copy engine and a sin-
gle kernel engine. For the above code, time lines for the execution on the device  
are schematically shown in Fig. C.1. In this schematic we have assumed that the time 
required for the host-to-device transfer, kernel execution, and device-to-host transfer 
are approximately the same, and in the code provided, a kernel was chosen in order 
to make these times comparable.

For the sequential kernel, there is no overlap in any of the operations as one would 
expect. For the first asynchronous version of our code the order of execution in the 
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copy engine is: H2D stream(1), D2H stream(1), H2D stream(2), D2H stream(2), 
and so forth. This is why we do not see any speedup when using the first asynchro-
nous version on the C1060: tasks were issued to the copy engine in an order that pre-
cludes any overlap of kernel execution and data transfer. For versions two and three, 
however, where all the host-to-device transfers are issued before any of the device-to-
host transfers, overlap is possible as indicated by the lower execution time. From our 
schematic, we would expect the execution of versions two and three to be 8/12 of the 
sequential version, or 8.7 ms, which is what is observed in the timing above.

On the C2050, two features interact to cause different behavior than that observed 
on the C1060. The C2050 has two copy engines, one for host-to-device transfers and 
another for device-to-host transfers, in addition to a single kernel engine. Having two 
copy engines explains why the first asynchronous version achieves good speedup 
on the C2050: the device-to-host transfer of data in stream(i) does not block the 
host-to-device transfer of data in stream(i+1) as it did on the C1060 because these 
two operations are in different engines on the C2050, which is schematically shown 
in Fig. C.2:

From the schematic we would expect the execution time to be cut in half relative 
to the sequential version, which is roughly what is observed in the timings above. 
This does not explain the performance degradation observed in the second asynchro-
nous approach, however, which is related to the C2050’s support to concurrently 
run multiple kernels. When multiple kernels are issued back-to-back, the scheduler 
tries to enable concurrent execution of these kernels and as a result delays a signal 
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FIGURE C.1

Data transfer and kernel execution timing for the sequential and asynchronous versions 
when there is only one copy engine.
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which normally occurs after each kernel completion (and is responsible for kicking 
off the device-to-host transfer) until all kernels complete. So, while there is overlap 
between host-to-device transfers and kernel execution in the second version of our 
asynchronous code, there is no overlap between kernel execution and device-to-host 
transfers. From the figure one would expect an overall time for the second asynchro-
nous version to be 9/12 of the time for the sequential version, or 7.5 ms which is 
what we observe from the timings above. This situation can be rectified by recording 
a dummy CUDA event between each kernel, which will inhibit concurrent kernel 
execution but enable overlap of data transfers and kernel execution, as is done in the 
third asynchronous version.

C.9  COMPILATION AND PROFILING
CUDA Fortran codes are compiled using PGI Fortran compiler. Files with the .cuf 
or .CUF extensions have CUDA Fortran enabled automatically, and the compiler 
option -Mcuda can be used when compiling file with other extensions to enable 
CUDA Fortran. Compilation of CUDA Fortran code can be as simple as issuing the 
command:

pgf90 saxpy.cuf

Behind the scenes, a multistep process takes place. The first step is a source-to-
source compilation where CUDA C device code is generated by CUDA Fortran. 
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FIGURE C.2

Data transfer and kernel execution timing for the sequential and asynchronous versions 
when there are two copy engines.
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From here compilation is similar to compilation of CUDA C. The device code is 
compiled into the intermediate representation PTX, and the PTX code is then further 
compiled to a executable code for a particular compute capability. The host code is 
compiled using pgfortran. The final executable contains the host binary, the device 
binary, and the PTX. The PTX is included so that a new device binary can be created 
when the executable is run on a card of different compute capability than originally 
compiled for.

Specifics of the above compilation process can be controlled through options to 
-Mcuda. A specific compute capability can be targeted, for example -Mcuda=cc20 
generates executables for devices of compute capability 2.0. There is an emulation 
mode where device code is run on the host, specified by -Mcuda=emu. The specific 
version of the CUDA Toolkit can be specified, for example -Mcuda=cuda4.0 causes 
compilation with the 4.0 CUDA Toolkit. CUDA has a set of fast, but less accurate, 
intrinsics for single precision functions like sin() and cos(), which can be enabled 
by the -Mcuda=fastmath option. Use of these functions requires no change in the 
CUDA Fortran source code, as the intermediate CUDA C code will be generated 
with the corresponding __sinf() and __cosf() functions, respectively. For finer 
(selective) control, the latter versions are available when the cudadevice module 
is used in device code. The option -Mucda=maxregcount:N can by used to limit the 
number of registers used per thread to N. And the option -Mcuda=ptxinfo prints 
information on memory usage in kernels. Multiple options to -Mcuda can be given in 
a comma-separated list, e.g., -Mcuda=cc20,cuda4.0,ptxinfo.

Profiling CUDA Fortran codes can be performed using the command-line profil-
ing facility used in CUDA C. Setting the environment variable COMPUTE_PROFILE to 1:

% export COMPUTE_PROFILE=1

and executing the code generates a file of profiling results, by default cuda_pro-
file_0.log. For use of the command-line profiler, see the documentation distributed 
with the CUDA Toolkit.

C.10  CALLING THRUST FROM CUDA FORTRAN
Previously we demonstrated calling external CUDA C libraries from CUDA Fortran, 
in particular the CUBLAS library, using the iso_c_binding module. In this section 
we demonstrate how CUDA Fortran can interface with Thrust, the standard template 
library for the GPU discussed in a previous appendix. Relative to calling CUDA C 
functions, interfacing with Thrust requires the additional step of creating C pointers 
that access the Thrust device containers, such as in the following code segment:

  // allocate device vector
  thrust::device_vector d_vec(4);
  // obtain raw pointer to device vector’s memory
  int *ptr = thrust::raw_pointer_cast(&d_vec[0]);
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The basic procedure to interface Thrust with CUDA Fortran is to create C wrap-
per functions that access Thrust’s functions through standard C pointers, and then 
use the iso_c_binding module to access these functions through a generic interface 
in CUDA Fortran. For an example, we use Thrust’s sort routine. The wrapper func-
tions for the int, float, and double sort routines are:

// Filename: csort.cu
// nvcc -c -arch sm_20 csort.cu
#include <thrust/device_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
extern "C" {
  //Sort for integer arrays
  void sort_int_wrapper(int *data, int N)
  {
    // Wrap raw pointer with a device_ptr
    thrust::device_ptr <int> dev_ptr(data);
    // Use device_ptr in Thrust sort algorithm
    thrust::sort(dev_ptr, dev_ptr+N);
  }
  //Sort for float arrays
  void sort_float_wrapper(float *data, int N)
  {
    thrust::device_ptr <float> dev_ptr(data);
    thrust::sort(dev_ptr, dev_ptr+N);
  }
  //Sort for double arrays
  void sort_double_wrapper(double *data, int N)
  {
    thrust::device_ptr <double> dev_ptr(data);
    thrust::sort(dev_ptr, dev_ptr+N);
  }
}

Compiling the code using:

nvcc -c -arch sm_20 csort.cu

will generate an object file, csort.o that we will use later on in the linking stage of 
the CUDA Fortran code.

With the C wrapper functions available, we can now write a Fortran module with 
a generic interface to Thrust’s sort functionality:

module thrust
  interface thrustsort
    subroutine sort_int(input,N) bind(C,name="sort_int_wrapper")
      use iso_c_binding
      integer(c_int),device:: input(*)
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      integer(c_int),value:: N
    end subroutine sort_int
    subroutine sort_float(input,N) bind(C,name="sort_float_wrapper")
      use iso_c_binding
      real(c_float),device:: input(*)
      integer(c_int),value:: N
    end subroutine sort_float
    subroutine sort_double(input,N) bind(C,name="sort_double_wrapper")
      use iso_c_binding
      real(c_double),device:: input(*)
      integer(c_int),value:: N
    end subroutine sort_double
  end interface thrustsort
end module thrust

With the C wrapper functions and the Fortran module written, we can now turn 
to the main Fortran code that generates and transfers the data to the device, calls the 
sort functions, and transfers the data back to the host:

program testsort
  use thrust
  ! Declare two arrays, one on CPU (cpuData), one on GPU (gpuData)
  real, allocatable :: cpuData(:)
  real, allocatable, device :: gpuData(:)
  integer:: N=10
  ! Allocate the arrays using standard allocate
  allocate(cpuData(N),gpuData(N))
  ! Generate random numbers on the CPU
  do i=1,N
    cpuData(i)=random(i)
  end do
  cpuData(5)=100.
  print *,"Before sorting", cpuData
  ! Copy the data to GPU with a simple assignment
  gpuData=cpuData
  ! Call the Thrust sorting function. The generic interface will
  ! select the proper routine, in this case the one operating on 
floats
  call thrustsort(gpuData,size(gpuData))
  ! Copy the data back to CPU with a simple assignment
  cpuData=gpuData
  print *,"After sorting", cpuData
  ! Deallocate the arrays using standard deallocate
  allocate(cpuData(N),gpuData(N))
end program testsort

If we save the module in a file mod_thrust.cuf and the program in simplesort.
cuf, we are ready to compile and execute:
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$ pgf90 -Mcuda=cc20 -O3 -o simple_sort mod_thrust.cuf simple_sort.
cuf csort.o
$ ./simple_sort
Before sorting 4.1630346E-02 0.9124327 0.7832350 0.6540373
100.0000 0.3956419 0.2664442 0.1372465
8.0488138E-03 0.8788511
After sorting 8.0488138E-03 4.1630346E-02 0.1372465 0.2664442
0.3956419 0.6540373 0.7832350 0.8788511
0.9124327 100.0000

We can modify the main code to evaluate the performance using the CUDA event 
API as follows:

program timesort
  use cudafor
  use thrust
  implicit none
  real, allocatable :: cpuData(:)
  real, allocatable, device :: gpuData(:)
  integer:: i,N=100000000
  ! CUDA events for elapsing time
  type (cudaEvent):: startEvent, stopEvent
  real:: time, random
  integer:: istat
  ! Create events
  istat = cudaEventCreate(startEvent)
  istat = cudaEventCreate(stopEvent)
  ! Allocate arrays
  allocate(cpuData(N),gpuData(N))
  do i=1,N
    cpuData(i)=random(i)
  end do
  print *,"Sorting array of ",N, " single precision"
  gpuData=cpuData
  istat = cudaEventRecord (startEvent, 0)
  call thrustsort(gpuData,size(gpuData))
  istat = cudaEventRecord (stopEvent, 0)
  istat = cudaEventSynchronize (stopEvent)
  istat = cudaEventElapsedTime (time, startEvent, stopEvent)
  cpuData=gpuData
  print *," Sorted array in:",time," (ms)"
  !Print the first five elements and the last five.
  print *,"After sorting", cpuData(1:5),cpuData(N-4:N)
end program timesort

With the CUDA events, we are timing only the execution time of the sorting ker-
nel. We can sort a vector of 100 M elements in .222 second on a Tesla M2050 with 
ECC on when the data are resident in GPU memory:
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$ pgf90 -Mcuda=cc20 -O3 -o time_sort mod_thrust.cuf time_sort.cuf 
csort.o
$ ./time_sort
Sorting array of 100000000 single precision
Sorted array in: 222.1711 (ms)
After sorting 7.0585919E-09 1.0318221E-08 1.9398616E-08 
3.1738640E-08
4.4078664E-08 0.9999999 0.9999999 1.000000 1.000000 1.000000

C.11  EXERCISES

1.	 Write a CUF kernel version of a matrix multiplication.

2.	 Write a CUDA Fortran code that reverses elements of a 4096-element array.
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C++ Accelerated Massive Parallelism, or C++ AMP, is a programming model for 
expressing data-parallel algorithms and exploiting heterogeneous computers using 
mainstream tools. C++ AMP was designed to offer productivity, portability and per-
formance. Developed initially by Microsoft, C++ AMP is defined by an open speci-
fication which took input from multiple sources, including from AMD and NVIDIA. 
In this appendix we provide an overview of C++ AMP [C++ AMP Open].

The focus of C++ AMP is to express the important data-parallel algorithm pat-
tern while providing minimum new language features and shielding common sce-
narios from the intricacies of today’s GPU programming. This provides a foundation 
of portability for applications written in C++ AMP across a range of different hard-
ware. This portability creates future-proofing to preserve investment as hardware 
continues to evolve as well as improving reusability of code across different devices 
and different manufacturers. At the same time, the full C++ AMP feature set includes 
advanced mechanisms for achieving performance when system intricacies must be 
addressed. In this appendix, we discuss first the most straightforward examples of 
C++ AMP, and then we more lightly address these advanced features.

C++ AMP is a small extension to the current C++ 11 standard and is depend-
ent on some of the core features of that standard. In particular, we will assume the 
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readers are familiar with modern C++ including the use of lambda expressions to 
build function closures, the use of templates for type-generic programming, the use 
of namespaces to control visibility of names, and the standard template library (STL). 
The common patterns are simple so a deep understanding is not a prerequisite to use 
C++ AMP. Unlike CUDA and OpenCL, C++ AMP allows a rich subset of C++ 
inside data-parallel computations as well as using C++ for the host. C++ AMP has 
the same base compilation model as C++ with header files for interface specification 
and separate compilation units combined into a single executable.

C++ AMP does rely on two extensions to the language. The first places restric-
tions on the C++ operations that may be used in bodies of functions and the second 
supports a form of limited cross-thread data sharing within data-parallel kernels. 
Both of these will be illustrated below. All other aspects of C++ AMP are delivered 
as a library accessed via a few header files.

C++ AMP shares many concepts with CUDA. In the text below we will illustrate 
this by showing C++ AMP equivalents for CUDA examples from earlier chapters. 
C++ AMP terminology differs from CUDA in small ways and we will highlight 
those differences as they arise.

D.1  CORE C++ AMP FEATURES
We describe the core features of C++ AMP by translating an example used in 
Chapter 2, Data parallel computing, from CUDA into C++ AMP. Fig. D.1 is the 
CUDA code for performing vector addition on host vectors using a CUDA device.

__global__void vecAddKernel(float* d_A, float* d_B, float* d_C, int n)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n) C[i] = A[i] + B[i];

}

void vecAdd(float* A, float* B, float* C, int n)

{

int size = n * sizeof (float); float* d_A, d_B, d_C;

cudaMalloc((void **) &d_A, size);

cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_B, size);

cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_C, size);

vecAddKernel<<<ceil(n/256.0), 256>>>(d_A, d_B, d_C, n);

cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

FIGURE D.1

CUDA vector addition from Chapter 2, Data parallel computing.



517D.1   Core C++ AMP features

The corresponding C++ AMP code is shown in Fig. D.2. Line 1 includes the 
C++ AMP header, amp.h, which provides the declarations of the core features. The 
C++ AMP classes and functions are part of the concurrency namespace. The using 
directive on the next line makes the C++ AMP names visible in the current scope. 
It is optional but avoids the need to prefix C++ AMP names with a concurrency:: 
scope specifier.

The function vecAdd on Line 4 is functionally identical to the same function start-
ing Fig. D.1, Line 6. This function is executed by a thread running on the host and 
it contains a data-parallel computation that may be accelerated. The term “host” has 
the same meaning in C++ AMP documentation as it is used in CUDA. While CUDA 
uses the term “device” to refer to the execution environment used for accelerated 
execution, C++ AMP uses the term accelerator—discussed more in Section D.3.

In C++ AMP, the primary vehicle for reading and writing large data collections 
is the class template array_view. An array_view provides a multidimensional refer-
ence to a rectangular collection of data locations. This is not a new copy of the data 
but rather a new way to access the existing memory locations. The template has two 
parameters: the type of the elements of the source data, and an integer that indicates 
the dimensionality of the array_view. Throughout C++ AMP, template parameters 
that indicate dimensionality are referred to as the rank of the type or object. In this 
example, we have a one-dimensional array_view (or “an array_view of rank 1”) of 
C++ float values.

The constructor for array views of rank 1, such as CV on Line 7, takes two param-
eters. The first is an integer value which is the number of data elements. In general  
the set of per-dimension lengths is referred to as an extent. To represent and manip-
ulate extents, C++ AMP provides a class template, extent, with a single integer 

FIGURE D.2

Vector addition in C++ AMP.
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template parameter which captures the rank. For objects with a low number of dimen-
sions, various constructors are overloaded to allow specification of an extent as one 
or more integer values as is done for CV. The second parameter to the CV constructor 
is a pointer to the host data. In vecAdd the host data is expressed as a C-style pointer 
to contiguous data. An array_view may also overlay STL containers (see Section 
A.1) such as std::vector when they support a data method to access underlying 
contiguous storage.

The CUDA code explicitly allocates memory (Fig. D.1, Lines 9–13) that is acces-
sible by the device and copies host data into it. These actions are implicit in C++ 
AMP by creating the association between an array_view and host data and subse-
quently accessing the data through the array_view on the accelerator. The method 
array_view::discard_data optimizes data transfers for some accelerators and is 
discussed below in the next section. In this example, it is used when existing data 
values are immaterial because they are about to be overwritten.

Line 9 illustrates the parallel_for_each construct that is the C++ AMP code 
pattern for a data-parallel computation. This corresponds to the kernel launch in 
CUDA (Fig. D.1, Line 14). In CUDA terminology (as in Fig. 3.3), the parallel_
for_each creates a “grid of threads”. In C++ AMP the set of elements for which a 
computation is performed is called the compute domain and is defined by an extent 
object. Like in CUDA, each thread will invoke the same function for every point and 
threads are distinguished only by their location in the domain (grid). Unlike CUDA, 
this domain need not be treated as an array of thread blocks (as in Fig. 3.12). The 
index parameter combines information needed for common cases from the separate 
CUDA keyword blockIdx.x, blockDim.x, and threadIdx.x.

Similar to the standard C++ STL algorithm, for_each, the parallel_for_each 
function template specifies a function to be applied to a collection of values. The first 
argument to a parallel_for_each is a C++ AMP extent object which describes the 
domain over which a data-parallel computation is performed. In this example, we 
perform an operation over every element in an array_view and so the extent passed 
into the parallel_for_each is the extent of the CV array view. In the example, this 
is accessed through the extent property of the array_view type. This is a one-dimen-
sional extent and the domain of the computation consists of integer values 0…n− 1.

The second argument to a parallel_for_each is a C++ function object (or func-
tor). In these examples we use the C++ 11 lambda syntax as a convenient way to 
build such an object. The core semantics of a parallel_for_each is to invoke the 
function defined by the second parameter exactly once for every element in the com-
pute domain defined by the extent argument.

The leading [=] indicates that variables declared inside the containing function 
but referenced inside the lambda are “captured” and copied into data members of the 
function object built for the lambda. In this case this will be the three array_view 
objects. The function invoked has a single parameter that is initialized to the location 
of a thread within the compute domain. This is again represented by a class template, 
index, which represents a short vector of integer values. The rank of an index is the 
length of this vector and is the same as the rank of the extent. The index parameter 
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conveys the same information as the explicitly computed value i in the CUDA code 
(Fig. D.1, Line 3). These index values can be used to select elements in an array view 
as illustrated on Line 11.

A key extension to C++ is shown in this example: the restrict(amp) modifier. 
In C++ AMP, the existing C99 keyword restrict is borrowed and allowed in a new 
context: it may trail the formal parameter list of a function (including lambda func-
tions). The restrict keyword is then followed by a parenthesized list of one or more 
restriction specifiers. While other uses are possible, in C++ AMP there are only two 
such specifiers defined: amp and cpu.

The function object passed to parallel_for_each must have its call operator 
annotated with a restrict(amp) specification. Any function called from the body 
of that operator must similarly be restricted. The restrict(amp) specification is 
analogous to the __device__ keyword in CUDA. It identifies functions that may be 
invoked on a hardware accelerator. Analogously, restrict(cpu) corresponds to the 
CUDA __host__ keyword and indicates functions that may be invoked on the host. 
When no restriction is specified, the default is restrict(cpu). C++ AMP has no 
need for an analog to the CUDA __global__ keyword. A function may have both 
restrictions, restrict(cpu,amp), in which case it may be called in either host or 
accelerator contexts and must satisfy the restrictions of both contexts.

The restrict modifier allows a subset of C++ to be defined for use in a body of 
code. In the first release of C++ AMP, the restrictions reflect current common limita-
tions of GPUs when used as accelerators of data parallel code. The set of restrictions 
includes:

●	 No reference may be made to global or static variables except when they have 
const type qualification and can be reduced to an integer literal value that is 
only used as an rvalue.

●	 A lambda expression used in a parallel_for_each must capture most variables 
by value with the exception of C++ AMP array and texture objects, each 
described later.

●	 Targets of function calls may not be virtual methods, pointers to functions, or 
pointer to member functions.

●	 Functions may not be recursively invoked and must be inlineable.
●	 Only bool, int, unsigned int, long, unsigned long, float, double, and void 

may be used as C++ primitive types.
●	 C++ compound user-defined types are generally permitted but may not have 

virtual base classes or bit fields and all data members and base classes must be 
4-byte aligned.

●	 No use of dynamic_cast or typeid is permitted.
●	 No use of goto statements is permitted.
●	 No use of asm statements is permitted.
●	 No use of try, catch or throw is permitted.

These restrictions reflect a common set of limitations for the GPU-based accel-
erators broadly available today. Over time we expect these restrictions to be lifted 
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and the open specification for C++ + AMP includes a possible roadmap of future 
versions which are less restrictive. The restrict(cpu) specifier of course permits 
all of the capabilities of C++ but, because some functions that are part of C++ AMP 
are accelerator-specific. they do not have restrict(cpu) versions and so may only 
be used in restrict(amp) code.

The restriction specifiers for a function are part of the type of the function and 
function names may be overloaded when they have different restrictions. Thus two 
functions may have identical signatures except one has restrict(amp) specification 
and the other has restrict(cpu) specification. This allows context-specific imple-
mentations of functions to be created. A function that has two overloads, one for 
each context, may be called from a restrict(amp,cpu) function and the appropriate 
overload will be invoked that corresponds to whether the function is being invoked 
on the host or on an accelerator. In particular, this capability is used within C++ 
AMP to allow context-specific implementations of mathematic operations but is also 
available to application and library developers.

Inside the body of the restrict(amp) lambda (Fig. D.2, Lines 10–12), there are 
references to the array_view objects declared in the containing scope. These are 
“captured” into the function object that is created to implement the lambda. Other 
variables from the function scope may also be captured by value. Each of these other 
values is made available to each invocation of the function executed on the accelera-
tor. As for any C++ 11 nonmutable lambda, variables captured by value may not be 
modified in the body of the lambda. However, the elements of an array_view may be 
modified and those modifications will be reflected back to the host. In this example, 
any changes to CV made inside the parallel_for_each will be reflected in the host 
data C before the function vecAdd returns.

The final statement on Line 13 uses the array_view::synchronize method 
to insure the underlying host data structure is updated with any changes. This is  
also discussed in the next section. This operation is not needed if the host accesses 
the data through the array view CV but is needed to reliably access through the host 
pointer C. The central purpose of the array_view is to allow coherent access to data 
from both host and accelerator without need for explicit synchronization or data 
copies.

Fig. D.3 is a more complex example borrowed from Chapter 12, Parallel pat-
terns: graph search. It performs a calculation on a slice of a three-dimensional data 
structure. We use it to illustrate the handing of higher-dimensional array_view 
objects and compute domains. The function interface is essentially identical to the 
source where the CUDA dim3 type is replaced with a C++ AMP extent<3> for 
the grid parameter. The contiguous data pointed to by energygrid is overlaid with 
a three-dimensional array_view (named energygrid_view). C++ AMP follows a 
row-major storage layout so higher-numbered dimensions are less significant in the 
linear storage order. C++ AMP has mechanisms to create an array_view that is a 
section of another array_view and also to project down to select a lower-dimen-
sional slice. This operation is used on Line 6 to select the portion of the data actually 
defined by the kernel. As above, we use the discard_data method to avoid copying 
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the immaterial existing values to the GPU. We overlay the atoms data with the 2-d 
array_view named atom_view to simplify the expression of the accesses. This does 
not fundamentally change how the actual addressing arithmetic is performed but 
seems to model the problem more accurately.

The data-parallel computation is then over the extent of the slice where the origi-
nal sequential loop indices j and i are translated into the index<2> ji. Except for 
the indexing of atom_view, and the indexing into energy_slice, the body of the loop 
is largely unchanged.

C++ AMP provides a set of basic math operations for use in restrict(amp) con-
texts. These functions are accessed by includingamp_math.h (which is not shown). 
The concurrency::fast_math and concurrency::precise_math names spaces 
respectively declare faster and more precise versions of functions. In the example, 
we chose to use precise_math::sqrtf for illustration. In restrict(cpu) code, both 
of these name spaces establish aliases to std:: implementations of these functions 
so a function that is declared restrict(cpu,amp) can still reference math functions 
and get the best implementation for the target.

To summarize this section, the core C++ AMP concepts include: an array_view 
which provides a multidimensional view into rectangular data; an extent which is 
the shape of such a view and also the shape of a data-parallel computation; an index 
which is used to select elements of an array_view or a data-parallel computation, the 

#include <amp_math.h>
void cenergy_2( float * energygrid, extent<3> grid, 

float gridspacing, float z, int k,
const float * atoms, int numatoms) {

array_view<float,3> energygrid_view(grid, energygrid);
array_view<float,2> energy_slice = energygrid_view(k);

    energy_slice.discard_data(); 
array_view<const float,2> atom_view(numatoms,4,atoms);

    parallel_for_each(energy_slice.extent, [=](index<2> ji) 
restrict(amp) {

float y = gridspacing * float(ji[0]);
float x = gridspacing * float(ji[1]);
float energy = 0.0f;
for(int n =0; n < numatoms; n++) {

float dx = x - atom_view(n,0);
float dy = y - atom_view(n,1);
float dz = z - atom_view(n,2);
energy + = atom_view(n,3)/

 precise_math::sqrtf(dx*dx + dy*dy+dz*dz);
}
energy_slice[ji] = energy;

    });
    energy_slice.synchronize();
}

FIGURE D.3

Base Coulomb potential calculation.
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parallel_for_each which launches a data-parallel computation; and restrict(amp) 
modified functions which are evaluated at each point in that computation.

D.2  DETAILS OF THE C++ AMP EXECUTION MODEL
The core C++ AMP features above focus on expressing data-parallelism essentially 
as concurrent invocation of a collection of threads that access multidimensional 
arrays of data. Many accelerators today run in a separate memory and cannot directly 
access host data. Furthermore, these accelerators run concurrently with the continu-
ing execution of host code. While minimizing the impact of these concerns, these 
aspects are part of the execution model of C++ AMP.

EXPLICIT AND IMPLICIT DATA COPIES
C++ AMP provides the class template array to allocate storage on an accelerator. 
Similar to an array_view and with a nearly identical interface, an array has element 
type and rank template parameters. The constructor includes extent information. 
Unlike an array_view, an array allocates new storage on an accelerator. The data 
elements of an array may only be accessed from that accelerator and all operations 
that copy data between an array and host memory are explicit.

To illustrate this, consider Fig. D.4 which rewrites Fig. D.2 to use explicit array 
operations. Each array_view is replaced with an array declaration of the same 
extent. Lines 5 and 6 show explicit copies from host data to an array using the C++ 
AMP copy function template. The lambda is changed slightly to capture array vari-
ables by reference rather than default by-value as in the other examples. C++ AMP 
array objects must be captured by reference, while array_view objects must be 
captured by value for the lambda used in a parallel_for_each. Line 12 specifies the 
data to be copied back to the host after completion of the computation.

1
2
3
4
5
6
7
8
9
10
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void vecAdd(float* A, float* B, float* C, int n)
{
 array<float,1> AA(n), BA(n);
 array<float,1> CA(n);
 copy(A,AA);
 copy(B,BA);
 parallel_for_each(CA.extent,
  [&AA,&BA,&CA](index<1> i) restrict(amp)
 {
    CA[i] = AA[i] + BA[i];
 });
 copy(CA,C);
} 

FIGURE D.4

Explicit memory and copy management.
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On an accelerator that cannot access host memory, all of the operations in Fig. D.4 
also happen for the code in Fig. D.2 but they are performed transparently either when 
the parallel_for_each is launched or when array_view::synchronize is called. 
The intended use of the explicit mechanisms is to provide more control of mem-
ory management and allow copy operations to be initiated earlier and overlapped 
with other computations (although overlapped copies can be achieved through other 
means).

When an array_view overlays storage on the host but is accessed on the accelera-
tor, the data is copied to an unnamed array on that accelerator and the access is made 
to that array. This copy of the host data may persist for the remainder of the lifetime 
of the array_view. This allows the C++ AMP runtime to avoid redundant copies of 
the same data to the accelerator. C++ AMP provides operations to influence how and 
when data is copied between these implicit copies and the source storage. Line 8 of 
Fig. D.2 shows the use of array_view::discard_data. This method is an assertion 
that the values stored in the host storage are immaterial, for example because they 
are about to be overwritten. The effect of this assertion is that when the array_view 
is subsequently used in a parallel_for_each, no copy is performed from the source 
data to the implicit array created for accelerator access.

When an unnamed array is created to hold a copy of data associated with an 
array_view, and that array may be modified, the C++ AMP runtime system is per-
mitted to copy the values back to the host storage immediately or leave them on 
the accelerator. If the array_view is destructed or an element is accessed on the 
host, then values will be copied promptly to make sure host accesses get the most 
recent definition. The method array_view::synchronize is available to force any 
such copies to be performed by a particular program point. The method array_
view::refresh indicates to the C++ AMP runtime that all cached copies of the host 
data should be discarded. Generally this method would be used when the underlying 
host data is modified directly without accessing through the array_view. This coher-
ence between implicit cached copies and the underlying host data is the responsibil-
ity of the programmer.

An array_view may also refer to an array. This allows data allocated on an 
accelerator to be accessed by the host. Again, where necessary, this may involve 
creating copies of the data that are accessible by the host. The copies of data values 
between the source storage on the accelerator and the copies on the host are con-
trolled using the same mechanisms and functions as above.

ASYNCHRONOUS OPERATION
Most C++ AMP operations that initiate work on an accelerator, including operations 
to copy data to the accelerator are asynchronous. This means that the host operation 
returns and the host thread continues to the next statement before the work com-
pletes. We illustrate this in Fig. D.5 which shows three strands of concurrent activity 
where time logically flows from the top to the bottom of the figure. On the left is 
the sequence of host operations that initiate accelerator operations. In the middle, 
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FIGURE D.5

Concurrent host/accelerator execution.

FIGURE D.6

Overlapped accelerator and host processing.

we indicate three copy operations that take some duration each. On the right, we 
show the actual data-parallel computation which begins after the two copies to the 
accelerator complete and finishes before the final copy back to the host begins. On 
the host, the final copy-out is called before the data is ready and that operation blocks 
until the copy completes. When it returns, the return statement executes and the 
function returns with updated host data.

To provide finer-grain notification on which operation on the accelerator com-
plete, C++ AMP provides the completion_future class. This class that is analogous 
to std::shared_future, the C++ standard method for coordination with asynchro-
nous operations. In particular it provides the completion_future::get method 
which blocks the calling thread until the asynchronous operation completes. C++ 
AMP has variants of methods discussed above that are nonblocking and return a 
completion_future. In particular there are array_view::synchronize_async and 
various overloads of copy_async. These will initiate the data transfer implied and 
return a synchronization object immediately rather than blocking the thread until the 
operation has completed. Fig. D.6 provides a simple illustration where we assume 
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that following the vector add computation there is some other computation involv-
ing the unmodified host data A and B. Upon completion of that other processing, 
the host then waits for the results from the parallel_for_each to be available on  
the host by using the completion_future::get call on the object returned from the 
array_view::synchronize_async method. After the get call returns, the host vector 
C will hold the results.

As discussed in Chapter 2, Data parallel computing, CUDA has an explicit notion 
of “global” memory which is accessible by all threads in a kernel. In C++ AMP 
this concept is only available by having array objects associated with an accelera-
tor. C++ AMP does not provide a facility for having file-scope objects accessible 
by functions running on the accelerator the way CUDA interprets __device__ as a 
qualification on file-scope object declarations. Similarly, C++ AMP does not expose 
a concept of constant memory, although values captured in the top-level lambda 
passed to a parallel_for_each may be stored in constant memory. The differences 
between CUDA and C++ AMP represent conscience design choices for C++ AMP 
to simplify the programming model. Some elements of CUDA reflect specifics of 
current GPU architectures that are not necessarily present in other forms of accelera-
tors or may be significantly less common in the future. C++ AMP chose to leave 
these as implementation details rather than part of the model.

SECTION SUMMARY
In this section we have discussed the features of C++ AMP that support a discrete 
accelerator that does not share memory with the host and runs concurrently with host 
computations. The key features are the array data container, explicit copy opera-
tions, and explicit asynchronous work mechanisms. We also indicated when and 
where such copies are made when the more flexible array_view is used when target-
ing discrete accelerators. We discussed the relationship of CUDA memory types with 
that of C++ AMP.

D.3  MANAGING ACCELERATORS
A computer system may include multiple accelerators suitable for implementing 
C++ AMP data-parallel computations. This includes both specialized hardware 
accelerators such as GPUs and simply the use of multicore CPUs with SIMD instruc-
tions. A system may also have multiple GPUs that may or may not have similar hard-
ware characteristics. C++ AMP has mechanisms to enumerate available accelerators 
and to manage how work is mapped to those accelerators.

The class accelerator is the C++ AMP abstraction used for a specific mechanism 
for implementing data-parallelism. As shown in Fig. D.7, the accelerator::get_all 
static method returns a vector of available accelerators in the system. A few proper-
ties associated with each accelerator may be used to select one when special require-
ments are required. For example, support of double precision data types is an optional 
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feature. For compute intensive applications, it may be desirable to avoid placing work 
on the GPU that is used to drive an interactive display. Other properties include the 
amount of memory dedicated to the accelerator (accelerator::dedicated_memory) 
and a std::wstring that uniquely identifies the device (accelerator::device_
path). The example uses the STL std::find algorithm to capture this search.

In addition to finding a specific accelerator, a system may support multiple suit-
able accelerators. C++ AMP enables off-loading work from one or more host threads 
to multiple accelerators. All such accelerator instances are returned by the call to 
accelerator::get_all and they may be used concurrently by an application.

In C++ AMP, an accelerator_view is an object which refers to a specific under-
lying accelerator and can be used to specify that accelerator for the purpose of 
indicating where an array is allocated and where work for a particular parallel_
for_each should be executed. Similar to a CUDA stream (cudaStream_t), various 
operations performed against a particular accelerator_view are performed in order 
but operations on different accelerator_views have no defined order.

In C++ AMP there is a default accelerator which is automatically selected by 
the runtime but can be explicitly set using the accelerator::set_default static 
method which takes a device path string parameter. Each accelerator has a default 
accelerator_view (accelerator::default_view). The default view of the default 
accelerator is used for allocating an array when none is specified. A paral-
lel_for_each may also have an explicit accelerator_view. Fig. D.8 is a variant 
of the vector add sample that makes use of defaults explicit. It is not necessary to 
use explicit arrays to direct work using an accelerator_view. Even when all data is 
accessed with array_view objects that overlay host data, a parallel_for_each may 
have an explicit accelerator_view indicating where the work should be performed.

Fig. D.9 is another illustration of explicit use of an accelerator_view. Here we 
provide a modified vector add operation which is parameterized by an accelerator_
view that identifies where the work should be performed. The function determines 
the memory available on the accelerator, converted from kilobytes to bytes and 

FIGURE D.7

Example of finding an accelerator.
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used to determine the largest block size (block) where three blocks may be stored 
concurrently. Line 8 then loops over the input vectors in chunks of this size. For each 
chunk, a computation is launched as was done in Fig. D.2 but here the accelerator is 
explicitly specified by the first parameter, acc, to the parallel_for_each. On Line 
17, we initiate an asynchronous transfer of the results back to the host data structure. 
The completion_future returned by this operation is moved into a vector of such 

void vecAdd (float* A, float* B, float* C, intn)
{
 accelerator acc;
 accelerator_view view(acc.default_view);
 array<float,1> AA(n,view), BA(n,view);
 array<float,1> CA(n,view);
 copy(A,AA);
 copy(B,BA);
 parallel_for_each(view, CA.extent,
  [&AA,&BA,&CA](index<1> i) restrict(amp)
 {
    CA[i] = AA[i] + BA[i];
 });
 copy(CA,C);
}
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FIGURE D.8

Explicit accelerator use.

FIGURE D.9

Explicit accelerator with asynchronous transfers.
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results. After all operations are started, Lines 19 and 20 iterate over the vector of 
results using C++ STL methods and wait for each one to complete by calling the get 
method before the function returns to the caller.

D.4  TILED EXECUTION
This section touches on a topic important for some scenarios. We discuss a “tiled” 
version of data parallelism and the additional tools for optimizing memory available 
in that model.

As described above, a data-parallel computation has an associated computational 
domain defined by a C++ AMP extent object. A computational domain of rank 3 
or less may also be blocked into regular, rectangular subdomains called tiles. The 
widths of these tiles must be compile-time constants. The threads that are associated 
with the same tile may share variables and participate in barrier synchronization. In 
CUDA, the term block is used to describe these groups of threads. A new storage 
class is also added to C++ AMP, tile_static, to indicate a variable that has a sin-
gle instance per-tile which is shared by all threads (in CUDA this is indicated with  
the __shared__ keyword). Chapter 4, Memory and data locality, discusses the moti-
vation for using tiling and tile-shared variables to optimize memory bandwidth. 
Objects with this storage class may only be accessed in restrict(amp) code.

We illustrate tiling as was done in Chapter 4, Memory and data locality, by using 
matrix multiplication. Fig. 4.12 shows a CUDA kernel which we expand into a host 
function (Fig. D.10) containing the kernel as well assuming host pointers are used to 
refer to dense arrays following the interface from Chapter 4, Memory and data local-
ity. As before, we overlay array_view objects on top of the host data and discard the 
output data that is about to be overwritten so it is not copied to the accelerator.

A tiled_extent is a form of extent that captures tile dimensions as template 
parameters. C++ AMP only supports tiling for 1, 2, and 3 dimensions and the rank 
of a tiled_extent object is inferred from the number of tile dimensions specified. 
In this case, the tiled_extent has rank 2 (Line 6).

The parallel_for_each method has an overload for tiled_extents. The struc-
ture is the same as before and the lambda function will be invoked once for each 
element in the compute domain. C++ AMP requires that the extent of the compute 
domain must be evenly divisible by the tile size. In this example, Width must be 
multiples of TILE_WIDTH. When this condition is not met a runtime exception is 
thrown.

In the case of a parallel_for_each for a tiled_extent, the parameter to the 
lambda must be a tiled_index instead of an index. The tiled_index is a class 
template where again the tile sizes are captured as template parameters. The tiled_
index (t_idx in the figure) provides both a mapping for each thread into the compute 
domain (t_idx.global) as well as the relative position of a thread within its tile 
(t_idx.local).
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Line 9 declares a tile_static array named Mds which is shared by all threads 
in a tile. It will hold a copy of the values in M that are needed to perform a sub-
block matrix multiple computation for all of the threads in the tile. Similarly Line 10 
declares analogous Nds to hold subblocks of N.

As in Fig. 4.12, the loop on Fig. D.10, Line 14 multiples a block-row times a block 
column in tile-size chunks. The variable Width is used uniformly by all threads and 
is captured from the containing function scope for reuse in the lambda automatically. 
The threads in the tile cooperatively copy blocks of M and N into tile_static storage. 
Line 17 is the barrier synchronization point where all threads in the tile wait for the 
stores into shared variables to complete. A second barrier on Line 20 makes sure all 
of the reads from shared variables are completed before writes on the next iteration 
begin. In C++ AMP, the object of type tile_index includes a tile_barrier object 
as a data member and that object provides methods to perform barriers. C++ AMP 
provides different forms of barriers which indicate whether the barrier applies to just 
tile_static data, applies to global data, or both. Here we only need to protect tile_
static data and so could use wait_with_tile_static_memory_fence but chose to 
use the wait method to match the source from Chapter 4, Memory and data locality.

FIGURE D.10

Tiled matrix multiplication.
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Fig. D.11 illustrates some details of C++ AMP tiling. It shows a 20 by 20 com-
pute domain as a grid of small squares and the variable e im the code fragment. Rows 
(dimension 0) are shown as numbered from top to bottom and columns (dimension 
1) from left to right. This domain might be blocked into 8× 8 tiles. These tiles are 
illustrated with the larger black squares and the variable te or alternately the variable 
te2 which shows the extent::tile method template for creating a tiled_extent. 
We also illustrate the use of C++ 11 auto keyword to infer types of variables from 
their initializers.

Note that the tile size in this example does not evenly divide the dimensions 
of the compute domain. A tiled parallel_for_each requires the extent be a multi-
ple of the tile size in each dimension and the developer must explicitly handle the 
boundary cases when this is not the case. The tiled_extent class template provides 
methods to either pad or truncate the underlying extent. In the example variable pte 
corresponds to the padded exetent, extent<2>(24,24), while the variable tte cor-
responds to the truncated extent, extent<2>(16,16).

The tiled_index parameter supports a variety of members to facilitate tiled com-
putations. The global member is an index<2> holding the position in the underlying 
compute domain. The solid red square in the figure cooresponds to position (9,6) in 
the compute domain. The set of tiles (large squares) forms a domain, extent<2>(3,3) 
in this case, which is returned by the tile_extent member. The tile member is an 
index<2> holding the position of a point projected into this domain. The highlighed 
point (9,6) is in tile (1,0). The light blue square is the first element in each dimension 
in the same tile as point (9,6). This is available as tile_origin and in this example 
corresponds to the global index (8,0). Finally, the points within a tile can be thought 
of as a small domain and the local member returns the position in this space (1,6) 
formed basically by subtracting tile_origin from global.

FIGURE D.11

Illustration of tiling 20× 20 compute domain.
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D.5  C++ AMP GRAPHICS FEATURES
The primary motivation for C++ AMP is to support data-parallelism as an important 
algorithm pattern for general computing. Rendering and imaging processing are very 
important mainstream workloads for which C++ AMP includes some more special-
ized support which is discussed briefly in this section. These facilities include: nor-
malized floating points, short vector types, textures, and—optionally on Microsoft 
platforms—interoperations with DirectX. Many of these features are segregated into 
a separate namespace, concurrency::graphics. Fig. D.12 illustrates some of the 
types defined in that namespace and discussed in this section.

C++ AMP provides two types, norm, and unorm, which provide arithmetic that 
is floating point in nature but of bounded range. The norm type holds signed values 
with magnitude no more than one while unorm type holds nonnegative values with 
magnitude no more than one. Common arithmetic operations are defined on these 
types where result values that would exceed the range are forced to the extreme 
value (“clamped”). These types may be mixed with C++ types and convert to float. 
They may also be used as element types for C++ AMP composite types array, 
array_view, and the texture objects described below.

Graphics programs frequently manipulate short vectors of primitive types. C++ 
AMP supports graphics programming by including definitions of these. For C++ 
AMP types, int, unsigned int (as uint), float, double, norm, and unorm, and for 
each vector length 2, 3, and 4, there exist types such as int_2, unit_3, and float_4. 
Each of these holds a number of component values that are accessed by name. The 
names supported are x, y, z, and w or alternately r, g, b, and w. Thus, given the 

FIGURE D.12

Examples of type from concurrency::graphics.
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declarations in Fig. D.10, we might access a component f4.z which is a single float 
that can be used as either an rvalue or an lvalue. Certain compound patterns are also 
supported such as f4.xy corresponds to a short vector of suitable length, float_2 in 
this case, that may be used as either rvalue or lvalue. Assignment and arithmetic on 
short vectors is done in a component-wise style with scalar arguments promoted to 
vectors with that value in each component.

A texture is a special form of array that allows data-parallel code to access val-
ues that are stored using reduced precision. This is common representation for image 
data and is the only method in the first version of C++ AMP to access partial word 
data types in an restrict(amp) context. Like an array, a texture is a class template 
that is parameterized by an element type and a rank. The set of allowed element types 
is constrained to be a subset of the restrict(amp) compatible primitive types and 
their short vector variants.

When a texture is constructed, in addition to the extent and a data source, a 
final unsigned integer argument indicates the number of bits per primitive data value 
used to store the value. Line 15 shows an example texture with a four-wide vector of 
unsigned normalized floating point values. The 16U passed to the constructor indi-
cates each of these values is stored with only 16-bits of information. Not all combi-
nations of data type, vector length, and storage width are supported (details in the 
specification listed in the references below).

A texture is a storage container like an array and may be associated with a par-
ticular accelerator_view. A texture is also indexed like an array with overloads 
of the index operator with an index instance of suitable rank as a parameter. As 
for array, these operations are restrict(amp) and may not be used in host code. 
Overloads of the function template copy support transfers to and from host data 
structures.

A subset of textures may be written to directly and this is done explicitly via a 
texture::set method. For texture formats for which writing is not directly sup-
ported by hardware accelerators, C++ AMP provides the writeonly_texture_view 
class template illustrated with the variable named wotv (Line 16). These are analo-
gous to array_view objects but only overlay texture data. The set method on this 
object may be used in a restrict(amp) context that is defining values in a texture.

Beyond support for these types, C++ AMP on Microsoft platforms includes spe-
cific features to enable interoperation with the DirectX framework. These interfaces 
are in the graphics::direct3d namespace. This includes the following capabilities:

●	 Treating an existing Direct3D device interface pointer as a C++ AMP 
acclerator_view.

●	 Treating an existing Direct3D buffer interface pointer as a C++ AMP array.
●	 Treating an existing Direct3D texture interface pointer as a C++ AMP texture.

These capabilities allow C++ AMP to provide a C++ language solution for GPU 
compute scenarios that integrates smoothly with the DirectX rendering framework.
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Fig. D.13 illustrates the interop features. Function my_rotate consumes a vec-
tor of vertex data which is located on the host. Parameter d3ddevice is the existing 
DirectX interface which is used to first construct an accelerator_view and then an 
array. The parallel_for_each performs a rotation of the vertices where the result 
is left on the accelerator. Since the array instance vertices is located on a particular 
accelerator_view, the parallel_for_each will be executed on that same accel-
erator_view. We extract the underlying buffer object (typed only as IUnknown) and 
return this to the caller for subsequent use in scene rendering.

D.6  SUMMARY
This appendix has presented an overview of C++ AMP, a small extension to C++ 
11 to support hardware acceleration of data-parallel computations. The discussion 
is not complete but the full specification is available at the URL listed in the refer-
ences. The focus of C++ AMP is to create features that integrate well into modern 
C++ and leverage features such as templates, lambdas, and futures to provide a 
highly-productive set of abstractions that compose with other aspects of C++ and 
parallelism. The features are layered to allow use by a very broad set of developers 
with limited knowledge of computer architecture, as well as providing access to the 
rich execution model needed for the most performance-critical scenarios. Lowering 
the barrier to expressing data-parallelism and ensuring portability across hardware 

FIGURE D.13

Examples DirectX interop—rotate vertex list.
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platforms will help more applications deliver the benefits of hardware acceleration 
and heterogeneous computing.

D.7  EXERCISES

1.	 Translate the simple, untiled version of matrix multiplication into C++ 
AMP. The CUDA kernel is shown in Fig. 4.7. Write a host-function that 
applies this computation to three array_view<float,2> inputs. Rather than 
implementing C = A*B, accumulate in the output and implement C += A*B.

2.	 Given an array view of rank 2, X, and index<2> ij, and extent<2> e, the 
operation X.section(ij,e) returns a new array_view which overlays the 
same data as X. If we denote this new view as S, then for all valid indices 
idx of S we have S[idx] is the same location as X[idx+ij]. Assume now 
there are three array_view<float,2> objects, A, B, and C. Assume they will 
not fit simultaneously in the dedicated_memory of the accelerator in the 
system. Use the array_view::section method, explicit array objects, and the 
matrix multiply building block from the first exercise, to implement matrix 
multiplication for the large arrays.

3.	 Assume the std::vector gpu holds two elements of type accelerator_view 
that refer to different but similar GPUs in a system. Modify the solution to 
Exercise D.3 to use both accelerators to implement the work.

4.	 Translate the tiled version of matrix transpose from Exercise 3.2 into C++ 
AMP.

5.	 The inner loop in Fig. D.3 redundantly loads data through atom_view that is 
used in multiple threads and these references are not coalesced (see Section 
5.2). Rewrite the function in Fig. D.3 to use tile_static memory to improve 
the memory efficiency for accessing the data in atom_view.

REFERENCE
C++ AMP Open Specification. <http://blogs.msdn.com/b/nativeconcurrency/archive/2012/ 

02/03/c-amp-open-spec-published.aspx>.

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
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Finite difference methods, 172
Fixed grid approach, 276–277
“Flat” memory space, 49–50
Floating-point data representation, 132–134

excess encoding of E, 133–134
normalized representation of M, 132–133

Floating-point precision and accuracy validation, 
326f

Fluid dynamics, 20–21, 452
FORTRAN, 111, 494
Forward propagation, 349, 349f, 350f

CUDA implementation, 355–358
FPGAs. See Field programable gate arrays (FPGAs)
Frame buffer memory, 6–8
Full connection layers, 347–348
Function calls within kernel functions, 449
Function declarations, CUDA C, 38
Fusion, 487

G
G80, 8, 485
Gangs, 416, 431, 433
Gather, 372, 372f
Gaussian elimination, 217, 309–310

algorithm, 142, 143f, 144f, 145
Gaussian filters, 149, 351
gcc. See Gnu C Compiler (gcc)
GDDR. See Graphics Double Data Rate  

(GDDR)
GeForce 8800 GTS, 485t
GeForce GTX 280, 485t
GeForce GTX 480, 485t, 486f
GeForce GTX 680, 342
GEMM. See GEneral Matrix to Matrix 

Multiplication (GEMM)
Gen2 interface. See Generation 2 interface (Gen2 

interface)
GEneral Matrix to Matrix Multiplication (GEMM), 

359, 360f
General-purpose programming interface, 6
General-Purpose Programming using GPU 

(GPGPU), 6
Generation 2 interface (Gen2 interface), 8
Generic algorithms, 482
Generic interfaces, overloading host/device 

routines, 498–499
Generic programming, 482–484
Generics, 475–477
get_global_id(0) function, 466
GFLOPS. See Giga floating-point operations per 

second (GFLOPS)
“Ghost cells”, 152
Giga (109). See Giga floating-point operations per 

second (GFLOPS)
Giga floating-point operations per second 

(GFLOPS), 1, 72
“__global__” keyword, 34–35
Global memory, 6–8, 27–28, 281–282

access, 453
in CUDA device, 78
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Global memory access, enhanced, 453
Global memory bandwidth, 72, 104–112

analyzing data access pattern, 112
burst organization of modern DRAMs, 105
coalesced access pattern, 107f
coalescing hardware, 106
of CUDA device, 104–105
memory access patterns in C 2D arrays for 

coalescing, 106f
placing matrix elements into linear order,  

106f
shared memory to enabling coalescing, 110f
tiled algorithm, 111–112
tiled matrix multiplication kernel using shared 

memory, 111f
un-coalesced access pattern, 109f

GMAC, 4–5, 13
Gnu C Compiler (gcc), 205
GPGPU. See General-Purpose Programming using 

GPU (GPGPU)
GPU. See Graphics processing unit (GPU)
Gradient backpropagation, 351
Graph data structure, 258
Graph search, 257–258

adjacency matrix representation, 259f
BFS, 260–262, 260f
graph data structure, 258
graph with directional edges, 258f
optimizations, 270–273
parallel BFS function, 265–270
sequential BFS function, 262–265, 263f
sparse matrix representation, 259f
sparse representation, 260

Graphics API, 6
Graphics chips, 3–4, 6
Graphics Double Data Rate (GDDR), 6–8
Graphics processing unit (GPU), 2–3, 443–444

architecture of modern, 6–8
computing, 11
CUDA-enabled GPUs, 443–444, 446
data parallelism, 20–22
design philosophy, 4
floating-point arithmetic units, 5–6
IEEE Floating-Point Standard, 5–6
NVIDIA GTX480, 27–28
PCI-E Gen3, 8

Graphs, 257–258
Greyscale, 20–21
Grid, 33
Grid data structure, 341
Gridding approach, 307–308
Gridding computation, 307–308

H
Hadoop, 233
Halo cells, 152

tiled 1D convolution, 160–165
tiled 2D convolution, 166–172

Halo elements, 225–226
Hardware queues, 450
Hardware system, 372
Hardware trigonometry functions, 323–325
HBM. See High-Bandwidth Memory (HBM)
Heterogeneous computing cluster programming. 

See also Parallel programming
background, 388
collective communication, 408–409
CUDA-aware MPI, 409–410
MPI, 391–393
overlapping computation and communication, 

400–408, 401f
point-to-point communication, 393–400
programer’s view of MPI processes, 388f
running example, 388–390
small example of memory layout, 390f
3D grid array, 390f

Heterogeneous parallel computing, 2–6. See also 
Data parallel computing

CPUs, 3f
GPUs, 3f, 4–5
many-thread trajectory, 2–3
memory bandwidth, 3–4
multicore trajectory, 2
NVIDIA, 6
practical form factors and easy accessibility, 5

Hierarchical parallel scan for arbitrary-length 
inputs, 189–192

Hierarchical queues, 271–272
Hierarchical scan for arbitrary length inputs, 189f
High-Bandwidth Memory (HBM), 6–8
High-performance computing (HPC), 13, 387, 414
High-performance parallel programs, 14
Higher order stencil computation, 388–389
Histogram, 200
Host, 464–465
Host copy, 429–430
“__host__” keyword, 35, 38
Host/device interaction model, 444–449
host_data region, 437, 438f
HPC. See High-performance computing (HPC)
Hypothetical example, 383–385

classical gridded MRI reconstruction from spiral 
scan data, 384f

least squares reconstruction of spiral scan data, 385f
sodium images, 384f
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I
I/O devices, 444
Identity matrix, 144
IEEE Floating-Point Standard, 5–6
IEEE format, special bit patterns and precision in, 

138–139
IEEE standard, 133–134
IEEE-754 Floating-Point Standard, 132
If-then-else statement, 59
iFFT. See Inverse Fast Fourier Transform (iFFT)
Image blur, 54–58
Implicit data copies, 522–523, 522f
Implicit ranges, 489–491, 490f
inclusive scan operation, 176–177
Independent clause, 425
Installed base of processor, 5
Instruction Register (IR), 79
Instruction/execution divergence, 381–382
Integrated circuits, 261–262

maze routing in, 261f
Intel Pentium family, 1
Interleaved data distribution, 114–115
Interleaved partitioning, 206–207
Internal cells, 161
Internal tiles, 161
Interoperability with CUDA and libraries, 437–440

calling CUDA device kernels from OpenACC, 
439–440

calling CUDA or libraries with OpenACC arrays, 
437–438

CUDA pointers in, 438
deviceptr clause, 438f
host_data region, 438f

Interruptible kernels, 450–451
Intrinsic functions, 205b
Inverse Fast Fourier Transform (iFFT), 306–307
Inverse matrix, 144
IR. See Instruction Register (IR)
iso_c_binding module, calling CUDA C via, 

499–501
Iterative approaches, 217–218
Iterative solver, 228
Iterators, 477, 479–480

J
Jacobi iterative method, 388–389, 418, 419f, 432

code with loop tile clause, 433f
compiler feedback for, 423f
with data region, 427f
using parallel directive, 422f

Jagged Diagonal Storage format (JDS format), 227

K
k-space sampling trajectory, 306
Kahan’s summation algorithm. See Compensated 

summation algorithm
Kernel execution control

exception handling in kernel functions, 449–450
function calls within kernel functions, 449
hardware queues and dynamic parallelism, 450
interruptible kernels, 450–451
simultaneous execution of multiple kernels, 450

Kernel functions, 32–37, 77–78, 463
OpenCL, 466, 467f

“__kernel” keyword, 466
Kernel launch, 37–38

OpenCL, 466–469
overhead, 272–273

Kernel parallelism structure, 312–317
cmpMu kernel, 314f
loop fission, 314f
loop interchange, 316f, 317f
option of FHD kernel, 316f
version of FHD kernel, 312f

Kernels, 23
complex, 54–58
image blur kernel, 56f
loop directives and reduction operations, 

501–502
Kernels directive, OpenACC, 419–421, 420f

and parallel directives comparison, 424–425
Kogge–Stone algorithm, 177–178

kernel for inclusive scan, 180f
parallel exclusive scan algorithm, 181f
parallel inclusive scan algorithm, 178f

L
Laplace equation, 418, 418f
LargeBin algorithm, 378
Last-level on-chip caches, 4
Latency, 207–209

hiding, 65
tolerance, 64–66, 66b

Latency-oriented design, 4
Launch

environment configuration, 283
pool size, 292

Least-squares reconstruction (LS reconstruction), 
385

LeNet-5 design, 348, 348f
Lifetime, 82

of constant variable, 83
of shared variable, 83
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Linear algebra functions, 51b
Linear algebra operation, 51b
Linear algorithms, 175
Linear Bezier curves, 288
Linear solvers, 142–146

iterative reconstruction algorithm, 308–309
Load balance, 273
Local memory, 282
Locality, 90, 380–382
Loop directive, 422–423

OpenACC, 430–431
Loop fission technique, 313
Loop interchange, 313
Loop optimizations, OpenACC, 430–432

adjusting loop parameters, 431f, 432f
loop directive specifying levels of parallelism, 431f

Loop parallelism, 36
Loop splitting technique, 313
LS reconstruction. See Least-squares reconstruction 

(LS reconstruction)

M
Machine learning, 345–347

ConvNets, 347–355
convolutional layer, 355–358
convolutional layer reduction to matrix 

multiplication, 359–364
cuDNN library, 364–367, 365t

Magnetic resonance imaging (MRI), 306, 371
application of MRI, 306
background, 306–308
blockIdx.x and threadIdx.x values, 315
Cartesian scan trajectories, 306–307
CG algorithm, 309–310
chunking k-space data, 320f
cmpMu() kernel, 314–315, 314f
computing FHD, 310–327, 311f, 312f
device, 383
experimental performance tuning, 326–327
final evaluation, 327–329
hardware trigonometry functions, 323–325
iterative reconstruction, 308–310
k-space elements, 318–319
k-space regions, 306
kernel parallelism structure, 312–317
loop fission or loop splitting, 313
loop interchange, 316f
M/MU_THREADS_PER_BLOCK blocks, 

314–315
matrix–vector multiplication, 309–310
memory bandwidth limitation, 317–323

non-Cartesian k-space sample trajectory, 308f
non-Cartesian scan trajectories, 307
physics principles behind MRI, 306
quasi-Bayesian estimation problem formulation, 

309
ratio of floating-point operations, 311–312
scanner k-space trajectories, 307f

Managed memory, 446–447
Many-thread processors, 2–3
Map driving direction applications, 258
Map-reduce distributed computing frameworks, 233
Map-reduce frameworks, 231
Matrix multiplication, 73–77, 115f, 153–154, 345, 

359, 374–375
actions of one thread block, 76f
convolutional layer reduction to, 359–364
example to execution, 75
execution example of matrixMulKernel, 76f
execution of for-loop, 75
execution speed of functions, 73
function generates unrolled X matrix, 362f
global memory accesses, 77
high-performance implementation, 363f
host code for invoking unroll kernel, 363f
implementation, 73
implementing forward path, 362f
kernel using one thread, 75f
matrixMulKernel, 77
using multiple blocks by tiling, 74f
tiling illustration, 84

Matrix–matrix multiplication. See Matrix 
multiplication

matrixMulKernel, 77
Matrix–vector multiplication (FHD), 309–327
Maze routing problem, 262

determining kernel parallelism structure, 
312–317

experimental performance tuning, 326–327
getting around memory bandwidth limitation, 

317–323
hardware trigonometry functions, 323–325
in integrated circuits, 261f

Memory
access throughput, 104–105
allocation and lifetime, 283–284
bound, 201
memory-bound programs, 72
space, 49b, 479–480

Memory access efficiency
effect, 77
importance, 72–73



544 Index

Memory and data locality
boundary checks, 94–96
CUDA memory types, 77–84
importance of memory access efficiency, 72–73
matrix multiplication, 73–77
parallelism, memory as limiting factor to, 97–99
tiled matrix multiplication kernel, 90–94
tiling for reduced memory traffic, 84–90

Memory bandwidth, 3–4, 112–113, 270–271, 
451–453

adjusting k-space data layout, 323f
chunking k-space data, 320f
effect of k-space data layout, 322f
limitation, 317–323
registers to reducing memory accesses, 319f
revised FHD kernel, 321f

Memory coalescing, 104, 206, 207f, 338–342
DCS kernel version 3, 340f
organizing threads and memory layout, 339f
reusing computation results among multiple grid 

points, 339f
version 2 of DCS kernel, 339f

Memory data visibility, 281–283
constant memory, 282
global memory, 281–282
local memory, 282
shared memory, 283
texture memory, 283
zero-copy memory, 282

Memory management, 283–285
errors and launch failures, 284
launch environment configuration, 283
memory allocation and lifetime, 283–284
nesting depth, 284
pending launch pool configuration, 284

Memory parallelism, 112–116. See also Data 
parallelism

banking improving utilization of data transfer 
bandwidth, 113f

channel, 112
channels and banks in DRAM systems, 112f
distributing array elements into channels and 

banks, 115f
distribution scheme, 114–115
M elements loaded by thread blocks, 116f
matrix multiplication, 115f

Merge sort
circular-buffer merge kernel, 249–254
co-rank function implementation, 236–241
Hadoop, 233
merge operation, 232f
ordered merge function, 231–232

parallel merge kernel, 241–242
parallelization approach, 234–236
sequential merge algorithm, 233–234
sorted vs. unsorted lists, 232f
tiled merge kernel, 242–249, 243f

merge_circular_buffer_kernel, 249
merge_tiled_kernel, 249
Message Passing Interface (MPI), 12–13, 374, 387, 

391–393
barrier synchronization, 404–405
closing communication system, 391f
collective communication, 408–409
main program, 392f
MPI/CUDA programming, 387
MPI/OpenACC, 387
MPI/OpenCL, 387
MPI_Barrier() function, 404–405
MPI_Comm_rank()function, 391
MPI_Comm_size() function, 395–396
MPI_Recv() function, 393, 394f
MPI_Send() function, 393, 394f
MPI_Sendrecv() function, 405–406, 406f
overlapping computation and communication, 

400–408
point-to-point communication, 393–400

Microprocessors, 1
Microscopes, 9
Modern compilers, 205
Molecular dynamics, 331

applications, 20–21, 372–373, 373f
simulation, 332

Molecular visualization and analysis
background, 332
memory coalescing, 338–342
simple kernel implementation, 333–337
single-threads CPU vs. CPU–GPU comparison, 

343f
thread granularity adjustment, 337–338

Motivation, 477–478
MPI. See Message Passing Interface (MPI)
MRI. See Magnetic resonance imaging (MRI)
Multidimensional arrays, 49–50

in CUDA Fortran, 496–497
Multidimensional data, threads mapping to, 47–54

host code, 48
linearized access to three-dimensional array, 54
multidimensional arrays, 49–50
1D, 2D, or 3D thread organizations, 47
row-major layout for 2D C array, 50f
source code of color ToGreyscaleConversion,  

52f
2D thread grid to processing, 48f
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N
NaN. See Not a Number (NaN)
Nesting depth, 284
Non-Cartesian MRI

application of MRI, 305
computing FHD, 310–327
final evaluation, 327–329
iterative reconstruction, 308–310
non-Cartesian k-space sample trajectory,  

308f
non-Cartesian scan trajectories, 307
non-Cartesian trajectories, 384
scanner k-space trajectories, 307f

norm, C++ AMP type, 531
Normalized representation of M, 132–133
Not a Number (NaN), 138–139
Numerical considerations

algorithm considerations, 140–142
arithmetic accuracy and rounding, 139–140
floating-point data representation, 132–134
linear solvers and numerical stability, 142–146
representable numbers, 134–138
special bit patterns and precision in IEEE format, 

138–139, 138f
Numerical stability, 142–146
Numerically stable values, 142
Numerically unstable values, 142
NVIDIA C Compiler (NVCC), 23

O
On-chip memory, 88
1D parallel convolution, 153–156

boundary condition handling, 155f
input parameters, 154
kernel with boundary condition handling, 155f
mapping of threads to output elements, 154
Mask_Width [size of masks], 155
output element index, 154
variable P value, 155

Open Computing Language (OpenCL), 14, 19–20, 
461

building OpenCL kernel, 472f
data access indexing in OpenCL and CUDA, 471f
data parallelism model, 462–464
DCS kernel version 3 NDRange configuration, 

470f
development of, 462
device architecture, 464–465, 465f
device management and kernel launch, 466–469
dimensions and indices to CUDA, 464f
electrostatic potential map in, 469–473

host code for kernel launch and parameter 
passing, 472f

inner loop of OpenCL DCS kernel, 471f
kernel functions, 466, 467f
to managing devices, 467f
mapping between OpenCL and CUDA, 463f
mapping DCS NDRange to, 470f
parallel execution model, 463f

OpenACC, 12–13, 19–20, 413–414, 458
abstract machine model, 415f
advantage, 13
asynchronous computation and data, 434–435
calling CUDA device kernels from OpenACC, 

439–440
calling CUDA or libraries with OpenACC  

arrays, 437–438
compiler output from example kernels  

code, 421f
and CUDA, 435–437
CUDA pointers in, 438
data directives, 425–430
deviceptr clause, 438f
directive format, 416–418, 417f
by example, 418–435
execution model, 414–416
future of, 440–441
GPU timeline of parallel loop code, 424f
host_data region, 438f
interoperability with CUDA and libraries, 

437–440
kernels and parallel directives comparison, 

424–425
kernels directive, 419–421, 420f
loop optimizations, 430–432
offloading execution model, 415f
parallel directive, 422–424
performance, 436
performance speed-up, 424f
portability, 435–436
regions, 417
routine directive, 432–434
simplicity, 436
terminology, 437f

OpenCL. See Open Computing Language 
(OpenCL)

OpenCL clEnqueueReadBuffer(), 473
Operand value, 78–80
Ordered merge operations, 231
Output interference, 202
Overlapping computation and communication, 

400–408, 401f
device memory offsets, 404f
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P
Padding, 221–224

example in ELL, 222f
hybrid approach to regulates, 224–227
parallel SpMV/ELL kernel, 223f

Page locked memory buffer. see Pinned memory 
buffer

Parallel BFS function, 265–270
BFS host code function, 266f
block-level queue contents, 269f
kernel based on block-level privatized queues, 

267f
Parallel computing, 88, 149, 369–371, 459. See 

also Heterogeneous computing cluster 
programming

aggregation, 211–213
algorithm selection, 374–379
atom-centric arrangement, 371–372
atomic operation in cache memory, 210
atomic operations, 202–205
block partitioning vs. interleaved partitioning, 

206–207
C function for calculating histogram, 201f
comparison of scalability and performance, 378
cutoff algorithms, 378
energy value of grid point, 371
goal of, 370
grid-centric arrangement, 371–372
grid-centric decomposition, 371–372
histogram, 200
hypothetical example, 383–385
issue with binning, 377
latency vs. throughput of atomic operations, 

207–209
nonbonded force calculation, 372–373
parallel histogram computation, 199
privatization technique, 210–211
problem decomposition, 371–374
running time of three binned cutoff algorithms, 

378, 378f
sequential tasks, 374
SPMD, shared memory and locality, 380–382
threading arrangement, 371–372
work efficiency, 377

Parallel device code, 23
Parallel directive, OpenACC, 422–424

and kernels directives comparison, 424–425
Parallel execution, 371–372
Parallel merge kernel, 241–242
Parallel programming, 12
Parallel programming languages and models, 12–14
Parallel reduction algorithm, 122

Parallel scan, 175
algorithm with 16-element input, 178–179
for arbitrary-length inputs, 189–192
background, 176–177
exclusive scan algorithm, 181f
implementation of iterative calculations, 180
inclusive scan operation, 176, 178f
kernel launch, 179
Kogge–Stone kernel for inclusive scan, 180f
as primitive operation, 177
sequential algorithm of computation, 177
simple, 177–181
single-pass scan for memory access efficiency, 

192–194
work efficiency, 181–183
work-efficient, 183–189

Parallel SpMV using CSR, 219–221
Parallelism, 8–10

memory as limiting factor to, 97–99
Parallelization approach, 234–236
Pareto-Optimal-Curve-based method, 327
Pascal, 453
Pascal GPU architecture, 448, 451, 453
PC. See Program Counter (PC)
Peak SNR (PSNR), 324–325
Pending launch pool configuration, 284
Performance cliff, 126
Performance considerations

dynamic partitioning of resources, 125–127
global memory bandwidth, 104–112
memory parallelism, 112–116
thread granularity, 127–128
warps and SIMD hardware, 117–125

PEs. See Processing elements (PEs)
PGI. See Portland Group (PGI)
Phantom object, 324–325
Physical address spaces, 446
Pinned memory

allocation, 401–402
buffer, 402

Pivoting, 145, 146f
Pointers, CUDA, 84
Pointers model, 477
Pooling layer. See Subsampling layers
Portfolio management process, 370
Portland Group (PGI), 414, 493
#pragma keyword, 417
Precision in IEEE format, 138–139, 138f
Predefined variables. See Built-in variables
Prefix sum, 175
Privatization technique, 210–211, 257–258
Problem decomposition, 371–374
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Processing elements (PEs), 464–465
Processing units, 81b
Processor cores, 1
Program Counter (PC), 79
Programing environment, 453–455
Programing interface for computing clusters, 388

overlapping computation and communication, 
400–408

3D stencil computation, 388–390, 389f
Programmer productivity, 484
Projection imaging, 307
PSNR. See Peak SNR (PSNR)
PTX code, 508–509

Q
Q computation, 310–311
Quadratic Bezier curves, 288
Querying device properties, 61–64
Queues, 257–258
Quiet NaN, 139

R
Race condition, 203, 203f, 204f
Rank, 236
Read-modify-write, 202–203, 208
Real-world performance, 485–486
Reduced memory access throughput, 126
Reduction, 423
Reduction algorithm, 121
Reduction tree, 177–178, 183
Reference count, 426–427
Register File, 78
Registers, 77–78

in CUDA, 81–82
to SM, 97

Representable numbers of floating-point format, 
134–138

abrupt underflow format, 137f
algorithm considerations, 140–142
alignment shifting of operands, 140
arithmetic accuracy and rounding, 139–140
bit patterns, IEEE standard format, 138–139, 

138f
3-bit unsigned integer format, 134f, 135f
denormalization format, 137f
denormalization of, 137–138
discrepancy between sequential algorithms and 

parallel algorithms, 141
Gaussian elimination procedure, 142, 143f, 

144–145, 146f
intervals in neighborhood of 0, 135–136
major intervals, 135–136

mantissa bits, 132
NaNs, 139
between negative infinity and positive infinity, 

139
no-zero, abrupt underflow, and denorm formats, 

135f
no-zero representation, 135f
precision of, 131
quiet NaN’s, 139
reduction computation, 141
represent of 0, 135
SNaNs, 139
trend of increasing density, 136–137

Resource and capability queries, 62b
Resource assignment, 60–61
Restrict(amp) specification, 519
Restrict(cpu, amp), 519
Restrict(cpu), 519
RGB color image representation, 21b
Root-mean-square (RMS), 327
Rounding, 139–140
Routine directive, OpenACC, 432–434, 433f
Routing software, 262
Row-major layout, 50

for 2D C array, 50f
Run-time API, 39–41

S
SAXPY function, 482–484

in CUDA C and Thrust, 483f
SAXPY routine, 495
Scalability, 15
Scalable parallel execution

CUDA thread organization, 43–47
image blur, 54–58
latency tolerance, 64–66, 66b
mapping threads to multidimensional data, 47–54
querying device properties, 61–64
resource assignment, 60–61
scalable parallel program, 19
synchronization and transparent scalability, 

58–60
thread scheduling, 64–66

Scalar variables, 82
Scan blocks, 190
Scatter operations, 372, 372f
Scratchpad, 451–452
Scratchpad memory, 80–81
SDRAM. See Synchronous DRAM (SDRAM)
Self clause, 429–430
Semiconductor industry, 459
Sequential BFS function, 262–265, 263f
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Sequential cutoff algorithm, 378
Sequential merge algorithm, 233–234
Sequential reduction algorithm, 121
Sequential SpMV/CSR loop, 218f, 220

shortcoming, 221
SpMV/ELL kernel code, 223

SFU. See Special function units (SFU)
“__shared__” keyword, 83
Shared memory, 77–78, 126, 283, 380–382

in CUDA, 81–82
size in SM, 98
usage, 97

Signal-to-noise ratio (SNR), 306
Signaling NaN’s (SNaNs), 139
SIMD. See Single Instruction Multiple Data 

(SIMD)
Simple kernel implementation, 333–337
Simulation algorithm, 277
Single Instruction Multiple Data (SIMD), 8, 65,  

117
executing threads of warp, 119
execution extending, 120
execution of revised algorithm, 124f, 125
hardware, 117–125, 117b–118b, 381
placing 2D threads into linear order, 119f
simple sum reduction kernel, 122f, 123f
__syncthreads() statement, 122
warps implementation, 117–118

Single program multiple data (SPMD), 15, 32–33, 
380–382

Single-pass scan for memory access efficiency, 
192–194

Skirt cells, 161
SmallBin algorithm, 379
SmallBin-Overlap algorithm, 379
SMs. See Streaming multiprocessors (SMs)
SNaNs. See Signaling NaN’s (SNaNs)
SNR. See Signal-to-noise ratio (SNR)
SoA approach. See Structure of Arrays approach 

(SoA approach)
Social network, 259

graphs, 273
Sodium map of brain, 383–385
Sorting, 231
Sparse matrix computation, 215

background, 216–219
column index array, 216f
compressed storage, 217
coordinate (COO) format, 224–225
CSR storage format, 216, 216f
data padding and transposition, 221–224
dot product loop body, 223

elements of data, col_index, and row_index, 
216–217

FLOPS rating, 229
format for storing, 215
Gaussian elimination, 217
hybrid approach to regulates padding, 224–227
hybrid ELL and COO method for SpMV, 

225–226
iterative approach, 217–218
in JDS format, 227, 228f
JDS–ELL representation, 227, 228f
loop index iteration, 218–219
matrix–vector multiplication and accumulation, 

218f
parallel SpMV using CSR, 219–221
parallel SpMV/ELL, 223f
real-world problems, 215
in science and engineering problems, 216
sequential implementation of SpMV, 218
sequential loop, 218f
in solving linear system of N equations of N 

variables, 217
sorting and partitioning for regularization, 

227–229
sparse matrix, 216, 216f, 279–280
SpMV computation code, 219
SpMV loop operating on, 219f
transposition of JDS-CSR representation, 

228–229
Sparse Matrix–Vector (SpMV multiplication), 

217–218
loop operating on sparse matrix, 219f
sequential loop implements SpMV/COO, 226f

Sparse representation, 260
Sparsely connected graph, 258–259
Special bit patterns in IEEE format, 138–139, 138f
Special function units (SFU), 323
Speeding up real applications, 10–11
SPMD. See Single program multiple data (SPMD)
SpMV multiplication. See Sparse Matrix–Vector 

(SpMV multiplication)
SPs. See Streaming processors (SPs)
Standard Template Library (STL), 475, 515–516
Statistical estimation methods

application of MRI, 305
computing FHD, 310–327
final evaluation, 327–329
iterative reconstruction, 308–310
non-Cartesian k-space sample trajectory, 308f
scanner k-space trajectories, 307f

Statistically optimal image reconstruction  
method, 308
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Stencil computation, 149, 172
25-stencil computation, 389, 389f

STL. See Standard Template Library (STL)
Stored program model, 79
“Strategy I”, 202, 206
Stream-based scan, 193–194
Streaming multiprocessors (SMs), 6–8, 60–61, 65, 

71, 292, 464–465
executing threads in warp, 65
hardware resources (built-in registers) for, 61
registers to, 97
size of shared memory in, 98
thread block assignment to, 61f
unit of thread scheduling in, 64–65, 64f

Streaming processors (SPs), 6–8
Streams, 285–287, 292–293, 403
Strip-mining, 93
Structure of Arrays approach (SoA approach), 

488–489
Stub function, 31–32
Subsampling layers, 347–348, 350, 351f
Supercomputing applications, 9
Synchronization, 58–60, 285

depth, 285
Synchronous DRAM (SDRAM), 6–8
__syncthreads() function, 58–59, 122, 180,  

285, 463
System of linear equations, 142

T
Task parallelism, 20b
Tera (1012). See Tera floating-point operations per 

second (TFLOPS)
Tera floating-point operations per second 

(TFLOPS), 1
Tesla P100, 453
Texture memory, 283
TFLOPS. See Tera floating-point operations per 

second (TFLOPS)
Thread scheduling, 64–66
Thread-to-data mapping, 74
Thread(s), 24b, 81b

adjustment, 337–338
block partition in, 206
coarsening, 331
CUDA runtime system, 59–61, 126
granularity, 127–128
in grid executing same kernel codes, 33f
mapping to multidimensional data, 47–54
multiple dimensions of, 118
and SIMD hardware, 119
threadIdx.x and threadIdx.y values, 118–119

threadIdx.x values with warp, 118
3D thread organizations, 47
2D thread grid, 48f

ThreadIdx.x, 34–36, 48, 108, 111, 118, 122f,  
161–162, 166, 180–181

Threading, 32–37
arrangement, 371–372, 372f

Three-dimensional grid (3D grid), 333–334
Throughput

of atomic operations, 207–209
computation, 451–453
throughput-oriented design, 4

Thrust parallel template library, 475
abstraction layer, 480f
array of structures data layout, 488–489, 489f
background, 475–477
benefits of abstraction, 484–486
best practices, 486–491
C++, 475–477
C++ function objects, 482b–483b
calling from CUDA Fortran, 509–513
counting iterator, 491
device_pointer_cast() function, 481
dynamic optimization, 486
features, 478–482
fill algorithm, 485
fusion, 487
generate, sort, and copy algorithms, 478
generic programming, 482–484
implicit ranges, 489–491, 490f
interfacing Thrust to CUDA C, 480, 480f, 481f
interoperability, 480–481, 481f
iterators and memory space, 479–480
kernel fusion, 487
motivation, 477–478
native CUDA C interoperability, 481
programmer productivity, 484
raw_pointer_cast() function, 480
real-world performance, 485–486
robustness, 484
salient features, 478
SAXPY functor, 482–484
saxpy_functor func, 482–484
SNRM2, 488f
for solving complementary set of problems, 478
value of high-level, 478
vector containers, 478

Tile clause, 432
Tiled 1D convolution, 165–166

accessing N elements and ghost cells, 164f
with halo cells, 160–165, 160f
kernel using constant memory, 163f
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Tiled 2D convolution
C type structure definition of image pixel 

element, 169f
with halo cells, 166–172
image array access reduction ratio, 172f
padded image format, 167f
row-major layout, 168f
starting element indices, 169f
2D convolution kernel, 170f, 171f

Tiled algorithms, 87–88, 88f, 93–94, 99, 111
Tiled execution, 528–530
Tiled matrix. See also Matrix multiplication

multiplication, 529f
multiplication algorithm, 88, 89f
multiplication kernel, 90–94

Tiled merge kernel, 242–249, 243f. See also 
Circular-buffer merge kernel

identifying block-level output and input 
subarrays, 244f

loading elements into shared memory, 245f
running example, 248f
threads merge, 246f

Tiles, 84
Tiling, 152–153, 374–375, 380, 432

buffer, 253–254
efficiency, 152
for reduced memory traffic, 84–90

Traffic congestion, 86
Training, 345

application logic, 346
of ConvNets, 351
data sets, 354
images, 351

Transparent scalability, 58–60
Transposition, 221–224

example in ELL, 222f
parallel SpMV/ELL kernel, 223f

Trigonometry functions, 312
2D convolution kernel, 169
Two-dimensional array, 50
Two-dimensional slice (2D slice), 333–334, 334f

U
Unified Memory, 446–447

CPU code to CUDA code, 447f
Unified virtual address space (UVAS), 445
unorm, C++ AMP type, 531
Unstructured data directives, 429

data clauses for, 430f
Update device clause, 429–430
UVAS. See Unified virtual address space (UVAS)

V
vecAdd function, 26f, 31, 517

complete version of host code in, 37f
vecAddKernel function, 34, 34f, 36f, 45, 48, 51, 54
Vector addition kernel function, 25–27, 34f

launch statement, 36f
pointers in C language, 26b–27b
revised vecAdd function, 26f
traditional vector addition C code example, 25f

Vector length, 416
Vectors, 416, 431, 433
Vertices, 257–258
Virtual address spaces, 446
Visual Molecular Dynamics (VMD), 332
von Neumann model, 79b

memory vs. registers, 79f
von Neumann report, 1–2

W
Warp-level queues (w-queues), 271–272
Warp(s), 64–65, 117–125, 117b–118b

analyzing impact of control divergence, 121
approach to execution, 120
execution, 117–118
execution of revised algorithm, 124f, 125
placing 2D threads into linear order, 119f
scheduling, 65
simple sum reduction kernel, 122f, 123f
__syncthreads() statement, 122
thread blocks, 118

Work efficiency, 265
Work-efficient parallel scan, 175, 183–189

Brent–Kung kernel for inclusive scan, 186f
distribution of partial sums to positions, 184
index values, 185
minimal number of operations, 183–184
number of operations in distribution tree stage, 

187
parallel inclusive scan algorithm, 183f
partial sums, 184f
reduction tree phase of, 185
scan kernel, 186, 186f
two-position addition, 184–185

Workers, 416, 431, 433

X
X86 instruction set, 2

Z
Zero-copy memory, 282, 445
Zero-overhead thread scheduling, 65
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