
SCALABLE PARALLEL ALGORITHMS AND IMPLEMENTATIONS FOR

LARGE-SCALE GRAPH ANALYSES

By

HAO LU

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2017

c© Copyright by HAO LU, 2017
All Rights Reserved

c© Copyright by HAO LU, 2017
All Rights Reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of HAO

LU find it satisfactory and recommend that it be accepted.

Ananth Kalyanaraman, Ph.D., Chair

Carl Hauser, Ph.D.

Assefaw Gebremedhin, Ph.D.

ii

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Prof. Ananth Kalyanaraman for the

continuous support of my Ph.D study, for his patience, motivation, and knowledge.

His guidance helped me throughout the course of my Ph.D. With a 100% confidence,

I can say that without his support, I could not have finished my Ph.D.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Carl Hauser and Prof. Assefaw Gebremedhin, for their insightful comments and

encouragement.

My sincere thanks also goes to my collaborators Dr. Mahantesh Halappanavar

and Dr. Daniel Chavarŕıa-Miranda, who provided me with an opportunity to join

their team as an intern, gave access to their laboratory space and research facilities,

and acted as my mentors on my research. Without their precious support it would not

have been possible to conduct this research. In particular, I would like to thank Dr.

Mahantesh Halappanavar for effectively serving as my research mentor from PNNL

throughout the course of my Ph.D., and for his extended support.

My dissertation research was supported by U.S. Department of Energy award

DE-SC-0006516 and the U.S. National Science Foundation award IIS 0916463.

iii

SCALABLE PARALLEL ALGORITHMS AND IMPLEMENTATIONS FOR

LARGE-SCALE GRAPH ANALYSES

Abstract

by Hao Lu, Ph.D.
Washington State University

May 2017

Chair: Ananth Kalyanaraman

Scientific fields nowadays have adopted graph analytics into their discovery pro-

cess. Different graphs have been generated from many different applied domains,

such as social sciences, life sciences and business. Many of these application do-

mains have become data-intensive, thereby emphasizing the need for scalability in

computation. Addressing scalability is particularly a significant challenge for graph

computations due to their inherent irregularity. In this dissertation, we address two

graph problems—viz. community detection and balanced graph coloring.

Community detection is a well-studied problem that has multiple applications in

several domains. Given a G(V,E), the problem of community detection is one of

identifying closely-knit subgroups of vertices (“communities”). For the most widely-

used formulation, which is one of maximizing a metric called “modularity”.

iv

The Louvain method is one of the most widely used iterative community de-

tection heuristic for modularity optimization, developed by Blondel et al. in 2008.

Here, we observe certain key properties of this method that present challenges for its

parallelization, and consequently propose heuristics that are designed to break those

sequential barriers. Our approach, which we call Grappolo, demonstrates scaling on

standard multicore platforms and emerging manycore platforms.

The other problem we address is balanced graph coloring. The goal for graph col-

oring is to assign colors to vertices such that no two adjacent vertices are assigned the

same color (distance-1 coloring). Coloring can be used to identify independent tasks

in parallel computing. Classical coloring heuristics attempt to reduce the number of

colors used but the colorings generated in practice tend to have a skewed distribu-

tion in size, which could negatively impact parallel performance. Here, we propose

multiple classes of heuristics to generate distance-1 colorings and partial distance-2

colorings (for bipartite graphs) with the dual objective of minimizing the number of

color classes while ensuring that the color classes are balanced in size. We demon-

strate the effectiveness of these heuristics on improving the performance of parallel

community detection.

Different heuristics and design techniques presented in this dissertation can po-

tentially be adapted into the broader context of parallelizing other graph operations

that also have a similar irregular, and/or iterative structure to their computation.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF FIGURES . x

LIST OF TABLES . xv

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions of this dissertation . 4

1.1.1 Key Publications . 5

1.2 Organization of the dissertation . 7

2 BACKGROUND AND NOTATION 8

2.1 Background of Graph Theory . 8

2.2 Basic Notation . 10

3 COMMUNITY DETECTION . 12

3.1 Problem Overview . 12

3.2 Problem statement and notation . 13

vi

3.3 The Louvain algorithm . 15

3.4 Challenges in parallelization . 17

3.4.1 Negative gain scenario . 18

3.4.2 Swap and local maxima scenarios 20

3.5 Parallel heuristics . 21

3.5.1 The minimum label heuristic 21

3.5.2 Coloring . 23

3.5.3 The vertex following heuristic 24

3.5.4 Parallel algorithm . 27

3.5.5 Implementation . 28

3.5.6 Analysis . 29

3.6 Experimental evaluation . 30

3.6.1 Experimental setup . 30

3.6.2 Performance evaluation . 32

3.6.3 Effect of multiphase coloring 47

3.6.4 Effect of varying the modularity gain threshold 48

3.7 Extensions to Community Detection 49

3.7.1 Synchronization-based Extensions 49

3.7.2 Extension to Dynamic Graphs 52

4 BALANCED COLORING . 55

4.1 Problem Overview . 55

4.2 Problem Statement and Background 57

4.2.1 Related Work . 58

4.2.2 A Foundational Scheme . 60

4.2.3 Community Detection: A Motivating Application 62

vii

4.3 Algorithms for Balanced Distance-1 Coloring 63

4.3.1 Ab initio balancing strategies 63

4.3.2 Guided balancing strategies 64

4.4 Parallel Algorithms . 66

4.4.1 Parallelization using Unscheduled Moves 67

4.4.2 Parallelization using Scheduled Moves 70

4.4.3 Parallel Recoloring . 71

4.4.4 Complexity . 74

4.5 Partial Distance-2 Coloring . 74

4.5.1 Preliminaries . 74

4.5.2 Algorithms . 77

4.5.3 Another example of an application 78

4.6 Implementation on the Tilera Platform 79

4.7 Experimental Results . 80

4.7.1 Experimental Setup . 80

4.7.2 Balance Quality Assessment 82

4.7.3 Performance Evaluation . 85

4.7.4 Impact on the Community Detection Application 87

4.7.5 Results on Partial Distance-2 Coloring 89

4.8 Extensions to Balanced Coloring . 91

4.8.1 Weighted Balancing . 91

4.8.2 Lower Bound-based Coloring 91

4.8.3 Experimental Results . 92

5 CONCLUSION . 102

5.1 Community Detection . 102

viii

5.2 Balanced Coloring . 103

5.3 Future Works . 103

BIBLIOGRAPHY . 106

ix

LIST OF TABLES

2.1 Illustration of reduction of Königsberg Bridge Problem to graph prob-

lem. 9

3.1 Illustration of the negative gain scenario using an example of three

vertices (Lemma 1). 18

3.2 Examples of cases which can be handled by using the minimum label-

ing heuristic. The dotted arrows point to the direction of the vertex

migration. Case 1 shows a scenario of vertex swap between two com-

munities. Case 2) shows the evolution of two different communities

{i1, i2, i3} and {i4, i5, i6, i7}. Without the application of any heuristic

(Case 2b), the algorithm may either form partial communities (e.g.,

{i1}, {i2, i3}) or may settle on a local maxima (e.g., {i4, i6}, {i5, i7}).

Whereas the use of a minimum label heuristic could help the com-

munities converge to the final solutions faster (as shown in Case 2b).

. 21

3.3 Charts showing the evolution of modularity (left column) and the par-

allel runtime performance (right column) for each test input. The

steep climbs in modularity visible in the modularity curves correspond

to phase transitions. Also shown for comparison are the corresponding

performance of the serial algorithm. 34

x

3.4 Charts showing the evolution of modularity (left column) and the par-

allel runtime performance (right column) for each test input. 35

3.5 Charts showing the evolution of modularity (left column) and the par-

allel runtime performance (right column) for each test input. 36

3.6 Charts showing the evolution of modularity (left column) and the par-

allel runtime performance (right column) for each test input. 37

3.7 Speedup charts for our parallel implementation, Grappolo. The chart

on left shows the relative speedup of the parallel implementation us-

ing the 2-thread run as the reference. The chart on the right shows

the absolute speedup — i.e., relative to the serial Louvain implemen-

tation findcommunities . All speedups are calculated using the base-

line+VF+Color implementation of Grappolo. Note that in the abso-

lute speedup chart, curves for Europe-osm and friendster are not shown

because the serial Louvain implementation failed to complete on these

two inputs. 40

3.8 Breakdown of the parallel run-times by the different steps of the al-

gorithm - viz. coloring, time to perform the graph transformations

between phases, and the time spent in the iterations. The runs corre-

spond to the baseline+VF+Color implementation. 41

3.9 Chart showing the speedup curves for the graph rebuilding phase of

our parallel algorithm. 41

xi

3.10 Relative profile of performance for three combinations of heuristics:

The relative performance of different heuristics and serial implementa-

tion for the test problems with respect to the best algorithm for a given

problem. Europe-osm and friendster are not included in the compari-

son because the serial Louvain implementation crashes on those inputs.

Final modularity scores are shown in the figure on left (part a), and

run-times are shown on the right (part b). Run-time results from 32

thread runs were used to plot curves for the parallel heuristics. It is

to be noted that the longer a heuristic’s curve stays near the Y-axis

the more superior its performance relative to the other schemes over a

wider range of inputs. 45

3.11 Charts showing the evolution of modularity for the different versions

(viz. baseline, Early Termination and Fully-Synchronized) of our com-

munity detection method on 16 threads. 51

4.1 a) The size distribution of the color classes obtained by the Greedy

First Fit heuristic for distance-1 coloring on an input graph (uk-2002)

obtained through a web crawl of the .uk domain. b) The evolution

of modularity gain across the iterations of a parallel implementation

of the Louvain method (Lu, Halappanavar, and Kalyanaraman, 2015).

Four curves are depicted there. Two of the curves correspond to results

obtained when coloring (skewed and balanced) is used in the parallel

implementation, the third corresponds to results when coloring is not

used, and the fourth corresponds to results on a serial implementation. 61

xii

4.2 Illustration of equivalence among structurally orthogonal partition of

a matrix A (a), partial distance-2 coloring of the vertices in V2 in

bipartite graph Gb = (V1, V2, E) of A (b), and distance-1 coloring of

the subgraph of the square graph induced by V2, that is Gb
2[V2] (c). 75

4.3 Distance-1 coloring: Distribution of color class sizes produced by

the different balanced coloring schemes (horizontal axis corresponds to

colors (bins) and vertical axis to sizes of color classes). Recall that

smaller color class sizes correspond to reduced parallelism in the end-

application, while higher number of colors corresponds to increased

number of parallel steps within the application. For Channel and ran-

dom2, color class sizes from all balancing schemes are shown. For NLP-

KKT200 and CNR, color class sizes only from the balancing schemes

that produce same or comparable number of colors to the Greedy-FF

scheme are shown. 82

4.4 Recoloring: The figure illustrates the impact of different bounds on

bin sizes for the recoloring scheme (Algorithm 6). The default recol-

oring scheme which uses τ = 0.0 (identifed in the chart by the “0.0”

label) fixes the average size for each bin based on the numbers from the

initial (unbalanced) coloring scheme. The average size is then varied

from 10%, 20% and 30% (identified by labels “0.1”, “0.2” and “0.3”

respectively), which results in a smaller number of colors used and

possibly a higher imbalance in bin sizes than the default recoloring

scheme. The percentages inside paranthesis against each τ setting in-

dicates the imbalance, measured by the Relative Standard Deviation

of the resulting color class sizes. 83

xiii

4.5 (a, b) Speedup obtained by our Tilera manycore and x86 multi-core im-

plementations of the VFF balancing scheme. Speedups are relative to

one thread executions on both systems. (c) Application study: Evolu-

tion of modularity values within the first phase of a parallel community

detection implementation (Grappolo) on uk-2002, performed with the

use of VFF balanced coloring. The chart also shows the corresponding

modularity curves for the runs made without balanced coloring and the

best performing serial implementation (Blondel et al., 2008). 86

4.6 Partial distance-2 coloring: The distributions of color class sizes

produced by the different balanced coloring schemes (horizontal axis

corresponds to colors (bins) and vertical axis (in log2 scale) to sizes of

color classes). 90

4.7 Balanced coloring extensions: Distribution of color class sizes pro-

duced by the two distance-1 balanced coloring extensions (Weighted,

LowerBound) compared to VFF balancing (without weights or lower-

bounds) and and initial coloring (Greedy-FF). Horizontal axis corre-

sponds to colors (bins) and vertical axis to sizes of color classes (mea-

sured in the number of vertices). 92

xiv

LIST OF FIGURES

3.1 Input statistics for the real world networks used in our experimental

study. “RSD” represents the relative standard deviation of vertex de-

grees for each graph. It is given by the ratio between the standard

deviation of the degree and its mean. 31

3.2 Comparison of the modularities and run-times achieved by our paral-

lel implementation baseline+VF+Color (using 8 threads) against the

corresponding values achieved by the serial Louvain implementation

findcommunities . All runs were performed on the same test plat-

form described under Experimental Setup. The “N/A’ entries denote

cases where the serial Louvain implementation did not complete (i.e.,

crashed). It is to be noted that the serial Louvain implementation is a

32-bit implementation. 42

3.3 Qualitative comparison between the parallel and serial community out-

puts by their composition. 46

3.4 Comparative results showing the effect of using coloring for only the

first phase input vs. for multiple phases of the parallel algorithm.

The multi-phase coloring scheme is same as the baseline+VF+Color

scheme. All run-times are reported in seconds for runs corresponding

to two threads. 47

xv

3.5 Table showing the effect of varying the modularity gain threshold. Two

sets of experiments were performed, each running the baseline+VF+Color

implementation, while one using 10−2 and another 10−4 as the value

for the modularity gain threshold used within the colored phases. . . 48

3.6 Runtime statistics with 16 threads. 52

4.1 A comprehensive list of balancing strategies for distance-1 coloring

presented and studied in this paper. The input graph is denoted by

G = (V,E). The same set of strategies are also extended to obtain a

balanced partial distance-2 coloring on bipartite graph inputs. 94

4.2 Input statistics for the graphs used in our distance-1 coloring study. 95

4.3 Quality of balance obtained by the different heuristics on different in-

puts. Entries in each cell show the Relative Standard Deviation (in %)

of color class sizes obtained by a given heuristic (the lower the values,

the better the balance). The guided schemes VFF and CLU produce

the same number of colors as the initial coloring scheme (Greedy-FF).

The number of colors produced by Greedy-FF, Recoloring and the two

ab initio schemes is provided in parenthesis (next to their respective

RSD values). 96

4.4 Parallel run-time (in seconds) of the VFF scheme on different number

of cores of the Tilera platform. Times shown are only for the balancing

procedure (i.e., initial coloring time is not included). 97

4.5 Parallel run-times (in seconds) of the VFF scheme on different number

of cores of the AMD x86 platform. Times shown are only for the

balancing procedure (i.e., initial coloring time is not included). . . . 97

xvi

4.6 Parallel run-times (in seconds) of the three balancing schemes {VFF,

Sched-Rev and Recoloring} on 16 Tilera cores. 97

4.7 Runtime (in seconds) comparison for the Guided VFF scheme vs. Ab

initio (Greedy-LU) balancing scheme. All runs were performed on 32

threads of the AMD x86 platform. 98

4.8 Evaluation of the balancing heuristics on a parallel community detec-

tion application, Grappolo.

All timing results are in seconds and were obtained on 36 threads of

the Tilera manycore platform. 99

4.9 Statistics on structure of the bipartite real-world graphsG = (V1, V2, E)

used in our study. Recall that ∆ corresponds to maximum degree. . 100

4.10 Parallel run-times (in seconds) of unbalanced and balanced {VFF,

Sched-Rev} partial distance-2 schemes on the AMD platform. 32 cores

were used for the KDD inputs, and 16 cores were used for the remaining

inputs (due to smaller size). All runs were performed to color vertices

in V2. 100

4.11 Run-time evaluation of our extensions (weighted and LB-based) in

comparison to the VFF balancing scheme and the Greedy-FF (initial

coloring) scheme. All executions were performed on 16 threads of our

x86 platform. 101

xvii

CHAPTER 1

INTRODUCTION

Graph analytics have become an integral part of the discovery pipeline in many ap-

plication domains. The inherent connectivity and interrelationships of data, obtained

from both naturally-built and synthetic systems, render themselves into graph repre-

sentations. In simple terms, a graph (G(V,E)) consists of a set of vertices V and a

set of edges E, such that vertices represent the entities and edges represent the pair-

wise relationship between any two vertices. For instance, in social networks, vertices

represent the users and edges represent their social interactions. Similarly, in the life

sciences, a protein-protein interaction network has vertices representing the proteins

and edges representing their pairwise molecular interactions.

Given a graph, there are multiple operations that can be defined to mine for

useful information from an application perspective. These include fundamental op-

erations, such as finding shortest paths, detecting connected components, and per-

forming breadth-first (depth-first) searches, or computing the number of triangles. In

addition, there are more advanced operations that aid in mining for complex, higher

order structural information from graphs, or to provide nontrivial insights into the

connectivity properties of graphs.

In this dissertation, we address two such advanced operations—viz. community

1

detection and balanced graph coloring.

Community detection: Given a graph G(V,E), the problem of community

detection is one of identifying tightly-knit subgroups (“communities”) of vertices, such

that the strength of edge-based connections among vertices of the same community

is significantly more than the strength of connections across communities (Fortunato,

2010). The strength of a pairwise relationship is represented by the weight of an edge.

The output of community detection is the set of communities, which represent a

partitioning of the vertices. While, in principle, this output property ties community

detection to the classical graph partitioning problem (Kernighan and Lin, 1970), there

is a fundamental difference between the two problems. Unlike graph partitioning,

community detection does not require any prior knowledge of the number of output

communities or their sizes; instead the method is expected to discover/infer the num-

ber of communities based on the input. The idea is to find a hidden community-wise

organization that may exist in a real world network. As a result, community detec-

tion is often used as a discovering tool to extract information about how a network is

structurally organized. For instance, an analysis of a social network such as Facebook

could reveal communities of friends, which could in turn be used for suggesting new

friends sharing common interests (Newman and Girvan, 2004),(Newman, 2004a).

Balanced graph coloring: The other problem we address in this dissertation

is balanced graph coloring. Given a graph G(V,E), graph coloring is the problem of

assigning every vertex a color, such that no two neighboring vertices (i.e., connected

by an edge in the graph) are assigned the same color. This formulation is referred as

the distance-1 coloring problem.

In parallel computation, graph coloring is often used in the scheduling of parallel

tasks (Dániel, 2004). More specifically, a coloring represents maximal independent

sets of vertices such that vertices that are assigned the same color are not directly

2

dependent on one another and therefore can be processed concurently. For example,

given a graph where vertices represent classes and edges represent the time conflicts,

a distance-1 graph coloring of the graph would represent a conflict-free final exam

schedule.

Classical formulations of the graph coloring problem focus on minimizing the

number of colors (Jensen and Toft, 2011). As a result, most current methods that

implement graph coloring (Gebremedhin and Manne, 2000) solely focus on reducing

the number of classes, however, without heeding attention to the individual sizes

of each color class. In fact, due to the nature of the heuristics used, these meth-

ods often produce highly skewed distributions in the size of color classes. The size

distribution of these color classes could have an impact on parallel performance of

the end-application that uses these color classes to determine their parallel schedule.

More specifically, skewed color classes could negatively impact the parallel efficiency

(or thread utilization), while executing the steps corresponding to small color classes.

In the interest of maintaining parallel efficiency across the color steps of computation,

it not only becomes necessary to minimize the number of color classes but also to keep

the color classes balanced in their size distribution.

Parallelizing graph computations: Scaling up graph computations has be-

come an important area of research. Over the last two decades, multiple application

domains have experienced an explosion of data due to advancements in technology

and a growing interest in obtaining a deeper understanding of the system through the

lens of the observations made (i.e., data). As a result, real world networks that have

millions of vertices and billions of edges have become commonplace. For instance, the

size of a web graph in 2014 covers 1.7 billion web pages and connected by 64 billion

hyperlinks (Web Data Commons - Hyperlink Graphs). To enable the processing of

such large graphs, parallelization has become essential.

3

Besides the challenges associated with large size, graph applications also face a

unique set of challenges that are due to certain inherent characteristics of their compu-

tation. More specifically, graph computations are known to generate highly irregular

data access patterns, which in turn cause complications when it comes to preserving

data locality or keeping memory-related overheads minimal. These challenges become

more pronounced in the context of parallelization.

1.1 Contributions of this dissertation

In this dissertation, we address two graph-theoretic problems—viz. community de-

tection and balanced graph coloring. More specifically, we present the design and

development of efficient parallel techniques and implementations for conducting both

these operations on modern day multi-core and many-core architectures. The contri-

butions are as follows:

In the context of community detection:

i) We introduce novel and effective heuristics for parallelizing the Louvain algorithm

(Blondel et al., 2008) on multithreaded architectures;

ii) Experimental studies using numerous real-world networks obtained from varied

sources demonstrate the effectiveness of our parallel approach both in terms of

performance and quality;

iii) A thorough comparative study of the performance and related trade-offs among

the different parallel heuristics compared to the serial heuristic.

In the context of balanced graph coloring:

i) We address two problems—a) to identify a balanced distance-1 graph coloring

4

for general graphs; and b) to identify a balanced partial distance-2 coloring for

bipartite graphs;

ii) We present two classes of heuristics (viz. ab initio and guided) for achieving a

balanced coloring under both problem formulations;

iii) We present the design of different parallelization strategies for generating a bal-

anced coloring on conventional multicore (x86) architectures and a specialized

many-core architecture (the EZchip Tilera platform (Bell et al., 2008)1).

iv) Our experimental results demonstrate that effectiveness of the proposed heuris-

tics in balancing the color classes, and also in improving the performance of an

end-application.

We believe that many of the techniques and heuristics that we propose in this

dissertation for these two graph operations to carry over to other graph problems

with similar computation characteristics—viz. vertex-centric computations that have

a greedy iterative structure and/or relies on querying information from local neigh-

borhoods.

1.1.1 Key Publications

Components of this dissertation have been published in the following peer-reviewed

venues:

• The community detection work was first published at the 2014 IEEE Interna-

tional Workshop on Multithreaded Architectures and Applications (MTAAP)

(Lu et al., 2014), and later expanded into a journal article and published in

the Parallel Computing journal (Lu, Halappanavar, and Kalyanaraman, 2015).

1Henceforth, this platform will be identified as the “Tilera” platform.

5

This work was a collaborative effort among Dr. Ananth Kalyanaraman (AK),

Dr. Mahantesh Halappanavar (MH) and myself (HL). All three contributed to

the problem formulation and algorithm design. MH and HL implemented the

parallel algorithms and conducted the experiments, while most of the writing

was managed by AK and MH.

• The balanced graph coloring work was first published at the 2015 IEEE Inter-

national Parallel and Distributed Processing Symposium (Lu et al., 2015), and

later expanded into a journal article and published in IEEE Transactions on

Parallel & Distributed Systems (Lu et al., 2016). This work was a collaborative

effort among Dr. Ananth Kalyanaraman, Dr. Mahantesh Halappanavar, Dr.

Assefaw Gebremedhin (AG), Dr. Daniel Chavarŕıa-Miranda (DC), Dr. Ajay

Panyala (AP) and myself. HL, AK, MH, AG and DM contributed to different

aspects of the problem formulation and algorithm design. HL and MH imple-

mented the algorithms and generated the experimental results for x86 multicore

platforms. DM and AP implemented the algorithms and generated the experi-

mental results for the Tilera manycore platform. AK, MH, and AG performed

most of the paper writing with contributions from all the authors.

Related bodies of work originating from this dissertation were also published in

other venues. More specifically, we designed variants of our community detection

and coloring algorithms for Network-on-Chip (NOC)-based architectures. This work

was conducted in collaboration with Dr. Partha Pande, Mr. Karthi Duraisamy and

Dr. Ananth Kalyanaraman. The results of these collaborative efforts were published

at the 2015 International Conference on Compilers, Architecture and Synthesis of

Embedded Systems (Duraisamy et al., 2015) and the ACM Transactions on Embedded

Computing Systems (Duraisamy et al., 2016). Furthermore, an extended review

6

article on parallel community detection was also published at the Foundations and

Trends in Electronic Design Automation (Kalyanaraman et al., 2016).

1.2 Organization of the dissertation

The rest of the dissertation is organized as follows: In Chapter 2, we provide a

background for graph theory and introduce basic notation that will be used in the

remainder of the dissertation. In Chapter 3, we present our heuristics and related

results for parallel community detection. This chapter is mostly a reproduction of our

journal paper on parallel community detection (Lu, Halappanavar, and Kalyanara-

man, 2015), with a few additions that describe certain extensions of that work. In

Chapter 4, we present our heuristics and related results for balanced graph coloring.

This chapter is mostly a reproduction of our journal paper on balanced graph coloring

(Lu et al., 2016). Finally, in Chapter 5, we summarize our key findings and provide

a preview for potential future extensions.

7

CHAPTER 2

BACKGROUND AND NOTATION

2.1 Background of Graph Theory

Graph theory is the study of graphs, which are abstract representations used to model

relationships among objects. The origin of graph theory dates back to 1736 in the

form of the Königsberg Bridge problem. A Swiss mathematician, Leonhard Euler,

was presented with a problem to traverse through each of the seven bridges, which

connected the four separated lands in the Prussian town of Königsberg, exactly once.

Euler reduced this to a graph problem by representing each land as a “vertex” and

each bridge as an “edges”. Consequently, he showed that in order to traverse each

edge once, all vertices, except the starting and ending vertices, must have an even

degree, as shown in Figure 2.1.

However, the term “graph” was not formally introduced until hundred and fifty

years later. In 1878, an English mathematician James Joseph Sylvester publish a

paper in Nature, defined the term graph (Sylvester, 1878). Since then, numerous

graph related problems have been studied.

The branch of graph theory that studies the structural properties of graphs is

called network topology. In 1951, Rapoport and Solomonoff proposed that naturally-

8

Figure 2.1 Illustration of reduction of Königsberg Bridge Problem to graph
problem.

built systems such as neural net and disease epidemiology can be presented in the form

of random graphs (Solomonoff and Rapoport, 1951). In 1960, Paul Erdös and Alfred

Rènyi developed Erdös-Rènyi model to generate random networks; according to the

model, all graphs generated with same set of vertices and a fixed number of edges

are equally likely (Erdös and Rényi, 1960). However, a significant deviation from

the random graph model was observed by a British statistician, Udny Yule, in 1925.

He observed that the growth rate of each individual species depends on the current

size of the species; this was formulated using preferential attachment (Yule, 1925).

This notion of rich getting richer was later used to model the degree distribution of

real world networks, which effectively laid the foundation for the scale-free network

model (Barabási, 2009). Another influential study in graph topology was done in the

domain of social science. In 1967, Stanley Milgram concluded that the social network

that connected people has a “six degree of separation” (Milgram, 1967). This result

would later lead to the extensive study of small-world networks (Watts and Strogatz,

1998).

Despite these early advances, more studies about the structural organization for

non-random real world graphs emerged only in recent years. In 1973, Granovetter

9

suggested that social networks, built by friendship or relationship, consist of strongly

connected groups (i.e., “communities”) and loosely connected groups (Granovetter,

1973). This observation was one of the first studies to identify a higher order of struc-

ture from a real world graph. Since then, multiple efforts have focused on identifying

the community-level organization of a wide variety of real world networks built from

both natural and engineered systems. These include the Internet, social networks

(Papadopoulos et al., 2012), C. Elegans neural system (Watts and Strogatz, 1998),

protein interaction networks (Girvan and Newman, 2002), electric power grid (New-

man, 2003), dolphin communication network (Connor, Heithaus, and Barre, 2001),

collaboration networks (Newman, 2003), customer preference databases (Reddy et al.,

2002), and climate variability networks (Steinhaeuser, Chawla, and Ganguly, 2011).

Consequently, community detection has proven to be of critical value in multiple

application domains, to gain important structural insights into real world networks.

Graph coloring also represents a structural property of the graph—one that relates to

identification of mutually independent sets of vertices. A more detailed related work

on community detection and graph coloring are in Sec 3.1 and 4.2

2.2 Basic Notation

We denote an undirected graph as G(V,E), where V is the set of vertices, and E is

the set of edges in the form of {(i, j)|i, j ∈ V }. If the edges have numerical weights,

then we denote a weighted undirected graph as G(V,E, ω), where ω(.) is a weighting

function that maps every edge in E to a nonzero positive weight.

As a special consideration in this dissertation, we allow edges that connect a vertex

to itself—i.e., (i, i) can be a valid edge. However, multi-edges are not allowed—e.g.,

(i, j, k) is not a valid edge.

10

For a given vertex i, it’s adjacency list is denoted by Γ(i) = {j|(i, j) ∈ E}. Also,

the weighted degree of vertex i is given by: ki =
∑
∀j∈Γ(i) ω(i, j).

We will use n to denote the number of vertices in G; M to denote the number

of edges in G; and m to denote the sum of the edge weights of all edges in G—i.e.,

m = 1
2

∑
∀i∈V ki.

11

CHAPTER 3

COMMUNITY DETECTION

3.1 Problem Overview

Community detection, or graph clustering, is becoming pervasive in the data analytics

of various fields including (but not limited to) scientific computing, life sciences, so-

cial network analysis, and internet applications (Fortunato, 2010). As data grows at

explosive rates, the need for scalable tools to support fast implementations of complex

network analytical functions such as community detection is critical. Given a graph,

the problem of community detection is to compute a partitioning of vertices into

communities that are closely related within and weakly across communities. Modu-

larity is a metric that can be used to measure the quality of communities detected

(Newman and Girvan, 2004). Community detection with maximum modularity is an

NP-Complete problem, but fast heuristics exist. One such heuristic is the Louvain

method (Blondel et al., 2008).

Our basis for selecting the Louvain heuristic for parallelization hinges on its in-

creasing popularity within the user community and owing to its strengths in algo-

rithmic and qualitative robustness. With well over 1,000 citations to the original

paper (as of this writing), the user base for this method has been rapidly expanding

12

in the last few years. Yet, there is no scalable parallel implementation available for

this heuristic. As network sizes continue to grow rapidly into a scale of tens or even

hundreds of billions of edges (The 10th DIMACS Implementation Challenge - Graph

Partitioning and Graph Clustering), the memory and runtime limits of the serial im-

plementation are likely to be tested. However, parallelization of this inherently serial

algorithm can be challenging (as discussed in Sections 3.2 and 3.4).

The parallel solutions presented in this dissertation (Section 3.5) provide a way

to overcome key scalability challenges. In devising our algorithm, we factored in the

need to parallelize without compromising the quality of the original serial heuristic

and yet be capable of achieving substantial scalability. We also factored in the need

for stable solutions across different platforms and programming models. The result-

ing algorithm, presented in Section 3.5.4, is a combination of heuristics that can be

implemented on both shared and distributed memory machines. As demonstrated

in our experimental section (Section 3.6), our implementations provide outputs that

have either a higher or comparable modularity to that of the serial method, and is

able to reduce the time to solution by factors of up to 16×. These observations are

supported over a number of real-world networks.

3.2 Problem statement and notation

A community within graph G represents a (possibly empty1) subset of V . In practice,

for community detection, we are interested in partitioning the vertex set V into an

arbitrary number of disjoint non-empty communities, each with an arbitrary size (> 0

and ≤ n). We call a community with just one element as a singlet community. We will

1The notion of empty communities do not have a practical relevance. We have intentionally

defined it this way so as to make our later algorithmic descriptions easier. It is guaranteed, however,

that all output communities at the end of our algorithm will be non-empty subsets.

13

use C(i) to denote the community that contains vertex i in a given partitioning of V .

We use the term intra-community edge to refer to an edge that connects two vertices

of the same community. All other edges are referred to as inter-community edges.

Let Ei→C refer to the set of all edges connecting vertex i to vertices in community C.

And let ei→C denote the sum of the weights of the edges in Ei→C (also referred to as

the degree of a community).

ei→C =
∑

∀(i,j)∈Ei→C

ω(i, j) (3.1)

Let aC denote the sum of the degrees of all the vertices in community C.

ac =
∑
∀i∈C

ki (3.2)

Modularity: Let P = {C1, C2, . . . Ck} denote the set of all communities in a given

partitioning of the vertex set V in G(V,E, ω), where 1 ≤ k ≤ n. Consequently, the

modularity (denoted by Q) of the partitioning P is given by the following expression

(Newman and Girvan, 2004):

Q =
1

2m

∑
∀i∈V

ei→C(i) −
∑
∀C∈P

(
aC
2m
· aC

2m
) (3.3)

Intuitively, modularity is a statistical measure for assessing the quality of a given

community-wise partitioning (or equivalently, “clustering”). A “good” clustering

method is one that clusters closely related elements (vertices) as part of the same com-

munity (or “cluster”) while separating weakly related elements into different clusters.

In other words, the goal becomes one of maximizing intra-community links while

keeping the number of inter-community edges low. This explains the first term in

Eqn. (3.3). However, if the goal is simply to maximize the contribution from intra-

community edges, then one could potentially assign all vertices into one community.

But such a solution is likely to be meaningless in practice. To overcome this problem,

14

the second term in the Eqn. (3.3) was introduced. This term represents the fraction

of intra-community edges one would expect in an “equivalent” graph (i.e., another

graph with the same numbers of vertices and edges, and the same vertex degrees) but

with just the edges randomly reconnected.

Modularity is not the ideal metric for community detection and issues such as

resolution limit have been identified (Fortunato, 2010; Traag, Van Dooren, and Nes-

terov, 2011), and consequently, a few variants of modularity definitions have been

devised (Traag, Van Dooren, and Nesterov, 2011; Bader and McCloskey, 2009; Berry

et al., 2011) are available. However, the definition provided in Eqn. (3.3) continues

to be the more widely adopted version in practice, including in the Louvain method

(Blondel et al., 2008), and therefore, we will use that definition for this dissertation.

Community detection: Given G(V,E, ω), the problem of community detection

is to compute a partitioning P of communities that maximizes modularity.

This problem has been shown to be NP-Complete (Brandes et al., 2008). Note that

this problem is different from graph partitioning problem and its variants (Hendrick-

son and Kolda, 2000), where the number of clusters and the rough size distribution

of those target clusters are known a priori. In the case of community detection, both

quantities are unknown prior to computation. In fact they encapsulate the input

properties that one seeks to discover out of the community detection exercise.

3.3 The Louvain algorithm

In 2008, Blondel et al. presented an algorithm for community detection (Blondel

et al., 2008). The method, called the Louvain method, is a multi-phase, iterative,

greedy heuristic capable of producing a hierarchy of communities. The main idea of

the algorithm can be summarized as follows: The algorithm has multiple phases, and

15

within each phase it carries out multiple iterations until a convergence criterion is

met.

At the beginning of the first phase, each vertex is assigned to a separate com-

munity. Subsequently, the algorithm progresses from one iteration to another until

the net modularity gain becomes negligible (as defined by a predefined threshold).

Within each iteration, the algorithm linearly scans the vertices in an arbitrary but

predefined order. For every vertex i, all its neighboring communities (i.e., the com-

munities containing i′s neighbors) are examined and the modularity gain that would

result if i were to move to each of those neighboring communities from its current

community is calculated. Once the gains are calculated, the algorithm assigns a

neighboring community that would yield the maximum modularity gain, as the new

community for i (i.e., new C(i)), and updates the corresponding data structures that

it maintains for the source and target communities. Alternatively, if all gains turn

out to be negative, the vertex stays in its current community. An iteration ends once

all vertices are linearly scanned in this fashion. Consequently, the modularity is a

monotonically increasing function across iterations of a phase.

Once the algorithm converges within a phase, it proceeds to the next phase by

collapsing all vertices of a community to a single “meta-vertex”; placing an edge

from that meta-vertex to itself with an edge weight that is the sum of weights of

all the intra-community edges within that community; and placing an edge between

two meta-vertices with a weight that is equal to the sum of the weights of all the

inter-community edges between the corresponding two communities. The result is a

condensed graph G′(V ′, E ′, ω′), which then becomes the input to the next phase. Sub-

sequently, multiple phases are carried out until the modularity score converges. Note

that each phase represents a coarser level of hierarchy in the community detection

process.

16

At any given iteration, let ∆Qi→C(j) denote the modularity gain that would result

from moving a vertex i from its current community C(i) to a different community

C(j). This term is given by:

∆Qi→C(j) =
ei→C(j) − ei→C(i)\{i}

m

+
2 · ki · aC(i)\{i} − 2 · ki · aC(j)

(2m)2
(3.4)

Consequently, the new community assignment for i at an iteration is determined as

follows. For j ∈ Γ(i) ∪ {i}:

C(i) = arg max
C(j)

∆Qi→C(j) (3.5)

In the implementation (findcommunities), several data structures are maintained such

that each instance of ∆Qi→C(j) can be computed in O(1) time. Consequently, the

algorithm’s time complexity per iteration is O(M). While no upper bound has been

established on the number of iterations or on the number of phases, it should be

evident that the algorithm is guaranteed to terminate with the use of a cutoff for the

modularity gain (because of the modularity being a monotonically increasing function

until termination). In practice, the method needs only tens of iterations and fewer

phases to terminate on most real world inputs.

3.4 Challenges in parallelization

Any attempt at parallelizing the Louvain method should factor in the sequential

nature in which the vertices are visited within each iteration and the impact it has

on convergence. Visiting the vertices sequentially gives the advantage of working

with the latest information available from all the preceding vertices in this greedy

procedure. Furthermore, in the serial algorithm, when a vertex computes its new

community assignment (using Eqn.(3.5)), it does so with the guarantee that no other

17

k

i
j

C(k)

C(i) C(j)

Figure 3.1 Illustration of the negative gain scenario using an example of
three vertices (Lemma 1).

part of the community structure is concurrently being altered. These guarantees may

not hold in parallel. In other words, if communities are updated in parallel, it could

lead to some interesting situations with an impact on the convergence process as

described below.

3.4.1 Negative gain scenario

To illustrate the case in point, consider the example scenario illustrated in Figure 3.1,

where two vertices i and j are both connected to a third vertex k with all three of

them in different communities initially — i.e., i ∈ C(i), j ∈ C(j), k ∈ C(k) s.t.

C(i) 6= C(j) 6= C(k). If both vertices i and j evaluate the possibility of moving

to C(k) independently, using Eqn.(3.4), then from each of their perspectives, their

predicted value for the new modularity is Qold + ∆Qi→C(k) and Qold + ∆Qj→C(k),

respectively. However, if both i and j decide to move to C(k) in parallel, then the

actual value for the new modularity will be Qold + ∆Q{i,j}→C(k), where:

∆Q{i,j}→C(k) = ∆Qi→C(k) + ∆Qj→C(k)

+
ω(i, j)

m
− 2 · ki · kj

(2m)2
(3.6)

18

If (i, j) /∈ E, ω(i, j) = 0, implying:

∆Q{i,j}→C(k) = ∆Qi→C(k) + ∆Qj→C(k)

−2 · ki · kj
(2m)2

≤ ∆Qi→C(k) + ∆Qj→C(k) (3.7)

Furthermore, if ∆Qi→C(k) + ∆Qj→C(k) <
2·ki·kj
(2m)2

⇒ ∆Q{i,j}→C(k) < 0 (3.8)

On the other hand, if ω(i,j)
m

>
2·ki·kj
(2m)2

(can be true only if (i, j) ∈ E), then:

∆Q{i,j}→C(k) > ∆Qi→C(k) + ∆Qj→C(k) (3.9)

This is because ∆Qi→C(k) > 0 and ∆Qj→C(k) > 0; the latter two inequalities fol-

low from the fact that i and j chose to move to C(k). Note that if this happens,

then parallel version could potentially surpass the serial version toward modularity

convergence.

Lemma 1. At any given iteration of the Louvain algorithm, if community updates

for vertices are performed in parallel, then the net modularity gain achieved cannot

be guaranteed to be always positive.

Proof. Follows directly from inequality (3.7).

The above lemma has a direct implication on the convergence property of the

Louvain method, one way or another. Pessimistically speaking, if the net modularity

gain can become negative between consecutive iterations of the algorithm, then there

is no theoretical guarantee that the algorithm will terminate. Even if the chances of

non-termination turn out to be bleak, it could potentially slow down the rate at which

the algorithm progresses toward a solution, causing more number of iterations. For

19

this reason, the number of iterations that the algorithm takes to converge toward the

solution and the quality of the solution relative to the serial algorithm’s can be good

indicators of the effectiveness of a parallel strategy. Note that the above example

with three vertices can be extended to scenarios where multiple unrelated vertices are

trying to enter a community at its periphery without mutual knowledge.

3.4.2 Swap and local maxima scenarios

There exists another scenario that could impede the progression of the parallel al-

gorithm toward a solution. Consider a simple example where two vertices i and j

connected by an edge (i, j) ∈ E s.t., C(i) = {i} and C(j) = {j}. In the interest

of increasing modularity, if the two vertices make a decision to move to each other’s

community concurrently, then such an update could potentially result in both ver-

tices simply swapping their community assignments without achieving any modularity

gain. This could also happen in a more generalized setting, where subsets of vertices

between two different communities swap their community assignments, each unaware

of the other’s intent to also migrate.

A parallel algorithm also runs the risk of settling on locally optimal decisions. This

could happen even in serial; in parallel such scenarios may arise if a single community

gets partitioned into equally weighted sub-communities, in which there is no incentive

for any individual vertex to merge with any of the other sub-communities; and yet, if

all vertices from each of the sub-communities were to merge together to form a single

community the net modularity gain could be positive. An example of this case will

be shown later in Section 3.5.1. Getting stuck in a locally optimal solution, however,

can be resolved when the algorithm progresses to subsequent phases.

20

i j

Case 1a: Without heuristic

i j

Case 1b: With min. label heuristic

(assuming C(j) < C(i))

i1

i2 i3

i4 i5

i6 i7

Case 2a: Without heuristic

i1

i2 i3

i4 i5

i6 i7

Case 2b: With min. degree heuristic

Figure 3.2 Examples of cases which can be handled by using the minimum
labeling heuristic. The dotted arrows point to the direction of the vertex
migration. Case 1 shows a scenario of vertex swap between two communi-
ties. Case 2) shows the evolution of two different communities {i1, i2, i3} and
{i4, i5, i6, i7}. Without the application of any heuristic (Case 2b), the algo-
rithm may either form partial communities (e.g., {i1}, {i2, i3}) or may settle
on a local maxima (e.g., {i4, i6}, {i5, i7}). Whereas the use of a minimum la-
bel heuristic could help the communities converge to the final solutions faster
(as shown in Case 2b).

3.5 Parallel heuristics

In this section, we present our ideas to tackle the challenges outlined above in paral-

lelizing the Louvain heuristic community detection.

3.5.1 The minimum label heuristic

Section 3.4.2 elaborated on the possibilities of swapping conditions that may delay the

parallel algorithm’s convergence to a solution. In this section we present a heuristic

designed to address some of these cases. Let us consider the simple case of two vertices

i and j outlined in Section 3.4.2. Here both vertices are initially in communities of

size one, and a decision in favor of merging at any given iteration will lead them to

21

simply swap their respective communities without resulting in any net modularity

gain. This is outlined in the Case 1a of Figure 3.2. Such a swap can be easily

prevented by introducing a labeling scheme where it can be enforced that only one

of them move to other’s community. More specifically, let the communities at any

given stage of the algorithm be labeled numerically (in an arbitrary order). We will

use the notation `(C) to denote the label of a community C. Then the heuristic is as

follows:

The singlet minimum label heuristic: In the parallel algorithm, at any

given iteration, if a vertex i which is in a community by itself (i.e., C(i) = {i}),

decides (in the interest of modularity gain) to move to another community C(j)

which also contains only one vertex j, then that move will be performed only if

`(C(j)) < `(C(i)).

The above heuristic can be generalized to other cases of swapping or local maxima.

For instance, let us consider the 4-clique of {i4, i5, i6, i7} shown in Figure 3.2: case 2,

assuming that each vertex is in its own individual community to start with. Here, in

the absence of an appropriate heuristic there is a chance that the algorithm would

settle on a local maxima. For instance, maximum modularity gains can be achieved

at vertex i4 by either moving to C(i6) or C(i7), and similarly for vertex i5. However, if

i4 moves to C(i6) and i5 to C(i7), then the resulting solution {i4, i6}, {i5, i7} (shown in

case 2a of Figure 3.2) will represent a local maxima from which the algorithm may not

proceed in the current phase. This is because, once these partial communities form,

there is no incentive for i4 or i6 to individually move to the community containing

{i5, i7}, without each other’s company. This is a limitation imposed by the Louvain

heuristic, which makes decisions at the vertex level. However, if we label and treat

the communities in a certain way then such local maxima situations can be avoided.

The generalized minimum label heuristic: In the parallel algorithm, at

22

any given iteration, if a vertex i has multiple neighboring communities yielding the

maximum modularity gain, then the community which has the minimum label among

them will be selected as i′s destination community.

In the example for Figure 3.2:case 2, vertices i6 and i7 will both yield the maximum

modularity gain for vertices i4 and i5. However, using the above minimum label

heuristic, all three vertices {i4, i5, i7} will migrate to C(i6), while i6 stays in C(i6) —

i.e., assuming `(C(i4)) < `(C(i5)) < `(C(i6)) < `(C(i7)).

While swap situations may delay convergence, they can never lead to nontermi-

nation of the algorithm due to the use of a minimum required net modularity gain

threshold to continue a phase. As for local maxima, a general proof that effects of

elimination of local maxima cases progressively as the algorithm progresses is not

possible due to the heuristic nature of algorithm. However, many situations, similar

to those explained earlier in Section 3.4.2, typically get resolved in subsequent phases;

this is because the representation of the individual sub-communities as meta-vertices

is likely to lead them to merge with one another forming the containing communities

eventually in the output.

3.5.2 Coloring

In this section, we explore the idea of graph coloring to address some of the paral-

lelization challenges outlined in Section 3.4. A distance-k coloring of a graph is an

assignment of colors to vertices such that no two vertices separated by a distance of

at most k are assigned the same color. It should be easy to see that using distance-1

coloring to partition the vertices into color sets prior to the processing would prevent

vertex-to-vertex swap scenarios. In this scheme, vertices of the same color are pro-

cessed in parallel, and this is equivalent of guaranteeing that no two adjacent vertices

will be processed concurrently. However, distance-1 coloring may not be adequate

23

to address other potential complications that may arise during parallelization (see

Section 3.4.1).

Corollary 2. Applying and processing the vertices in parallel by distance-1 color-

ing does not necessarily preclude the possibility of negative modularity gains between

iterations.

Proof. Follows directly from the three vertex example case presented for Lemma 1.

In fact the same result can be extended for application of a distance-k coloring

scheme, where k > 1, as was shown in (Lu et al., 2014).

Despite these lack of guarantees for a positive modularity gain between iterations,

coloring still could be effective as a heuristic in practice, as we will demonstrate in

Section 3.6. The performance trade-off presented by coloring is a potential reduction

in the degree of parallelism versus faster convergence to higher modularity. Coloring

also presents an added advantage of being able to use higher modularity gain thresh-

olds during the earlier phases of the algorithm, as will be explored in Section 3.6. The

run-time cost of coloring is expected to be dominated by the time spent within itera-

tions; furthermore, for scalability in preprocessing, we use a parallel implementation

to perform coloring (Catalyurek et al., 2012).

3.5.3 The vertex following heuristic

In this section, we will layout a particular property of the serial Louvain algorithm in

the way it treats vertices with single neighbors, and devise a heuristic around it. For

the purpose of the lemma below, we will assume a version of Louvain algorithm which

continues with iterations within a phase, until the communities stop changing. We

also distinguish between vertex i being a single degree vertex and a single neighbor

24

vertex — the former is when the only edge incident on i is (i, j), whereas the latter

is when i could have up to two edges incident with (i, j) being mandatory and (i, i)

being optional.

Lemma 3. Given an input graph G(V,E, ω), let i and j be two different vertices such

that i is a single degree vertex with only one incident edge (i, j) ∈ E. Then, in the

final solution C(i) = C(j) — i.e., i should be part of the same community as j.

Proof. Consider any iteration r in which vertices i and j are in two different commu-

nities — i.e., C(i) 6= C(j). During iteration r, the value of ∆Qi→C(j) will evaluate to

the following:

∆Qi→C(j) =
ω(i, j)

m
+

2 · ki · aC(i)\{i} − 2 · ki · aC(j)

(2m)2

≥ ω(i, j)

m
−

2 · ki · aC(j)

(2m)2
(∵ aC(i)\{i} ≥ 0)

=
ω(i, j)

2m2

(
2m−

ki · aC(j)

ω(i, j)

)
(3.10)

Since vertex i is a single degree vertex, ki = ω(i, j). Therefore,

∆Qi→C(j) ≥
ω(i, j)

2m2

(
2m− aC(j)

)
(3.11)

Now, if i were to decide against moving to C(j), ∆Qi→C(j) ≤ 0. Given that the

above inequality (3.11) is a lower bound for ∆Qi→C(j), and also that all edge weights

are non-negative:

⇒ 2m− aC(j) ≤ 0

⇒ 2m ≤ aC(j) (3.12)

But inequality (3.12) is not possible because aC(j) ≤ 2m for any community (by the

definition in Eqn.3.2) and in this case, since i /∈ C(j), aC(j) ≤ (2m − ω(i, j)) < 2m.

This implies that i will have no choice but to move to C(j) in iteration r.

25

We refer to the guarantee provided by the above lemma as the vertex following

(VF) rule. Note that it is guaranteed to hold only for single degree vertices in the

input graph. The implication of this rule is that there is no need to explicitly make

decisions on single degree vertices during the Louvain algorithm’s iterations. Instead,

we can preprocess the input such that all single degree vertices are merged a priori

into their respective neighboring vertex. More specifically, let i be a single degree

vertex with j as its neighbor. Then, we remove vertex i from the graph, and replace

j with a new vertex j′, such that Γ(j′) = {Γ(j) \ {i}} ∪ {j′} and ω(j′, j′) = ω(i, j) if

(j, j) /∈ E; and ω(j′, j′) = ω(j, j) + ω(i, j) otherwise.

This preprocessing not only could help reduce the number of vertices that need

to be considered during each iteration, but it also allows the vertices that contain

multiple neighbors (that tend to be the hubs in the networks) be the main drivers

of community migration decisions. This is more important under a parallel setting

because if the single degree vertices were retained in the network the hub nodes could

potentially gravitate temporarily toward one of their single degree mates, thereby

delaying progression of solution or getting stuck in a local maxima.

We could also extend the result of the Lemma 3 to benefit cases where vertex i is

a single neighbor vertex. The idea is similar to that of a k-core decomposition of the

graph (Batagelj and Zaveršnik, 2002). Intuitively, during preprocessing, single neigh-

bor vertices can be collapsed into their only neighboring vertex recursively until the

negative component of the inequality (3.10) starts to dominate its positive counter-

part. Termination of this recursive merging can be implemented either by explicitly

calculating both sides of the inequality (3.10) or by estimating through other means

via lower bounds or statistical thresholds. The idea is to lead to fast compression of

chains within the input graph prior to application of the Louvain heuristic. We omit

further details of this idea and for the purpose of this dissertation, we only consider

26

the single degree version of the vertex following heuristic for implementation and

experimental evaluation.

3.5.4 Parallel algorithm

Our parallel algorithm has the following major steps:

1) VF preprocessing (Optional): Apply the vertex following heuristic by merging all

single degree vertices into their respective neighboring vertices (as explained in

Section 3.5.3). This step is performed in parallel. Label the resulting vertices

from 1 . . . n using an arbitrary ordering.

2) Coloring preprocessing (Optional): Color the input vertices using distance-k col-

oring. For this dissertation, we only explore distance-1 coloring. For coloring, we

used the parallel implementation from (Catalyurek et al., 2012).

3) Phases: Execute phases one at a time as per Algorithm 1. Within each phase, the

algorithm runs multiple iterations, with each iteration performing a parallel sweep

of vertices without locks and using the community information available from

the previous iteration. If coloring was applied, then the processing of each color

set is parallelized internally and the community information from the previous

coloring stages is available to make migration decisions in subsequent coloring

stages. This is carried on until the modularity gain between successive iterations

becomes negligible.

4) Graph rebuilding: Between two successive phases, the community assignment

output of the completed phase is used to construct the input graph for the next

phase. This is done by representing all communities of the completed phase as

“vertices” and accordingly introducing edges, identical to the manner in which it is

done in the serial algorithm. This step is also implemented in parallel as described

in Section 3.5.5.

27

We note here that the above parallel algorithm, with the exception of coloring

heuristic, is stable in that it always produces the same output regardless of the number

of cores used. When coloring is applied, the use of multiple threads within a given

iteration could potentially vary the order in which decisions are made, thereby leading

to potential variations in the output. In our experiments, we found the magnitudes

of such variations to be negligible.

3.5.5 Implementation

We implemented our parallel heuristics in C++ and OpenMP. It is to be noted

that the heuristics themselves are agnostic to the underlying parallel architecture.

There are a few implementation level variations to Algorithm 1. In Algorithm 1 the

modularity calculation happens in lines 16− 17. In our actual implementation we do

not explicitly calculate the intra- and inter-community edges required for modularity

calculation. Instead we pre-aggregate these values in steps 7−14 as the net modularity

gains are being calculated for each vertex. This saves significant recomputation.

Secondly, to update the source and target communities for each vertex i, we use

intrinsic atomic operations sync fetch and add() and sync fetch and sub();

Additional version that used OpenMP’s synchronization technique is also included.

We use a compressed storage format for graph data structures that store the

adjacency lists for all the vertices in a contiguous memory location. Specific memory

pointers for each vertex is maintained in a separate list. This format enables efficient

access to neighborhood information for each vertex. We use the C++ STL map

data structure to store the set of unique clusters that a vertex is connected to (i.e.,

neighboring communities). The number of possible choices is upperbounded by the

degree of a vertex initially and depending on how fast the algorithm converges from

iteration to iteration, the number of choices decreases. Since this step appears in the

28

computation for every vertex, we also experimented with several alternatives including

the use of C++ STL unordered map data structure, but did not find any significant

improvements in performance.

The step to rebuild the graph between consecutive phases is implemented in par-

allel and serial in parts. This is achieved in a sequence of steps. Assume that the

phase transition is between phase i − 1 to i. We use Gi−1 and Gi to refer to the

graphs input to phases i − 1 and i respectively. i) First, the set of vertices in Gi is

constructed from the communities output from phase i − 1. Since many communi-

ties which existed at the start of phase i − 1 could have become empty by the end

of that phase, we first renumber of communities numerically, using only non-empty

communities. This step is currently implemented in serial, although our future plan

is to explore a parallelization using prefix computation-based approach. ii) In the

next step, a STL map structure is allocated for every new vertex in Gi to concisely

store the set of neighboring communities attached to it. This step is parallel. iii)

In the following step, all edges in Gi−1 are traversed in parallel. If an edge is an

intra-community edge, then the weight for the corresponding edge (connecting the

community vertex to itself) in Gi is updated. Alternatively, an inter-community edge

leads to an update to each of the two corresponding community vertices in Gi. A

simple way to avoid dead lock is to only store one direction on information.

Our implementation is named Grappolo2. The software is available for download

under the BSD 3-Clause license from here: http://hpc.pnl.gov/people/hala/grappolo.html.

3.5.6 Analysis

Within each iteration (refer to Algorithm 1), the vertices are scanned in parallel, and

for every vertex their vertex neighborhood is scanned first to curate the set of distinct

2Italian word meaning a cluster (of grapes)

29

neighboring communities (steps 10− 11). Subsequently, the main step of modularity

gain calculation is performed only for each distinct neighboring community (step 12),

which is equal to vertex degree initially but is expected to rapidly reduce as the

iterations progress. Consequently, the worst-case runtime complexity per iteration

is O(max{M+n·λ
p

, λmax}), where p denote the number of processing cores, λ is the

average (unweighted) degree of a vertex and λmax is the maximum (unweighted)

degree of a vertex. The space complexity is linear in the input for shared memory

implementation (i.e., O(m+n)). The above analysis assumes that the entire collection

of vertices is processed in one parallel step within each iteration. With the application

of coloring, parallelism is limited to each color set, implying the number of color sets

to correspond to the number of parallel steps within each iteration.

3.6 Experimental evaluation

3.6.1 Experimental setup

The test platform for our experiments is an Intel Xeon X7560 server with four sockets

and 256 GB of memory. Each socket is equipped with eight cores running at 2.266

GHz, leading to a total of 32 cores. The system is equipped with 32 KB of L1 and

256 KB L2 caches per core, and 24 MB of cache per socket. Each socket has 64

GB of DDR3 memory with a peak bandwidth of 34.1 GB per second. The software

was compiled with GCC version 4.8.2 using -Ofast option. We also enabled non-

uniform memory distribution using numactl command and enabled thread binding

by using GOMP CPU AFFINITY environment variable. The thread binding variable was

configured to place the threads across the system as evenly as possible with the goal

of maximizing the memory bandwidth. All experiments were run using one thread

30

per core.

We tested our heuristics on 11 different real world input graphs, which are sum-

marized in Table 4.2. With the exception of inputs labeled “MG1” and “MG2”,

all other inputs were downloaded from the DIMACS10 challenge website The 10th

DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering ;

Bader et al., 2012, and the University of Florida sparse matrix collection Davis and

Hu, 2011. “MG1” and “MG2” are graphs constructed for two different ocean metage-

nomics data, using the construction procedure described in Wu, Kalyanaraman, and

Cannon, 2012.

Table 3.1 Input statistics for the real world networks used in our experimen-
tal study. “RSD” represents the relative standard deviation of vertex degrees
for each graph. It is given by the ratio between the standard deviation of the
degree and its mean.

Input Num. Num. Degree statistics (λ)

graph vertices (n) edges (M) max. avg. RSD

CNR 325,557 2,738,970 18,236 16.826 13.024

coPapersDBLP 540,486 15,245,729 3,299 56.414 1.174

Channel 4,802,000 42,681,372 18 17.776 0.061

Europe-osm 50,912,018 54,054,660 13 2.123 0.225

Soc-LiveJournal1 4,847,571 68,475,391 22,887 28.251 2.553

MG1 1,280,000 102,268,735 148,155 159.794 2.311

Rgg n 2 24 s0 16,777,216 132,557,200 40 15.802 0.251

uk-2002 18,520,486 261,787,258 194,955 28.270 5.124

NLPKKT240 27,993,600 373,239,376 27 26.666 0.083

MG2 11,005,829 674,142,381 5,466 122.506 2.370

friendster 51,952,104 1,801,014,245 8,603,554 69.333 17.354

31

The input graphs were tested using multiple variants of our implementation that

use different combination of the proposed heuristics. These variants are as follows:

• baseline: represents our parallel implementation with only the Minimum La-

beling (ML) heuristic;

• baseline+VF: represents the baseline implementation with the application of

the Vertex Following (VF) heuristic in a preprocessing step. There were a

few inputs (viz., Channel, MG1, MG2) for which their single degree vertices

had already been pruned off when their respective graphs were generated, and

consequently their baseline runs are equivalent to their baseline+VF runs3. For

the remaining inputs, VF preprocessing was run only once, prior to the start of

the first phase;

• baseline+VF+Color: represents the baseline implementation with the ap-

plication of both the VF and coloring heuristics (in that order). Coloring was

used as a preprocessing step for multiple phases until either the number of in-

put vertices reduced below a preset cutoff (100K used for this paper) or the net

modularity gain between phases is less than the user-defined threshold (10−2).

Once either of these conditions is met, the implementation does not perform

coloring anymore and the remaining phases are executed using a default net

modularity gain threshold of 10−6 for termination.

3.6.2 Performance evaluation

To assess the effectiveness of our parallel heuristics, we studied how quickly a given

algorithm converges to its final modularity (as a function of the number of iterations)

3For this reason, we show only their baseline+VF runs in their respective charts.

32

and compared it against the convergence rate of the corresponding serial Louvain4

execution. We also compared the difference in runtimes and final modularities output

by the individual approaches. Figures 3.3-3.6 show the evolution of modularity from

the first iteration of the first phase to the last iteration of the last phase for all the

11 test inputs, and the parallel runtimes as a function of the number of cores.

Effectiveness of the VF heuristic: The run-time charts in Figures 3.3-3.6

show the effectiveness of the VF heuristic in reducing run-time relative to our base-

line implementation. The reduction in run-time can be attributed to the reduction

in the number of vertices to be processed within each iteration. However, the effec-

tiveness of the VF heuristic is also tied to the number of single degree vertices in the

original input graph. While our results show that VF is able to produce run-time

savings in most input cases, there were two exceptions: Europe-osm (Figure 3.4d)

and Rgg n 2 24 s0 (Figure 3.5g), for which the run-time was observed to increase.

Upon further investigation, we found that the application of VF for these two inputs

indeed caused a reduction in the time spent per iteration as expected; however, it

also led to prolonging the convergence of the algorithm within the intial phases —

i.e., it led to an increase in the number of iterations within a phase.

This delay in convergence within a phase shows a potential drawback of the VF

heuristic on some input cases that can be intuitively explained as follows: consider a

chain of “hub” nodes where the hubs are individually connected to a number of single

degree vertices (“spokes”). In such cases, the compacted representation that results

from the application of VF would have more incentive to continue in the current

phase by gradually collapsing the chain into larger communities and achieving smaller

gains in modularity that still surpass the minimum required cutoff. This results in

4All references to the “serial” implementation in the experimental results section corresponds to

the original Louvain implementation available from findcommunities.

33

(a) Input: CNR

(b) Input: coPapersDBLP

(c) Input: Channel

Figure 3.3 Charts showing the evolution of modularity (left column) and the
parallel runtime performance (right column) for each test input. The steep
climbs in modularity visible in the modularity curves correspond to phase
transitions. Also shown for comparison are the corresponding performance
of the serial algorithm.

34

(d) Input: Europe-osm

(e) Input: Soc-LiveJournal1

(f) Input: MG1

Figure 3.4 Charts showing the evolution of modularity (left column) and
the parallel runtime performance (right column) for each test input.

prolonging the termination of the current phase. In contrast, if we were to omit

applying the VF heuristic on the input graph, then a hub node could potentially

migrate into one of its spokes’ communities and when that happens, there is an

increased probability that the algorithm terminates the current phase sooner due

35

(g) Input: Rgg n 2 24 s0

(h) Input: uk-2002

(i) Input: NLPKKT240

Figure 3.5 Charts showing the evolution of modularity (left column) and
the parallel runtime performance (right column) for each test input.

to negligible modularity gain. While the resulting final modularity figures could be

slightly lower than obtained with the application of VF, the gains in runtime may

be more pronounced, which is what we observed for the two inputs Europe-osm and

Rgg n 2 24 s0. It is to this end, that the proposed extension of the VF heuristic that

36

(j) Input: MG2

(k) Input: friendster

Figure 3.6 Charts showing the evolution of modularity (left column) and
the parallel runtime performance (right column) for each test input.

also seeks to compress paths (see discussion at the end of Section 3.5.3) could aid in

obtaining a better balance between run-time benefit and modularity gain.

Effectiveness of coloring: The design intent of coloring is to reduce the number

of iterations required to converge on a solution, and in the process reduce the time

to solution. However, a potential drawback of coloring is reduced parallelism within

each iteration; more specifically, the presence of numerous small color sets could result

in an under-utilization of threads. In our experimental results, we found coloring to

be highly effective in reducing both the number of iterations and the overall time

to solution. The run-time improvements of baseline+VF+coloring over baseline+VF

were anywhere from ∼ 3.48× to 16.52×. However, the run-time improvements were

either negligible in the case of MG2 (Figure 3.6j) or negative in the case of uk-

37

2002 (Figure 3.5h). These observations correlate with the highly skewed color size

distributions for these two graphs. For instance, 943 colors were used for uk-2002 in

the first phase and the color sets had a high Relative Standard Deviation (RSD) of

18.876 in their sizes. We are exploring an alternative approaches to create balanced

coloring sets that are targeted at addressing this performance issue. For all other

inputs, however, the benefit of coloring is evident in the drastically reduced number

of iterations for convergence and subsequent savings in the time to solution. These

results also show the combined effect of applying both VF and coloring heuristics, as

they yield an additive net gain in performance.

Scaling and run-time results

Figure 3.7 shows the speedup curves for our parallel implementation (baseline+VF+Color).

Two speedup curves are shown: a) relative speedup, which calculates the speedup of

the parallel execution over the corresponding 2-thread run (discussed in this sec-

tion); and b) absolute speedup, which is the speedup calculated over the correspond-

ing serial Louvain implementation’s execution findcommunities (to be discussed in

Section 3.6.2).

The relative speedup curves show that on most inputs, the parallel implementa-

tion continues to deliver increasing speedups up to 32 threads, although the speedups

become sub-linear beyond 8 threads. While the input sizes play a role, it can be ob-

served from the results that the size alone is not the sole determinant of performance.

For instance, the implementation achieves higher peak relative speedups (∼8×) on

some of the smaller inputs such as coPapersDBLP (540K vertices, 15M edges) and

Rgg n 2 24 s0 (16M vertices, 132M edges) than on a larger input such as NLPKKT240

(51M vertices, 1.8B edges). Parallel performance is affected by a combination of input

characteristics and the serial bottlenecks within the parallel implementation.

38

Inputs Channel and NLPKKT240 have a low RSD in vertex degree distribution

(Table 4.2) and also have a poor community structure (reflected in their low mod-

ularity scores). This combination leads to an increased number of iterations in the

initial phases, as the algorithm continues within a phase albeit incremental modular-

ity gains. The increased number of iterations in the first phase in particular (where

the graph size is the largest) adversely affects on performance. This is because within

each iteration the step to recalculate the new modularity score involves updating

community structures (internal edge and incident edge counts); and as the number of

communities begins to reduce in the later iterations of a phase, more parallel overhead

due to locking is incurred.

In contrast, consider the input Rgg n 2 24 s0 which also has a low RSD in its

vertex degree distribution but for which a superior parallel performance is observed.

This input is a random geometric graph, which despite its uniform degree distribution,

is also known to have a high community structure (reflected by its high modularity

score). This attribute allows the algorithm to rapidly converge within the first phase,

thereby aiding better overall parallel performance.

Another significant contributing factor affecting parallel performance is the time

taken to rebuild the graph between consecutive phases. To analyze this effect, we

recorded the breakdown of total run-time by the different phases of the parallel al-

gorithm (described in Section 3.5.4). Figure 3.8 shows the breakdown - viz. time to

rebuild the graph between phases (VF cost is included here), time to perform color-

ing, and the remaining time attributed to performing the iterations (“clustering”).

The charts (shown for four representative inputs) explain the discrepancies in scaling

among the inputs. For Rgg n 2 24 s0 and MG2, we can see that the time spent in the

main clustering iterations dominates, which is desirable from a scaling point of view.

However, for inputs Europe-osm and NLPKKT240, an increasing portion of time is

39

Figure 3.7 Speedup charts for our parallel implementation, Grappolo. The
chart on left shows the relative speedup of the parallel implementation us-
ing the 2-thread run as the reference. The chart on the right shows the
absolute speedup — i.e., relative to the serial Louvain implementation find-
communities . All speedups are calculated using the baseline+VF+Color im-
plementation of Grappolo. Note that in the absolute speedup chart, curves
for Europe-osm and friendster are not shown because the serial Louvain im-
plementation failed to complete on these two inputs.

being spent in the rebuild phase with an increase in the number of cores. Given that

our current implementation of the rebuild phase has serial bottlenecks (as explained

in Section 3.5.5), the speedups achieved for these inputs become sub-linear for higher

number of cores. Figure 3.9 confirms these observations about the rebuild phase.

More specifically, for inputs Europe-osm and NLPKKT240, the first phase ends in a

low modularity (0.533470 and 0.038107 respectively), which implies that a dominant

fraction of the edges remain as inter-community edges. In the graph rebuild phase,

each such edge corresponds to two locks (one for each community) affecting parallel

performance. In contrast, input MG2 ends with a high modularity score of 0.969587

resulting in an improved performance during the rebuild phase as well.

40

(a) Input: Rgg n 2 24 s0 (b) Input: MG2

(c) Input: Europe-osm (b) Input: NLPKKT240

Figure 3.8 Breakdown of the parallel run-times by the different steps of
the algorithm - viz. coloring, time to perform the graph transformations
between phases, and the time spent in the iterations. The runs correspond
to the baseline+VF+Color implementation.

Figure 3.9 Chart showing the speedup curves for the graph rebuilding phase
of our parallel algorithm.

41

Table 3.2 Comparison of the modularities and run-times achieved by our
parallel implementation baseline+VF+Color (using 8 threads) against the
corresponding values achieved by the serial Louvain implementation find-
communities . All runs were performed on the same test platform described
under Experimental Setup. The “N/A’ entries denote cases where the serial
Louvain implementation did not complete (i.e., crashed). It is to be noted
that the serial Louvain implementation is a 32-bit implementation.

Input
Output modularity Run-time (in sec)

Parallel Serial Parallel Serial Speedup

(8 threads) (8 threads)

CNR 0.912608 0.912784 0.8 4.3 5.37×

coPapersDBLP 0.858088 0.848702 3.7 7.7 2.08×

Channel 0.933388 0.849672 21.2 30.9 1.45×

Europe-osm 0.994996 N/A 63.4 N/A N/A

MG1 0.968723 0.968671 28.8 126.6 4.39×

uk-2002 0.989569 0.9897 210.3 335.9 1.59×

MG2 0.998397 0.998426 457.8 1313.7 2.86×

NLPKKT240 0.934717 0.952104 388.4 5077.2 13.07×

Rgg n 2 24 s0 0.992698 0.989637 34.2 111.1 3.24×

Soc-LiveJournal 0.751404 0.726785 67.05 182.7 2.72×

friendster 0.626139 N/A 2036.8 N/A N/A

Comparison to serial Louvain

We also comparatively evaluated the performance of our parallel implementations

proposed in this paper against the publicly available serial Louvain distribution find-

communities . Figure 3.7 shows the absolute speedup achieved over the serial imple-

mentation for 9 out of the 11 inputs. (For the remaining two inputs, Europe-osm

and friendster, the serial implementation failed to run.) Table 3.2 compares the final

42

modularities achieved by both implementations and also the corresponding run-times.

For 7 out of the 11 inputs, our parallel implementation delivers higher modularity

compared to the serial implementation in shorter time to solution. For example, this

difference is as much as >0.1 for coPapersDBLP and > 0.08 for Channel. Even in

3 out of the 4 cases where the serial implementation delivers higher modularity, the

modularities reported by both methods agree up to the first three decimal places.

Note that the heuristic nature of the algorithm combined with the parallel ordering

of vertices which could differ from the serial ordering imply that serial and parallel

results cannot be guaranteed to be identical. Our results demonstrate that paral-

lelization is at least capable of preserving (if not surpassing) output quality for most

of the inputs tested.

As for the run-times, our parallel implementation delivers absolute speedups in the

range of 1.45× to 13.07× using 8 threads. Larger speedups were observed using more

number of threads, as can be observed from the absolute speedup chart in Figure 3.7.

A top speedup of 16.51× was observed for the NLPKKT240 input using 32 cores. The

two cases where we observe low speedups — Channel (1.45×) and uk-2002 (1.59×)

— represent two different cases. For the Channel input, observe from Table 4.2 that

the degree distribution is highly uniform. This could cause vertices to migrate to any

one of the neighboring communities and therefore the vertex ordering is expected to

have a more pronounced effect on the convergence rate. It is for this reason that

the serial implementation, which uses an arbitrary ordering, converges faster albeit

with a lower modularity, while our parallel implementation with coloring takes more

iterations to converge and does so with a higher modularity. For uk-2002, the skew

in the color set size distribution is the reason behind low speedup (as was explained

earlier in the section).

43

Performance charts and qualitative evaluation

Figure 3.10 shows the relative performance profiles among the three parallel imple-

mentations – baseline, baseline+VF, and baseline+VF+Color – along with the serial

Louvain implementation for the collection of inputs tested. For plotting these perfor-

mance charts, we used results from all 9 inputs for which we had results from both

serial and parallel implementations. The X-axis represents the factor by which a given

scheme fares relative to the best performing scheme for that particular input. The

Y-axis represents the fraction of problems (i.e., inputs). The closer a heuristic curve

is to the Y-axis the more superior its performance is relative to the other schemes

over a wider range of inputs. Also, in these performance charts, the order in which

inputs appear along each curve is strictly a function of that corresponding heuristic’s

relative performance to the other schemes — i.e., the points along a curve are sorted

from the corresponding heuristic’s best to worst performing inputs. Thus, the charts

illustrate the relative performance of each scheme over other schemes for the collection

of 9 inputs tested (as opposed to the individual inputs).

The following observations can be made from the two performance charts. The

baseline+VF+Color shows an overall run-time performance advantage over all other

schemes. For instance, consider the run-time curve for baseline+VF+Color in Fig-

ure 3.10b. This implementation outperforms all other heuristics for about 70% of the

problems, about 1.5× worse compared to a best performing implementation for 20%

of the problems, and 3× worse than the best for 10 percent of the problems. Similarly,

the serial implementation is the slowest ranging from 2×−5× relative to other best

performance schemes. From a modularity standpoint, all parallel heuristics perform

comparably to serial method across the input set.

Qualitative comparison: In addition to comparing modularities, we also com-

44

(a) Modularity profile (b) Run-time profile

Figure 3.10 Relative profile of performance for three combinations of heuris-
tics: The relative performance of different heuristics and serial implementa-
tion for the test problems with respect to the best algorithm for a given
problem. Europe-osm and friendster are not included in the comparison
because the serial Louvain implementation crashes on those inputs. Final
modularity scores are shown in the figure on left (part a), and run-times are
shown on the right (part b). Run-time results from 32 thread runs were used
to plot curves for the parallel heuristics. It is to be noted that the longer
a heuristic’s curve stays near the Y-axis the more superior its performance
relative to the other schemes over a wider range of inputs.

pared the sets of communities by their composition generated by the parallel and

serial implementations. The methodology for comparison is as follows. Let S de-

note the set of communities generated by the serial implementation; and P denote

the set of communities generated by one of our parallel implementations — we used

results from the baseline+VF+Color for this purpose. Treating the serial output as

the “benchmark” we compared the parallel output against it as follows. Any vertex

pair (u, v) can be categorized into one of the four following bins:

• True Positive (TP): if u and v belong to the same community in both parti-

tions;

• False Positive (FP): if u and v belong to the same community only in partition

P ;

45

• False Negative (FN): if u and v belong to the same community only in

partitions S;

• True Negative (TN): if u and v belong to two different communities in both

partitions;

Based on the above measures, more qualitative measures, viz. specificity (SP),

sensitivity (SE), overlap quality (OQ) and Rand Index, can be calculatated as follows:

SP = TP
TP+FP

, SE = TP
TP+FN

, OQ = TP
TP+FP+FN

, and Rand index = TP+TN
TP+FP+FN+TN

.

Note that if both results match identically, all these measures will evaluate to

100%. Also note that this comparison takes Θ(n2) time because there are
(
n
2

)
pairs.

For this reason, we performed this qualitative comparison only for two of the inputs

— CNR and MG1.

Table 3.3 shows the results of our comparative study. There are two observations

that one can make from these results. First, as can be expected, the partitioning

produced by the two methods are different. However, the fact that there is no explicit

biasing toward false positives or false negatives implies that the cores of communities

captured by both methods agree to a large extent — the OQ values reflect the degree

of this agreement. Secondly, given that these two partitioning yield nearly identical

modularities imply that the vertex pairs consistently grouped by both schemes (i.e.,

True Positives) contribute to the bulk of the modularity score.

Table 3.3 Qualitative comparison between the parallel and serial community
outputs by their composition.

Input SP SE OQ Rand index

CNR 83.41% 89.71% 76.13% 99.42%

MG1 99.60% 99.83% 99.43% 100.00%

46

3.6.3 Effect of multiphase coloring

Table 3.4 Comparative results showing the effect of using coloring for only
the first phase input vs. for multiple phases of the parallel algorithm. The
multi-phase coloring scheme is same as the baseline+VF+Color scheme. All
run-times are reported in seconds for runs corresponding to two threads.

Input

First phase coloring Multi-phase coloring

[Min.,Max.] Run-time [Min.,Max.] Run-time

Modularity (#iter) Modularity (#iter)

Channel [0.9344,0.9352] 103.22 (96) [0.9304,0.9333] 52.96 (58)

uk-2002 [0.9895,0.9895] 670.12 (18) [0.9894,0.9895] 748.15 (18)

Europe-osm [0.9988,0.9988] 759.94 (306) [0.9988,0.9989] 118.97 (38)

MG2 [0.9984,0.9984] 1422.75 (14) [0.9984,0.9984] 1397.90 (12)

Coloring can be potentially applied to preprocess the input for any phase of the

algorithm. However, the time spent coloring is an overhead and a colored graph

exposes less parallelism. Therefore, it can be expected that the benefits of coloring,

which is to hasten convergence, is expected to diminish as phases progress and the

transformed graph becomes smaller. It is for this reason we used a scheme in which

coloring is applied until either the number of input vertices reduces below a cutoff

(100K for our experiments) or the net modularity gain between phases diminishes

below a relatively higher threshold (10−2) as described in Section 3.6.1. However, to

clearly demonstrate the effect of coloring multiple phases, we devised an alternative

implementation in which coloring is applied only to the first phase input. The goal

was to observe differences in reported modularity and run-times between the two

schemes.

Table 3.4 shows the effect of coloring single phase to multiphase. Inputs picked

47

are those for which at least two phases of coloring was applicable. For the other

inputs, the results are identical between single phase and multiphase coloring schemes.

The results demonstrate the benefit of multi-phase coloring as it produces highly

comparable modularities over multiple experiments while reducing time-to-solution,

for all inputs except uk-2002.

3.6.4 Effect of varying the modularity gain threshold

Table 3.5 Table showing the effect of varying the modularity gain thresh-
old. Two sets of experiments were performed, each running the base-
line+VF+Color implementation, while one using 10−2 and another 10−4 as
the value for the modularity gain threshold used within the colored phases.

Input

Threshold = 10−4 Threshold = 10−2

[Min.,Max.] Run-time [Min.,Max.] Run-time

Modularity (#iter) Modularity (#iter)

CNR [0.9125,0.9125] 5.00 (48) [0.9125,0.9126] 1.77 (24)

CoPaperDBLP [0.8555,0.8577] 16.17 (27) [0.8570,0.8580] 10.64 (23)

Channel [0.9423,0.9485] 816.79 (282) [0.9304,0.9333] 52.96 (58)

Europe-osm [0.9989,0.9989] 250.62 (56) [0.9947,0.9949] 125.35 (17)

MG1 [0.9687,0.9687] 271.23 (41) [0.9687,0.9687] 73.80 (18)

Rgg n 2 24 s0 [0.9926,0.9927] 227.03 (52) [0.9926,0.9926] 118.21 (35)

uk-2002 [0.9895,0.9896] 1768.73 (22) [0.9894,0.9895] 748.15 (18)

Nlpktt240 [0.9426,0.9476] 3563.41 (147) [0.9319,0.9347] 880.94 (78)

MG2 [0.9984,0.9984] 2652.37 (16) [0.9983,0.9983] 1312.44 (7)

We also studied the effect of varying the modularity gain threshold used within

the coloring phases. Using a larger value of threshold may prompt phase transitions

to happen earlier (and possibly faster convergence) but at the possible expense of the

48

final output modularity. On the other hand, a smaller value could help improve gains

within phases but also could prolong phase transitions and eventual completion. Two

sets of experiments were performed, using values of 10−2 and 10−4 for the threshold

and the results are summarized in Table 3.5. As can be observed, the modularities

achieved by both schemes are highly comparable, while there is a marked run-time

advantage if the threshold is higher. This study shows that the run-time benefit of

using a higher threshold outweighs the qualitative gains of using a lower threshold,

at least for the threshold values compared.

From a modularity standpoint, coloring has a more pronounced effect than the

threshold used. The charts in Figure 3.3a,d,e illustrate this effect — observe that

coloring provides substantial increases in the modularity at the initial phases of the

algorithm before a finer modularity threshold could take effect in the later phases.

3.7 Extensions to Community Detection

In this section we introduces two types of extensions to our parallel community detec-

tion method. In Section 3.7.1, we present variants of our implementation which are

aimed at exploiting a diminishing returns property of our algorithm. In Section 3.7.2,

we present our preliminary ideas for extending our community detection algorithmic

framework to study dynamic graphs. We refer to the original implementation of our

Grappolo community detection framework as the baseline version.

3.7.1 Synchronization-based Extensions

Full Synchronization

In Section 3.5, we introduced heuristics to construct a non-synchronized version of

parallel community detection, with the goal of improving concurrency during com-

49

putation. In contrast, we also implemented a fully-synchronized version of parallel

community detection, with the goal of improving the convergence rate of the iter-

ative community detection process. The main difference between the two versions

is that the fully-synchronized version uses the most recent community information

available of any neighboring vertex while making a migration decision (line 10-14 in

Algorithm 1). This is achieved by locking all neighboring vertices so that they do not

migrate or get updated during this processing. Since the fully-synchronized version

uses the most current neighborhood information, and involves locking, it has the po-

tential to decrease number of iterations required to converge, while also running the

risk of increasing the runtime cost of each iteration.

Early Termination

Our iterative community detection algorithm has a key property that can be described

through the following observation: As shown in Figures 3.3-3.6, for all inputs we

tested, the gain in modularity plateaus after a few initial iterations. This is because

the number of community updates to vertices drastically reduces during the later

iterations. This observation suggests that most of the computation that is performed

in the later iterations, are likely to devoted toward processing vertices that have

already finalized their community affiliation—thereby, leading to wasteful work.

Therefore, to reduce wasteful work and in the process, improve run-time perfor-

mance in practice, we take advantage of this diminishing returns property as follows:

We keep a counter at every vertex to denote the number of iterations that have elapsed

since its last successful migration (i.e., change in community). If the counter exceeds

a certain threshold, then we “terminate” that vertex—i.e., we (optimistically) stop

considering that vertex during any subsequent iteration of that phase; implying that

the vertex is locked into that community. This is obviously a heuristic intended to

50

improve performance by reducing the number of vertices that need to be processed

at the later stages of execution.

Experimental Results

We compared the baseline against the two extensions described above—viz., Full Syn-

chronization and Early Termination. As Figure 3.11 shows, the fully-synchronized

version has a faster convergence rate than the baseline, while the early termina-

tion version exhibits a slower convergence. However, slower convergence does not

necessarily imply a higher runtime. As shown in Table 3.6, the runtime for the Fully-

Synchronized version is consistently higher than either of the two other versions,

despite faster convergence. This is because of the locking overhead associated with

the full synchronization scheme within each iteration. Conversely, the Early Termi-

nation version shows a reduced runtime compared to the baseline version for those

graphs that need a large number of iterations. This is a result of the lower number

of vertices being processed within each iteration of the Early Termination version.

(a) Input: CNR (b) Input: Channel

Figure 3.11 Charts showing the evolution of modularity for the different
versions (viz. baseline, Early Termination and Fully-Synchronized) of our
community detection method on 16 threads.

51

Table 3.6 Runtime statistics with 16 threads.

Input Runtime Modularity

graph Baseline Early T. FullSync Baseline Early T. FullSync

CNR 3.04162 3.355803 9.956494 0.91242 0.91157 0.91284

Channel 27.640296 17.470792 148.105455 0.93831 0.9336 0.9479

3.7.2 Extension to Dynamic Graphs

So far we considered the community detection problem on standard graphs. In this

extension, we present our preliminary ideas for extending our algorithmic framework

to dynamic graphs. A dynamic graph is a graph that evolves over multiple time steps.

Typically, we consider changes in the form of vertex/edge additions and vertex/edge

removals.

Once presented with a dynamic graph, mining for communities from across the

time steps becomes important, since the finer level changes in the dynamic graph

can be effectively summarized through a higher level description of how communities

evolve. For example, consider the example of a graph consisting of the people working

in a research field as vertices, co-author relationships captured in edges (in a temporal

manner), and the various collaborating sub-groups representing the communities.

Given such a time-varying (dynamic) graph, and without any other prior knowledge,

identifying and tracking communities in such a graph could not only capture the

information on how individual collaborating groups evolve over a period of time (i.e.,

by either splitting or merging) but also can shed light on the start of a new sub-field

or the dissolution of an older (and perhaps obsolete) sub-field.

We present a simple idea to extend our algorithmic framework to detect and track

communities in a dynamic graph. The main idea of our approach is as follows: Let

52

Pt1 = {C1, C2, . . . Ck}, Pt2 = {D1, D2, . . . Dk′} denote the set of all communities in

a given partitioning of the vertex set Vt1 in Gt1(V,E, ω) and Vt2 in Gt2(V,E, ω),

where t1 and t2 representing different time steps. We construct a bipartite graph

Gb(Vleft = Pt1, Vright = Pt2, E = Pt1 × Pt2, ω = { |Ci∩Dj |
|Ci∪Dj | ,∀i, j}), where communities

in each graph become vertices and edges weights are defined as the fraction of vertices

share between two communities across time steps.

The bipartite graph Gb is the representation of dynamic communities. We could

then use maximum weighted bipartite graph matching (Halappanavar, 2009) or one

of its variants (such as b-matching (Khan et al., 2016)) on Gb to detect and subse-

quently track changes in community structures across the different timesteps. The

weighted matching formulations provide a way to track community merges and splits.

In cases where communities shuffle their composition across timesteps, matching may

not be adequate. Under such scenario, we could adopt bipartite community detec-

tion techniques such as the biLouvain method (Pesantez-Cabrera and Kalyanaraman,

2016).

53

Algorithm 1 The parallel Louvain algorithm for a single phase. The inputs are a

graph (G(V,E, ω)) and an array of size |V | that represents an initial assignment of

community for every vertex Cinit.

1: procedure Parallel Louvain(G(V,E, ω), Cinit)

2: ColorSets ← Coloring(V), where ColorSets represents a color-based partitioning of

V .

. If the coloring step is omitted, then it automatically implies that all vertices belong to

the same color set.

3: Qcurr ← 0

4: Qprev ← −∞ . Current & previous modularity

5: Ccurr ← Cinit

6: while true do . Iterate until modularity gain becomes negligible.

7: for each Vk ∈ ColorSets do

8: Cprev ← Ccurr

9: for each i ∈ Vk in parallel do

10: Ni ← Cprev[i]

11: for each j ∈ Γ(i) do Ni ← Ni ∪ {Cprev[j]}

12: target ← arg maxt∈Ni ∆Qi→t

13: if ∆Qi→target > 0 then

14: Ccurr[i]← target

15:

16: Cset ← the set of non-empty communities corresponding to Ccurr

17: Qcurr ← Compute modularity as defined by Cset

18: if |Qcurr−Qprev

Qprev
| < θ then . θ is a user specified threshold.

19: break . Phase termination

20: else

21: Qprev ← Qcurr

54

CHAPTER 4

BALANCED COLORING

4.1 Problem Overview

Decomposing a computational task into constituent parts that can be executed si-

multaneously or identifying elements of composite data that can be safely updated

simultaneously is a pervasive primitive in parallel computing. An associated need is

that of scheduling the identified subtasks (or data update operations) onto the pro-

cessing units of a platform. In such a scenario, one would, for performance reasons,

need to both maximize the amount of parallel execution (or data update) attained

in a given step and minimize the total number of steps needed. In cases where the

computational or data dependency between entities can be abstracted using a graph,

this dual objective can be modeled and solved as a graph coloring problem.

In this chapter, we consider two types of graph coloring problems: distance-1

coloring, which is defined on a general (unipartite) graph, and, partial distance-2

coloring, which is defined on a bipartite graph. A distance-1 coloring of a general

graph G(V,E) is an assignment of colors to vertices such that any two adjacent

vertices receive different colors. A partial distance-2 coloring of a bipartite graph

Gb = (V1, V2, E) is an assignment of colors to one of the vertex sets, say V2, such

55

that any two vertices in V2 that are two edges away from each other receive different

colors. More formal definitions of these problems will be given in Sec. 4.2 and 4.5,

but we remark at this point that distance-1 coloring is the “usual” graph coloring

problem.

Standard formulations of the distance-1 and partial distance-2 coloring problems

aim at minimizing the number of colors used (that is, the number of independent

subsets or color classes) without any requirement on the size of the color classes rela-

tive to each other. They therefore permit cases where the color classes can be highly

unbalanced. In fact, by their nature, most practical algorithms for the standard for-

mulations of these graph coloring problems produce highly skewed color classes. This

will be undesirable as the smaller color classes may not provide sufficient workload for

parallel efficiency. In this chapter, we deal with the design, implementation and per-

formance evaluation of algorithms for the distance-1 and partial distance-2 coloring

problems that also require that color classes be balanced in their sizes. A preliminary

version of this work that focused only on distance-1 coloring appeared in (Lu et al.,

2015)

There is a body of work in the graph theory literature on equitable distance-1

colorings—a formulation in which color classes are required to be perfectly balanced—

but little work exists on fast, practical, balanced coloring algorithms and their par-

allelization on contemporary and emerging platforms. Further, to the best of our

knowledge, there exists no prior work on balanced partial distance-2 coloring. We

seek to address these deficiencies.

The remainder of this chapter is organized as follows. We provide background

and motivate our work in Sec. 4.2. We describe the sequential versions of the various

algorithms we explore for balanced distance-1 coloring in Sec. 4.3 and discuss how they

are parallelized in Sec. 4.4. We discuss how the algorithms developed for distance-1

56

coloring are modified to handle the partial distance-2 coloring case in Sec. 4.5. We

review essential features of the platforms for which the implementations are targeted

in Sec. 4.6. We present and discuss experimental results in Sec. 4.7.

4.2 Problem Statement and Background

Given a general graph G = (V,E), a distance-1 coloring of G is an assignment of

colors to vertices such that any two adjacent vertices (which are at distance 1 from

each other) are assigned different colors. This is the “usual” coloring problem, and

henceforth, for brevity, we will drop the qualifier “distance-1” unless we need to

distinguish it from distance-2 coloring.

A coloring is said to be equitable if the sizes of any two color classes differ by at

most one. The concept of equitable coloring was introduced by Meyer in a 1973 paper

(Meyer, 1973). Its history, however, goes even further back to a conjecture by Erdös,

a conjecture settled in 1970 by Hajnal and Szemerédi (Hajnal and Szemerédi, 1970)

forming their celebrated theorem: a graph with maximal degree ∆ is equitably k-

colorable if k ≥ ∆+1. This bound is sharp. One of the directions of early theoretical

research in this field had been to obtain better upper bounds than ∆ + 1 for special

graph classes (Erdös, Rényi, and Sós, 1970).

In equitable coloring, as stated earlier, the difference in size between any pair of

color classes is required to be at most one. This ideal can for some practical needs

be unnecessarily stringent and too costly to attain. In the closely related heuristic

variant we refer to here as balanced coloring, the restriction is relaxed; the difference in

color class size instead is allowed to be at most a “small” number greater than 1. One

formal way to state this is to say that each color class is bounded by some parameter

l. Bodleander and Fomin (Bodleander and Fomin, 2005) study this problem and show

57

that it, as well as the equitable coloring problem itself, can be solved in polynomial

time for graphs with bounded treewidth.

In this dissertation, we take a less formal route and think of balanced coloring

without fixing a parameter l. More specifically, given a graph G(V,E), the problem

is to compute a distance-1 coloring such that each color class receives approximately

|V |
C

vertices, where C is the number of colors used.

4.2.1 Related Work

The equitable coloring problem asks for an equitable k-coloring with the smallest

possible k. This problem is NP-hard, as the classical coloring problem can be trivially

reduced to it. Polynomial time equitable coloring algorithms are known for various

special classes of graphs, including trees (Chen and Lih, 1994), r-partite graphs (Wang

and Zhang, 2000), line graphs (Wang and Zhang, 2000), and planar graphs (Yap

and Zhang, 1998). Furmanczyk (Furmańczyk, 2004) provides a survey of work on

equitable colorings until the early 2000’s.

Equitable coloring and balanced coloring (in the sense just mentioned) find impor-

tant applications in various areas. Examples include load-balanced partitioning for

domain decomposition methods (Smith, Bjørstad, and Gropp, 1996), parallel sparse

matrix computations on irregular grids (Melhem and Ramarao, 1988), and various

types of scheduling and timetabling problems (Blazewick et al., 2001). Tucker in

a 1973 paper (Tucker, 1973) discusses how equitable coloring theory has been used

in helping out Operations Researchers at the Urban Science Department at Stony

Brook, who were faced with a challenging routing problem that sought to optimize

scheduling of garbage collecting trucks in the city.

Balanced coloring in the context of parallel scientific computing was studied by

Gjertsen, Jones and Plassmann (Robert K. Gjertsen, Jones, and Plassmann, 1996),

58

where they developed a balanced, distributed memory parallel coloring heuristic build-

ing on their own earlier work on parallel graph coloring that was unconcerned with

balancing color classes (Jones and Plassmann, 1993). Their balancing heuristic draws

ideas from approximation algorithms for the bin packing problem (E.G. Coffman,

Garey, and Johnson, 1997) and a coloring work in (Pommerell, Annaratone, and

Fichtner, 1992).

The work in (Robert K. Gjertsen, Jones, and Plassmann, 1996) has connections

to that in this paper, but it differs both in terms context and approach. In particular,

the context in (Robert K. Gjertsen, Jones, and Plassmann, 1996) is a distributed

memory setting in which the vertex set of a graph is already partitioned among pro-

cessors. Further, the authors assume that the partitioning is a good one in the sense

that each processor is assigned nearly the same number of vertices. Based on an

initial coloring of the partitioned graph, the authors then run a balancing heuristic

that respects the vertex partitioning (avoids relocation of vertices to processors). In

contrast, in this work, we do not assume any a priori partitioning of the vertex set.

In fact, the assignment of vertices to processors (or threads) is expected to be done

after the balanced coloring is achieved, which is an advantage. In terms of approach,

the work in (Robert K. Gjertsen, Jones, and Plassmann, 1996) focuses on one class

of algorithms: given an initial coloring, how can balancing be achieved without in-

creasing the number of colors used? In contrast, here we consider a wider variety of

algorithms, provide implementations on modern day multi-core and manycore plat-

forms, and experimentally evaluate their performance as well as the trade-offs they

offer.

59

4.2.2 A Foundational Scheme

For the standard distance-1 graph coloring problem, despite its NP-hardness, the

greedy scheme outlined in Algorithm 2 is often found quite effective in practice, since

the scheme gives usable solutions and can be implemented to run in linear-time for

graphs that arise in practice.

Algorithm 2 Greedy

Greedy (G = (V,E))

for each v ∈ V in some order do

for each w adjacent to v do

Mark the color of w as forbidden to v

Assign v a color not marked as forbidden to v

The scheme Greedy can be specialized in a variety of ways depending on a) the

technique used to determine the order in which the vertices are processed and b) the

strategy used to pick a color (among a set of permissible colors) for a vertex at a

given step.

A common strategy with regards to (a) is to rank the vertices in a non-ascending

order of “degree”, where degree is suitably defined (e.g. as the number of neighbors,

or the number of already colored neighbors, or the number of differently colored

neighbors). The intuition is to treat vertices that are likely to be harder to color,

earlier in the process.

A common strategy used with regards to (b) is to pick the smallest (we assume

colors are positive integers) permissible color for a vertex in each step. This strategy

is sometimes referred to as First Fit (FF), since, considering the analogy to the bin

packing problem mentioned earlier, it strives to place the vertex in the first bin (color)

it could be placed in. The rationale behind choosing the smallest color is that one

60

(a) Greedy Coloring, Input:
uk-2002

(b) Community Detection,
Input: cnr

Figure 4.1 a) The size distribution of the color classes obtained by the
Greedy First Fit heuristic for distance-1 coloring on an input graph (uk-
2002) obtained through a web crawl of the .uk domain. b) The evolution of
modularity gain across the iterations of a parallel implementation of the Lou-
vain method (Lu, Halappanavar, and Kalyanaraman, 2015). Four curves are
depicted there. Two of the curves correspond to results obtained when color-
ing (skewed and balanced) is used in the parallel implementation, the third
corresponds to results when coloring is not used, and the fourth corresponds
to results on a serial implementation.

can then guarantee that the number of colors used by the scheme is bounded from

above by ∆+1 (where ∆ is the maximum degree in the graph) regardless of the order

in which the vertices are processed and by K + 1 (where K is the core number of

the graph) if the degeneracy order of the vertices is used. A degeneracy order, also

known as Smallest Last ordering, can be obtained in linear-time.

The FF strategy is attractive for the bounds on the number of colors it assures.

The color classes it produces, however, could be highly skewed, with a vast majority

containing significantly smaller number of vertices—an expected result out of selecting

the first available bin for every vertex. The chart in Fig. 4.1a confirms this expectation

on a real world graph. Small-sized color classes can become scalability bottlenecks in

an end-application, where typically the color classes are processed in different steps

61

(to honor dependencies) and the smaller classes limit the degree of parallelism during

those steps.

4.2.3 Community Detection: A Motivating Application

Overcoming such scalability bottlenecks is in part what motivated our current work.

We sought to investigate algorithms for achieving balanced coloring and their effective

use in parallel computing applications. As a case-study, we consider balanced coloring

in the context of parallel community detection, based on an implementation called

“Grappolo” that we developed for multi-core and manycore architectures (Lu, Halap-

panavar, and Kalyanaraman, 2015; Chavarŕıa-Miranda, Halappanavar, and Kalya-

naraman, 2014). The parallel implementation is based on the sequential Louvain

heuristic (Blondel et al., 2008). The Louvain method, which is one of the most widely

used community detection algorithms, uses the modularity function (Newman, 2004b)

as the objective function to be maximized.

Grappolo consists of multiple phases, each in turn containing multiple iterations.

Within each phase, the algorithm starts with every vertex placed in a community of

its own. A series of iterations is then performed until a convergence criterion is met.

Within each iteration, all vertices are scanned in parallel. For each vertex, a greedy

decision is made as to whether the vertex should migrate to a different community

(selected from one of its neighbors) or should stay in its current community, so as

to maximize the net modularity gain. This approach places multiple constraints on

concurrent processing of neighboring vertices. In previous work, we had extensively

explored the use of graph coloring in effectively addressing the challenges associated

with these constraints (Lu, Halappanavar, and Kalyanaraman, 2015). Our findings

showed that the use of coloring significantly accelerates convergence and, for many

input cases, also improves the quality of communities output (as measured by the

62

modularity function).

However, since the color classes are processed in parallel one at a time, large skews

in color class sizes (as shown in Fig. 4.1a) can reduce overall scalability, particularly

while processing the smaller color classes. The purpose of balancing the color classes

is thus to improve thread utilization for those smaller color classes, while ensuring

that the overall output quality of the solution (modularity) is maintained.

The chart in Fig. 4.1b demonstrates this purpose. The chart shows that balanced

coloring matches skewed coloring in its impact on community detection both in terms

of convergence rate (i.e., number of iterations taken to complete) and in terms of

output quality (final modularity), while offering the added advantage of improved

thread utilization within every iteration, since the color classes are balanced.

4.3 Algorithms for Balanced Distance-1 Coloring

In this section, we present multiple heuristics to compute a balanced distance-1 col-

oring of an input graph, as summarized in Table 4.1.

We explore two categories of approaches. Approaches in the first category aim at

obtaining a balanced coloring in a single attempt. We refer to these as “ab initio”

approaches. Those in the second category follow a two-step procedure, where an initial

coloring obtained using a balance-oblivious procedure, is subsequently balanced in the

second step. We refer to these approaches as “guided” (to signify that they are guided

by an initial coloring).

4.3.1 Ab initio balancing strategies

Within the ab initio category, we consider two well-known variants of the Greedy

scheme outlined in Algorithm 2 that differ in how the choice of color to be assigned

63

to a vertex in each step is done. Both variants seek to achieve balanced coloring by

virtue of the color choice strategy:

• Greedy-LU : A vertex is assigned the least used color among all currently avail-

able permissible colors. If no permissible color exists, then a new color is created

and assigned to the vertex.

• Greedy-Random: A vertex is assigned a color picked at random from the set of

permissible colors. The particular Greedy-Random variant we consider assumes

the existence of a reasonable bound B on the number of colors needed. One

such easy-to-compute bound is B = ∆+1, where ∆ is the maximum clique size.

Then, a vertex v is assigned a randomly chosen color from the set of permissible

colors P (v) ⊆ {1, 2, . . . , B}.

Manne and Boman analyze balanced greedy coloring using the strategies LU and

Random in the context of sparse random graphs (Manne and Boman, 2005).

4.3.2 Guided balancing strategies

In the guided category, we study different approaches for obtaining a balanced color-

ing given an initial coloring. We note here that all of the proposed guided approaches

can be applied to an initial coloring produced by an arbitrary coloring method. How-

ever, a subset of these approaches is designed to exploit certain properties of an

initial coloring produced by the Greedy coloring scheme that uses the FF color choice

strategy (henceforth abbreviated as Greedy-FF).

Given an input graph G = (V,E), let the number of colors used by the initial

coloring step be C. In all our guided strategies, we make use of the quantity γ = |V |/C

to guide our methods. Note that in a strictly balanced setting, the size of each color

class would be roughly γ. Consequently, we refer to a color class of size greater than

64

γ as an over-full bin, and a color class of size less than γ as an under-full bin. (We

use the terms bin and color class interchangeably throughout the chapter.)

Broadly, we classify our guided strategies into two types. In the first type, a subset

of vertices from each over-full bin is moved to under-full bins so that a better balance

is attained. Since this is achieved without increasing the number of color classes, we

refer to this type of methods Shuffling-based. In the second type, instead of enforcing

that the number of color classes remains unchanged, all vertices are colored afresh,

this time with a balance constraint imposed. We call this strategy Recoloring.

The Shuffling methods in turn comprise two specializations: unscheduled and

scheduled moves. The motivation for this distinction comes from parallel performance

needs that will be explained in Section 4.4.

The Recoloring method takes advantage of an interesting property of the Greedy-

FF scheme. Suppose a coloring of a graph G = (V,E) is obtained using Greedy-FF in

some vertex order. Let the number of colors used be C. Now suppose the vertices of

G are ordered such that vertices in the same color class are listed consecutively. Then

re-applying Greedy-FF using this new ordering will produce a new coloring of G using

C or fewer colors. Culberson (Culberson and Luo, 1996) applied this idea iteratively

in his method called Iterated Greedy (IG) to successively reduce the number of colors

and draw the number as close to the optimal as possible. There is a degree of freedom

in how the color classes themselves could be ordered for IG to be successful. One of

the better strategies is to list the color classes in reverse order—i.e., beginning from

the vertices of the highest color index.

We build on this property to devise our Recoloring method for balancing. Key

extension in our case is that we maintain the sizes of bins during the new coloring and

use those to impose balance. In particular, in each step of the re-coloring, a vertex is

assigned the smallest permissible color k such that the size of the bin is less than γ.

65

4.4 Parallel Algorithms

We parallelized all of the guided balanced coloring algorithms presented in Section 4.3

for the shared memory model. For each heuristic we developed two OpenMP-based

implementations—one for conventional multicores and another for the Tilera many-

core platform. To obtain the initial coloring we used a parallel implementation avail-

able for Greedy-FF from a previous effort (Catalyurek et al., 2012). In this section,

we describe the parallel algorithms underlying the implementations of the balancing

schemes.

To parallelize our shuffling-based approaches, we considered two ways of moving a

vertex from an over-full bin to an under-full bin. The first type of move is “unsched-

uled”. Here, the choice of the target bin for a given vertex is decided dynamically

(using either the FF or LU strategy) based on the state of the color bins — encom-

passing both size and composition. This approach strives to achieve a good balance,

if possible; as a trade-off, however, it entails the cost needed to keep each dynamic

state up-to-date. More specifically, concurrent updates to the sizes of the same bin

need to be synchronized.

To mitigate the cost of updates, we explored an alternative that we call “sched-

uled” moves, where the target bin for a vertex in an over-full bin is statically de-

termined using a heuristic, and the check to verify if such a move is permissible is

deferred until the move is actually attempted. If a move attempt creates a “conflict”,

which is possible if a neighboring vertex is already in the same target bin, no further

attempt is made and the vertex remains in its original bin. The advantage of this ap-

proach is the expected improvement in parallel performance, as no atomic operation

or lock is needed to update bin sizes. However, this approach could potentially leave

bins unbalanced.

66

4.4.1 Parallelization using Unscheduled Moves

For obtaining guided balanced coloring using unscheduled moves, we considered two

parallelization schemes. In the vertex-centric schemes, the loop-parallelization is

around a set of vertices, and vertices from different color classes are allowed to be

processed concurrently. In the color-centric schemes, vertices processed concurrently

must belong to the same color class. In both schemes, only vertices in over-full bins

are considered for color reassignment. Furthermore, once an over-full bin i reaches

balance (i.e., size reaches γ) at any point in the execution, then vertices from that

bin are no longer considered for color reassignment. Hence, these schemes represent

partial recoloring methods that proceed until either a balance is achieved or a bal-

ance is no longer possible (i.e., there exist no more permissible moves from any of the

remaining over-full bins).

Vertex-centric parallelization scheme: Processing vertices from possibly dif-

ferent color classes exposes maximum concurrency. However, it could also cause

conflicts. To handle such conflicts in parallel we adopt the Speculation-and-Iteration

framework described in (Catalyurek et al., 2012). The basic idea in this framework is

to maximize concurrency by temporarily tolerating inconsistencies. Consider a sim-

ple loop-parallelization over the set of vertices in the Greedy scheme (using FF or

LU) outlined in Algorithm 2. Such a parallelization will not preclude the possibility

of a pair of adjacent vertices from receiving the same color. In our adoption of the

speculation-and-iteration framework, once vertices are moved to their target color

classes, the idea is to detect conflicts (in parallel) in a separate phase in the same

round and resolve them in a subsequent round. The algorithm proceeds iteratively

in this fashion until all conflicts are resolved.

A template for the vertex-centric parallelization scheme is presented in Algo-

67

rithm 3. This algorithm corresponds to the Vertex-centric First Fit (VFF) balancing

method. It should be easy to see that the same algorithm can be easily adapted to

the Vertex-centric Least Used (VLU) balancing method with a change to the target

bin (k) selection criterion.

Algorithm 3 Vertex-centric parallel scheme for balanced coloring (using FF)

VertexParallelGuidedBalancing(G = (V,E))

Obtain an initial coloring of G

Let U be the set of vertices from over-full bins

while U 6= 0 do

for v ∈ U do in parallel

Let k be the smallest index of an under-full bin that is permissible . FF

if k exists then

Let j ← color[v]

color[v]← k

Update size of bins k and j . synch. step

R← ∅

for v ∈ U do in parallel . check for conflicts

for w ∈ adj(v) do

if (color[w] = color[v] and v > w) then

R← R ∪ {v}

Update size of bin color[v] . synch. step

U ← R

Note that the maximum number of conflicts per a vertex v in the above algorithm

can be upper-bounded by min{d(v), b}, where d(v) is the number of vertices adjacent

to v and b is the number of under-full bins. This upper-bound is rather weak. In prac-

68

tice, we observed that the closely related quantity – the actual number of iterations

needed to clear all conflicts – is typically bounded by a small constant.

Color-centric parallelization scheme: In the color-centric scheme for paral-

lelization, we allow only vertices from the same color class to be processed concur-

rently. This is achieved by processing one over-full bin at a time and performing

the moves departing from that over-full bin in parallel until a balance is achieved

or no more move is possible. This scheme, therefore, avoids conflicts, and the bal-

ancing procedure requires no more than a single pass of the over-full bins. However,

the trade-off is in parallel performance of the balancing procedure, which requires

as many parallel steps as there are number of over-full bins in the initial coloring.

Depending on the strategy used to pick an under-full bin (FF or LU), we refer to

this Color-centric parallelization scheme as either CFF or CLU. A template for the

color-centric scheme is shown in Algorithm 4.

Algorithm 4 Color-centric parallel balanced coloring

ColorParallelGuidedBalancing(G = (V,E))

Obtain an initial coloring of G

Let Q be the set of over-full bins

for each j ∈ Q do

Let V (j) denote the set of vertices with color j

for v ∈ V (j) do in parallel

Let k be the smallest index of an under-full bin that is permissible to v .

FF

if k exists then

color[v]← k

Update size of bin k, j . synch. step

Initial coloring: We note here a special property emerging from the use of

69

Greedy-FF for generating the initial coloring. Any initial coloring produced by

Greedy-FF satisfies the following property: Assume a linear ordering of colors from

1, . . . , C. If a vertex v is assigned color j, where j > 1, then it implies that v con-

tains at least one neighbor in each of the previous colors 1, . . . , j − 1 (otherwise, v

would have been assigned a smaller color). Therefore, if we follow the Greedy-FF

initial coloring by another FF-based strategy during the subsequent balancing step

(e.g., VFF or CFF), then the closest permissible bin, say k, we identify through that

procedure would also correspond to a color that has a high incidence of edges on

the source over-full color bin. Given that k represents a permissible bin despite its

high incidence makes it intuitively an attractive target for this vertex. On the other

hand, an LU-based strategy (VLU or CLU) operates oblivious to the ordering of the

initial colors, and is therefore better suited for scenarios where the initial coloring was

generated by schemes other than Greedy-FF.

It is for these reasons that we use the Greedy-FF strategy for computing an initial

coloring in VFF and CFF, while for VLU and CLU the use of any initial coloring

scheme is reasonable.

4.4.2 Parallelization using Scheduled Moves

To parallelize guided balancing using scheduled moves we take advantage of both

the incidence property (observed above) and another size-related property of the

Greedy-FF initial coloring: owing to its First Fit strategy, Greedy-FF is expected to

assign more vertices to smaller-indexed color classes. In other words, color classes

are expected to be in non-increasing order of their sizes as one proceeds from color

1 through color C. This expectation agrees with the size distributions depicted in

Fig. 4.1.

Our parallel algorithm with scheduled moves is outlined in Algorithm 5. Intu-

70

itively, we identify an arbitrary subset of surplus vertices from the sequence of over-

full bins and mark each of them for assignment to a corresponding under-full color1.

At this point, no explicit checks are made to identify conflicts. In the next step, all

vertices from the over-full bins that were scheduled for recoloring are processed in

parallel to check if any of them conflicts with the assigned target bin. A move is

completed only if it generates no conflicts.

This simple approach requires no synchronization on the bin sizes. However it

could leave the bins imbalanced. To improve the chance of obtaining a better balance,

we fill the under-full bins (set QU in Algorithm 5) in the decreasing order of color

index (we refer to this approach as Scheduled Reverse, or more simply, Sched-Rev).

Attempting to fill the under-full bins in decreasing order increases the likelihood of

color co-assignment of vertices—i.e., two vertices being moved from the same source

over-full bin are likely to co-locate in the same target under-full bin, thus minimizing

the chance of conflicts. This is a consequence of the aforementioned size-related

property of the Greedy-FF initial coloring.

4.4.3 Parallel Recoloring

The parallelization we use for the balancing based on Recoloring is outlined in Al-

gorithm 6. This is similar to the vertex-centric parallel scheme given in Algorithm 3

with the main difference being that we recolor all the vertices from scratch and that

balance is imposed as the recoloring proceeds. In particular, the recoloring approach

colors vertices roughly in the order of vertices as they appear from the largest color

to the smallest color of the initial coloring. The rationale for this ordering, as men-

tioned in Section 4.3.2, is that the re-coloring procedure would have an opportunity

1This step is performed serially in our current implementation since it was very quick for most

inputs; however, if required, this step can also be parallelized using parallel prefix (details omitted).

71

Algorithm 5 Parallel shuffling using scheduled moves

ScheduledBalancing(G = (V,E))

Obtain an initial coloring of G using Greedy-FF

Let C be the number of colors used, and let γ = |V |/C

Let QO be an ordered set of over-full bins in increasing order of color index

Let QU be an ordered set of under-full bins in decreasing order of color index

Let L (initially ∅) maintain a list of moves from over-full to under-full bins

for each j ∈ QO do

Let V (j) denote {u ∈ V | color[u] = j}

Select V ′(j) ⊆ V (j) such that |V ′(j)| = |V (j)| − γ

for each k ∈ QU AND V ′(j) 6= ∅ do

Let V ′k(j) ⊆ V ′(j) denote vertices that can be moved to k such that |V ′k(j)|+

|V (k)| ≤ γ

L← L ∪ V ′k(j)

V ′(j)← V ′(j) \ V ′k(j)

for V ′k(j) ∈ L do

for v ∈ V ′k(j) do in parallel

if (k is a permissible color for v) then

color[v]← k

72

to use fewer colors, since now the vertices that were “difficult” to color initially are

processed earlier. In the process of recoloring, we also strive for the size of each color

class to be as close as possible to the average size of a color class γ obtained from the

initial coloring.

Algorithm 6 Parallel Recoloring for Balance

ParallelRecoloring(G = (V,E))

Obtain an initial coloring of G using Greedy-FF

Let C be the number of colors used, and let γ = |V |/C

Let V (j) denote {u ∈ V | color[u] = j}

Construct an ordered set W = {V (C), V (C − 1), . . . , V (1)}

Initialize bin[i] = 0, for i = 1, . . . , C

U ← W

while U 6= ∅ do . perform a fresh coloring

for v ∈ U do in parallel

color[v]← smallest permissible color k such that bin[k] ≤ γ

Increment bin[k] by 1 . synch. step

R← ∅

for v ∈ U do in parallel

for w ∈ adj(v) do

if (color[w] = color[v] and v > w) then

R← R ∪ {v}

U ← R

73

4.4.4 Complexity

With careful choice of data structures, the sequential Greedy scheme (Algorithm 2)

that underlies all of our parallel algorithms, can be implemented such that its runtime

is upper-bounded by O(|V | · ∆), where ∆ is the maximum degree in the graph. In

each of the templates outlined in Algorithms 3 through 6, the total “additional” work

incurred due to parallelization is no more than the work involved in Algorithm 2. Fur-

thermore, the number of rounds required by the iterative variants (Algorithm 3 and

Algorithm 6), as argued earlier, is typically a small constant in practice. Therefore,

the net total work in any of our schemes can be upper-bounded by O(|V | ·∆).

The above complexity represents a worst-case, where for instance, multiple vertices

with relatively high degrees tend to occupy the overfull bins in the initial coloring.

But such cases also require a relatively high number of such vertices in the input,

which is less likely to be observed in real world networks with power-law like degree

distributions.

4.5 Partial Distance-2 Coloring

4.5.1 Preliminaries

As mentioned in Section 4.1, besides distance-1 coloring, we considered in the current

work a balanced version of another coloring problem, partial distance-2 coloring, that

is defined on a bipartite graph Gb = (V1, V2, E). The coloring “rule” here is to assign

colors to vertices in one of the vertex sets, say V2, such that any pair of vertices vi, vj

from V2 that share a common neighbor vc in V1 (that is, (vc, vi) ∈ E and (vc, vj) ∈ E)

74

Figure 4.2 Illustration of equivalence among structurally orthogonal par-
tition of a matrix A (a), partial distance-2 coloring of the vertices in V2 in
bipartite graph Gb = (V1, V2, E) of A (b), and distance-1 coloring of the
subgraph of the square graph induced by V2, that is Gb

2[V2] (c).

get different colors2. The objective of the standard version of the problem, as in

distance-1 coloring, is to use as few colors as possible. The balanced variant seeks to,

in addition, balance the color classes.

The partial distance-2 coloring problem is an important model in computations

involving nonsymmetric matrices. For example, a partitioning of the columns of a

nonsymmetric matrix A into groups of structurally orthogonal columns—a group in

which no two columns share nonzero entries in the same row position—can be mod-

eled by a partial distance-2 coloring of the column vertices V2 of the bipartite graph

Gb(A) = (V1, V2, E) representing the sparsity structure of the matrix A (Gebremed-

hin, Manne, and Pothen, 2005). Such a model is useful, for example, in an efficient

computation of a Jacobian matrix A using automatic differentiation. Figure 4.2 shows

a small example that illustrates how a structurally orthogonal column partition of a

matrix is modeled as as a partial distance-2 coloring of the bipartite graph.

2This variant is called “partial” since only one of the two vertex sets in the bipartite graph is

colored. It is called “distance-2” since, in the vertex set to be colored, any two vertices that are

two edges away from each other are required to get different colors. The naming was first used in

(Gebremedhin, Manne, and Pothen, 2005).

75

Figure 4.2c illustrates yet another equivalence. In general, a partial distance-2

coloring on the vertex set V2 of a bipartite graph Gb = (V1, V2, E) is equivalent to a

distance-1 coloring of a certain derived graph—the subgraph of the square graph of

Gb induced by the vertex set V2, which we denote by Gb
2[V2]. For a general graph

G = (V,E), the square graph G2 = (V, F) is a graph defined on the same vertex

set V and where the edge set F consists of pairs of vertices that are distance less

than or equal to two edges from each other. In other words, F = E ∪ E ′, where E ′

corresponds to pairs of vertices that are at distance exactly two edges from each other

in G. If the graph under consideration is a bipartite graph Gb = (V1, V2, E), then the

square graph Gb
2 = (V1, V2, F), which no longer is bipartite, is such that the edge

set can be viewed as having three parts: F = E ∪ E1 ∪ E2, where E1 corresponds

to the “new” edges that run among vertices in V1 (those that are at distance 2 in

Gb) and E2 corresponds to the edges that run among vertices in V2 (those that are

at distance 2 in Gb). The subgraph of Gb
2 induced by the vertex set V2 could then

be written as Gc = (V2, E2). In network science literature, the graph Gc is also

sometimes referred to as a “projection” on to the vertex set V2, and in the numerical

optimization community Gc is also known as the “column intersection graph” of the

associated non symmetric matrix.

The discussion in the paragraph above focused on the case where the vertex set in

the bipartite graph to be colored is V2. Entirely analogous discussion and definitions

apply if the vertex set to be colored were V1 instead.

Now if partial distance-2 coloring on the vertex set V2 of the bipartite graph Gb =

(V1, V2, E) is equivalent to distance-1 coloring of the intersection graph Gc ≡ Gb
2[V2],

why don’t we then simply construct Gc and solve the distance-1 coloring problem on

it using algorithms developed for distance-1 coloring, instead of developing algorithms

tailored for partial distance-2 coloring? As has been argued in (Gebremedhin, Manne,

76

and Pothen, 2005), there are several reasons for this. First, the partial distance-

2 coloring formulation offers greater flexibility. In particular, the intersection graph

necessarily looses structural information contained in the original bipartite graph. For

example, considering the context of an underlying nonsymmetric matrix, given two

column vertices in V2 joined by an edge in Gc, one cannot determine the row at which

the two columns share nonzero entries. Second, for some structures, the intersection

graph Gb
2[V2] could turn out to be substantially denser (have more edges) than the

original graph Gb and hence require more memory. Note that by construction, each

vertex u ∈ V1 of G(V1, V2, E) would correspond to a k-clique in G2
b [V2], where k is the

degree of u. Third, the partial distance-2 coloring formulation avoids the need for

building a different data structure than the one used to represent the input graph.

4.5.2 Algorithms

Algorithm 7 Greedy Partial Distance-2 Coloring

GreedyPD2C(Gb = (V1, V2, E))

for each v ∈ V2 in some order do

for each w adjacent to v do

for each x adjacent w do

Mark the color of x as forbidden to v

Assign v a color not marked as forbidden

The greedy scheme for distance-1 coloring outlined in Algorithm 2 can be easily

modified to obtain a solution for the partial distance-2 coloring problem. The needed

modifications are: (i) the input is a bipartite graph Gb = (V1, V2, E), (ii) the for-loop

iterates over v ∈ V2, and (iii) the neighbors of a vertex v are those vertices x that are

connected to v by a path v, w, x of length two edges. The algorithm modified in this

77

manner is outlined in Algorithm 7. Let δ(V2) denote the average degree of a vertex

in V2, and ∆(V1) denote the maximum degree of a vertex in V1. Consequently, the

runtime complexity of the algorithm is as follows (Gebremedhin, Manne, and Pothen,

2005): O(|V2|δ(V2)∆(V1)), which is same as O(|E|∆(V1)).

We note here that it is possible to develop a faster greedy algorithm by exploiting

the bipartite structure of the graph and by relaxing the constraint on the maximum

number of colors used. One such approach is to linearly scan the vertices in V1 and

assign different colors to all its neighbors in V2, while using colors in a greedy first-fit

fashion. Such an approach, while improving the runtime (O(|E|)), could potentially

use more colors relative to Algorithm 7. Furthermore, parallelization of such an

approach may necessitate multiple iterations to resolve potential conflicts introduced

during the parallel coloring procedure. For these reasons, we use Algorithm 7 as the

basis for the balanced variants developed and results presented in this paper.

The parallelization strategies discussed in Section 4.4 focused on distance-1 col-

oring. The corresponding algorithms for partial distance-2 coloring follow the same

methodology, with the modifications outlined earlier in this paragraph. We therefore

omit detailed presentation of algorithms for partial distance-2 coloring.

4.5.3 Another example of an application

Parallel implementation of the coordinate descent algorithm is another example of an

application in which partial distance-2 coloring is useful. Let us review the coordinate

descent algorithm briefly to show how partial distance-2 coloring is relevant there. In

the coordinate descent algorithm, the rows of matrix A correspond to samples and the

columns correspond to features. The corresponding dimensions are often denoted by

n (samples) and k (features). Formulated in a generic fashion, the coordinate descent

(CD) algorithm consists of four steps that are performed iteratively until convergence

78

is reached:

Step (1) Select a set of coordinates J

Step (2) Propose increment δj, j ∈ J

Step (3) Accept some subset J ′ ⊆ J of the proposals

Step (4) Update weight wj for all j ∈ J ′.

The approach taken in the Select step determines the type of the CD Algorithm.

For example in cyclic or stochastic CD the selection targets a singleton, whereas in

greedy CD one selects a set—and in the extreme case (fully greedy), the entire set

of features is selected. Clearly, greedy is better suited for parallel CD. In a parallel

formulation of CD, the Propose and Update steps need to be performed concurrently.

In order to perform the Update step with maximal exploitation of parallelism, one

needs to identify groups of structurally orthogonal columns (features), since then

matrix entries in all the columns in a group can be updated safely concurrently.

This identification in turn is what is modeled using partial distance-2 coloring (on

the column-vertices) of the bipartite graph representing the sparsity structure of the

matrix A.

4.6 Implementation on the Tilera Platform

We have ported our parallel balanced coloring algorithms to the Tilera manycore

platform. The Tilera TileGX36 system implements a manycore processor based on a

two-dimensional mesh topology. Each core (called a “tile” in Tilera’s terminology),

consists of a 3-way VLIW processing unit, a private 32KB, 2-way set associative L1

data cache, a private 32KB, direct-mapped instruction cache and a 256KB, 8-way

set associative unified L2 cache. The cache line granularity is 64 bytes across all

three caches. Each tile is connected via multiple links to several networks-on-chip

79

(NOCs) in a 2D mesh configuration. (These NOCs include one for coherence traffic,

a user-programmable message passing NOC, and a dedicated I/O NOC.)

Tilera’s caching policies are the salient features that we exploit to optimize this

application. For each individual memory page, the system can set the home tile of

its data in the cache subsystem. There are two principal modes for setting the home

tile of a memory page: homed (a particular tile is the home for the whole page) and

hashed (individual cache lines on the page are distributed in a round-robin manner

to the L2 caches of all tile).

For the balanced coloring algorithms and the community detection application

we use a heap manager with a backing store of homed huge pages (16 MB/page) for

all thread private data. The global shared data structures (Compressed Sparse Row

Representation of the graph, arrays of colors and bin sizes) are allocated on default-

sized pages (64 KB/page) using the hashed policy. Previous experience with basic

coloring and community detection on Tilera (Chavarŕıa-Miranda, Halappanavar, and

Kalyanaraman, 2014) has shown this configuration to be the most performant one for

all input data sets. The OpenMP threads created by the application are pinned to

contiguous sets of cores on the manycore mesh architecture in order to avoid costly

thread migration and subsequent cache misses.

4.7 Experimental Results

4.7.1 Experimental Setup

Test Platforms: We used two platforms for testing: the manycore Tilera TileGX36

presented in Section 4.6, and an x86 AMD Interlagos platform.

The TileGX36 platform is equipped with 32 GB of DDR3 memory separated

80

into two 16 GB banks, with the cores running at 1.2 GHz. The TileGX36 runs a

custom version of Linux adapted for Tilera’s hardware. The compiler and runtime

environment are adapted from GCC 4.8.2 and retargeted for the TileGX’s 64-bit

VLIW cores. The community detection code has been parallelized using OpenMP

and Tilera-specific extensions for memory management, synchronization and atomic

operations.

The AMD multi-core platform consists of a dual-socket Interlagos processor with

64GB of memory. Each socket has 16 cores running at 2.1 GHz. Each pair of cores is

grouped into a module sharing a single floating-point functional units and separate

integer functional units. Each core contains 16 KB of L1 cache, while each module

shares 2 MB of L2 cache. Four modules share 8 MB of L3 cache. Each socket contains

eight modules on our system.

Test inputs: The test inputs used in the different experiments on distance-1

coloring are summarized in Table 4.2. These inputs were all downloaded from the

University of Florida sparse matrix collection (Davis and Hu, 2011), with the fol-

lowing exceptions: MG2 is a custom-built biological network obtained from protein

sequences of a metagenomics data set (Daily et al., 2015); rgg11 − 22 represents a

random geometric graph (Penrose, 2003) that was generated using the generator de-

scribed in (Halappanavar, 2009); and random2 was generated using a simple random

function that applies a probability of edge between any pair of vertices. These inputs

were chosen to encompass a variety in graph sizes and color class properties such as

the number of colors and color size distribution (Table 4.3).

All results pertaining to distance-1 coloring are presented in Sections 4.7.2 through

4.7.4

The test inputs and results on partial distance-2 coloring are presented in Sec-

tion 4.7.5. The extensions to balanced coloring are presented in Section 4.8.

81

(a) Channel (b) random2

(c) NLPKKT200 (d) CNR

Figure 4.3 Distance-1 coloring: Distribution of color class sizes produced
by the different balanced coloring schemes (horizontal axis corresponds to
colors (bins) and vertical axis to sizes of color classes). Recall that smaller
color class sizes correspond to reduced parallelism in the end-application,
while higher number of colors corresponds to increased number of parallel
steps within the application. For Channel and random2, color class sizes
from all balancing schemes are shown. For NLPKKT200 and CNR, color
class sizes only from the balancing schemes that produce same or comparable
number of colors to the Greedy-FF scheme are shown.

4.7.2 Balance Quality Assessment

In this section, we compare the quality of balance in the color class sizes produced by

the different balancing schemes proposed in the paper. (Please refer to Table 4.1 for

an overview of all the schemes.) To measure balance, we use the Relative Standard

Deviation of the color class sizes (expressed in %), which is the ratio of the standard

82

deviation to the mean color size. The closer this value is to zero the better is the

balance. For the schemes {Recoloring, Greedy-LU and Greedy-Random} we also

compared the number of colors they produce to the number of colors produced by

the Greedy-FF scheme (initial coloring).

(a) Channel (b) CNR

Figure 4.4 Recoloring: The figure illustrates the impact of different
bounds on bin sizes for the recoloring scheme (Algorithm 6). The default
recoloring scheme which uses τ = 0.0 (identifed in the chart by the “0.0”
label) fixes the average size for each bin based on the numbers from the
initial (unbalanced) coloring scheme. The average size is then varied from
10%, 20% and 30% (identified by labels “0.1”, “0.2” and “0.3” respectively),
which results in a smaller number of colors used and possibly a higher imbal-
ance in bin sizes than the default recoloring scheme. The percentages inside
paranthesis against each τ setting indicates the imbalance, measured by the
Relative Standard Deviation of the resulting color class sizes.

Table 4.3 shows the results of our quality assessment. First, we observe the very

large skews in the color sizes produced by the Greedy-FF scheme (which was the

primary motivation behind this work). With respect to balancing, we observe that

schemes VFF and CLU generally outperform all other schemes in either category

(guided or ab initio). We note here that if the initial coloring was generated by a

scheme other than Greedy-FF, then CLU is expected to outperform VFF. The Sched-

Rev scheme was also effective in reducing the skew although the degree of balance

83

achieved was lower than VFF and CLU - as can be expected due to its scheduled

strategy. One way to improve the performance of the scheduled strategy is to iterate

the procedure a constant number of times; however the tradeoff is that it would

increase run-time. In fact, we evaluate this tradeoff in the context of partial distance-

2 coloring (see Section 4.7.5).

Among the schemes that do not guarantee the same number of colors as Greedy-FF

(viz. Recoloring, Greedy-LU and Greedy-Random), we observed consistently that all

those three schemes produced more colors than the Greedy-FF scheme. However, the

number of colors produced by Recoloring was generally close to the number of colors

produced by Greedy-FF and other guided schemes (VFF, CLU), and the balancing

obtained was comparable to the Sched-Rev scheme. On the other hand, Greedy-LU

and Greedy-Random produced significantly higher number of colors making them less

desirable from the end-application perspective.

As described in Section 4.4.3, the main advantage of the Recoloring scheme is

that it processes the vertices with larger color indices earlier. Since these vertices

have higher degree and consequently harder to color, there is potential benefit in

processing them earlier in the Recoloring scheme. However, the balancing constraint

imposed during the recoloring process coupled with parallel execution which disturbs

the intended order of vertex processing explains the less-than-optimal performance

displayed by this scheme.

Fig 4.3 illustrates the effect of the different balancing schemes—it shows the sizes

of all the color classes produced by the different balancing schemes.

Looking further into the Recoloring Scheme: For the Recoloring scheme, by

allowing some of the color classes to slightly exceed the average color class size (γ),

it is possible to achieve a reduction in the number of colors used compared to the

baseline version of Recoloring (Algorithm 6). However, the balancing quality may

84

not necessarily be maintained. We empirically investigated this tradeoff between the

number of colors and balancing quality. In particular, we modified Algorithm 6 such

that the line bin[k] ≤ γ is replaced by bin[k] ≤ γ · (1 + τ), where τ is a small fraction

indicating how much offset from γ is “tolerated”. Fig. 4.4 shows results for four

values of τ (0, 0.1, 0.2 and 0.3) on two test inputs. The results suggest that the

nonzero values for τ help reduce the number of colors used. However, as expected,

the balancing quality degrades with increase in τ .

4.7.3 Performance Evaluation

The balancing schemes were also compared against one another for their parallel

performance. We tested both our Tilera and x86 implementations on a range of

inputs and thread counts. Tables 4.4 and 4.5 show the run-times taken by the VFF

balancing scheme. (We select VFF because it was one of the schemes that produced

the best balancing results (as was discussed in Section 4.7.2).) The corresponding

speedup charts are shown in Fig. 4.5.

The results show that the scaling in Tilera manycore is significantly superior to the

scaling results in x86. For instance, a top speedup of 13× was observed on 16 Tilera

cores. The improved scalability delivered by the Tilera manycore platform can be

largely attributed to a scalable on-chip network interconnect, which reduces the costs

of synchronization and latency for irregular memory accesses. On the other hand,

we found synchronization overhead to be a significant factor impacting the parallel

performance on the x86 architecture. We confirmed this by comparing the run-times

between the VFF (that uses atomic operations to update bin sizes) and Sched-Rev

(that does not). On the x86 architecture, we consistently observed Sched-Rev to be

8× or more faster than VFF on all inputs tested (data not shown). The corresponding

performance gain on the Tilera platform was a more modest 2× (Table 4.6).

85

(a) Speedup on
Tilera

(b) Speedup on
x86

(c) Community
detection

Figure 4.5 (a, b) Speedup obtained by our Tilera manycore and x86 multi-
core implementations of the VFF balancing scheme. Speedups are relative
to one thread executions on both systems. (c) Application study: Evolution
of modularity values within the first phase of a parallel community detection
implementation (Grappolo) on uk-2002, performed with the use of VFF bal-
anced coloring. The chart also shows the corresponding modularity curves
for the runs made without balanced coloring and the best performing serial
implementation (Blondel et al., 2008).

The speedup trends observed on both architectures also show the impact of the

number of initial colors on parallel performance. As shown in Figures 4.5a and b, the

speedups obtained on MG2 (2K colors) and uk-2002 (943 colors) are superior than on

other inputs. Intuitively, fewer colors imply a higher probability for concurrent bin

size updates.

From the parallel runtimes shown in Tables 4.4 and 4.5, it can be observed that,

on a per-core basis, the Tilera platform is generally slower than the x86 system. The

main reason is the relatively modest frequency and instruction level parallelism (ILP)

of the Tilera cores (3 packed operations per VLIW instruction, statically scheduled

by the compiler), in comparison to double the frequency on the x86 system and wider

superscalar instruction scheduling. However, at full system scale, the runtimes on the

Tilera platform begin to become comparable to the runtimes on the x86 platform.

86

This observation, coupled with the observation that the Tilera platform exhibited a

better scalability than x86, (compare Figures 4.5a vs. 4.5b), indicates that the Tilera

platform, on larger system sizes, has the potential to make up for the difference with

respect to x86 and even surpass its absolute performance.

In Table 4.6, we compare the run-times of three of the most competitive balancing

schemes {VFF, Sched-Rev and Recoloring} on the Tilera manycore platform. As

expected the Sched-Rev scheme outperforms the other two schemes. More specifically,

we observed Sched-Rev to be∼ 2× faster than VFF3. Considering the fact that Sched-

Rev also performed appreciably well in terms of balance quality (Section 4.7.2), we

conclude that it provides a reasonable trade-off between quality and performance

among the different balancing schemes presented in this paper.

Table 4.7 compares the runtime performance between a guided scheme (VFF)

and an ab initio scheme (Greedy-LU). As was shown earlier in Table 4.3, the VFF

and Greedy-LU schemes represent one of the top balancing schemes in their respective

categories (guided and ab initio). Since the guided schemes require an initial coloring,

we include that runtime as well in the Table 4.7. The results confirm the runtime

advantage expected for ab initio schemes as they compute a balanced coloring directly,

without requiring an initial coloring. However, in most cases, the total runtime for

guided schemes (initial coloring + VFF balancing) is comparable to the ab initio

runtimes, while in general delivering a better balancing quality (Table 4.3).

4.7.4 Impact on the Community Detection Application

To evaluate the effectiveness of the proposed balanced coloring schemes in a real world

application, we studied the parallel community detection code, Grappolo, described

in Section 4.2.3. Since VFF was one of the leading schemes for balance quality, we

3This performance improvement was even more pronounced in x86 architecture as noted earlier.

87

used VFF as our default balancing scheme on the Tilera platform. We ran Grappolo

in two modes: i) using the original skewed coloring, and ii) using the balanced coloring

produced by VFF.

Table 4.8 shows the results of our evaluation in the context of community detection

using Grappolo. In this table, we compare both end-to-end performance (run-time)

and output quality (modularity). We note here that the our current implementation

of Grappolo is configured to use coloring only during the first phase of its algorithm.

However, the algorithm itself is multi-phase and configuring to use coloring in sub-

sequent phases is one of our planned future extensions. However, for this paper, we

used coloring only for the first phase, and therefore, the benefits of balanced coloring

observed in Table 4.8 are understated.

From the table, we can observe the following: The overhead introduced in bal-

ancing is compensated by the run-time gains achieved in the community detection.

This is true for three of the five inputs tested —for instance, in the case of MG2,

balancing yields a total end-to-end run-time savings of 44.11%. Note that this is

for a single execution of the community detection code. In practice, a user may run

multiple instances of community detection under different parametric settings (while

the coloring is a one-time preprocessing task). The CNR input is the smallest in

the number of vertices and edges that we processed and the gains from parallelism

(with or without balancing) is insignificant. As for Europe-osm, the first phase only

consumed 6% of the total run-time and therefore the benefits of balanced coloring

are not directly evident from Table 4.8.

The results in Table 4.8 also demonstrate the ability of the VFF balanced scheme

to preserve quality of output (in terms of modularity). In fact, we observed that

introducing balancing has a positive impact on the progression of modularlity in

the first phase, as illustrated in Fig. 4.5(c) —which is a consequence of the revised

88

ordering of vertices due to balanced coloring.

4.7.5 Results on Partial Distance-2 Coloring

Our work on partial distance-2 coloring is partly motivated by its application in the

parallelization of the stochastic coordinate descent (SCD) algorithms Scherrer et al.,

2012. We therefore selected for our experiments two test instances (KDD-A and

KDD-B) related to SCD and representing data from the KDD Cup 2010 Challenge

on educational data mining (Yu et al., 2011). Further, we selected two additional in-

stances (LPCRE-B and LPCRE-D) from the Florida Sparse Matrix Collection (Davis

and Hu, 2011) that arise from linear programming problems. We consider the bipar-

tite graphs representation of the sparsity structures of these matrices (instances),

G = (V1, V2, E), where the set V1 corresponds to the rows and the set V2 corresponds

to the columns, and the edge set E corresponds to the nonzero entries. In partial

distance-2 coloring, we color only the vertex set V2 (please refer Section 4.5 for defi-

nition and other details of partial distance-2 coloring).

As additional test cases from another application domain, we experimented on two

bipartite graph inputs obtained from the biology domain—viz. gene-drug interactions

(Griffith et al., 2013) and host-pathogen network (Wardeh et al., 2015). Balanced

coloring can be used as a way to determine efficient partial orderings of vertices

for parallel processing of such networks in co-clustering applications (Hanisch et al.,

2002). The testsets used in our experiments are summarized in Table 4.9.

Table 4.10 shows the parallel runtimes for two balancing schemes—VFF and

Sched-Rev—on the AMD platform. We note that these are bipartite graph implemen-

tations of those schemes. For Sched-Rev we provide results from running the algo-

rithm for one round and for three rounds (simply iterated three times). We observed

relatively better performance from three rounds than two rounds. The distributions

89

(a) KDD-A (b) KDD-B (c) LPCRE-B

(d) LPCRE-D (e) Gene-Drug (f) Host-
Pathogen

Figure 4.6 Partial distance-2 coloring: The distributions of color class
sizes produced by the different balanced coloring schemes (horizontal axis
corresponds to colors (bins) and vertical axis (in log2 scale) to sizes of color
classes).

of color class sizes while using the different schemes are provided in Figure 4.6. We

observe that the quality of output from Sched-Rev with three rounds is comparable to

VFF, but the execution time is relatively high. Sched-Rev (with one round) provides

faster execution times with comparable quality. The corresponding distributions of

color class sizes from the unbalanced coloring scheme (Greedy-FF) are also provided

in Figure 4.6 (in red). Overall, the results demonstrate the general effectiveness of

our balancing schemes for partial distance-2 balanced coloring as well.

90

4.8 Extensions to Balanced Coloring

In this section, we present two extensions to balanced coloring, motivated by two

different practical considerations.

4.8.1 Weighted Balancing

Color class sizes (the number of vertices having the same color) form the basis for the

balancing schemes presented thus far. This assumes that the work associated with

each vertex is uniform in the end application. However, in some applications, the

workload may vary from vertex to vertex. For such scenarios, a weighted treatment

of vertices may be more appropriate. Following a similar approach as in Robert K.

Gjertsen, Jones, and Plassmann, 1996, we implemented and evaluated a weighted ex-

tension for balancing, by setting the weight of a vertex to its degree. We implemented

by modifying the VFF balancing scheme as follows. Let ω(u) denote the weight of

vertex u. Then, the target size for each color C is given by:

γω =

∑
u∈C

ω(u)

|C|

4.8.2 Lower Bound-based Coloring

One purpose of balancing is to ensure a uniform distribution of parallel workload

across color classes in the end application. An alternative, more pragmatic strategy

would be to not aim for a balancing across all color classes, but rather focus on

ensuring that the smaller color classes are filled to a threshold size, sufficient to

utilize the threads efficiently. Such a scheme could have an advantage in reducing

the balancing cost—because fewer vertex migrations are needed. This motivated

our second extension. We modified the VFF scheme to take as input a lower bound

91

(threshold) size (denoted by γ`) for each color class. During the process of balancing,

we consider only bins (colors) that have less than the threshold as potential candidates

for receiving vertices (from larger bins). Therefore, the resulting color size distribution

is expected to be less balanced compared to the other balancing schemes, whereas the

overhead for balancing is reduced. We denote this modified scheme as “LB-based”

coloring scheme.

4.8.3 Experimental Results

We compared the two extensions outlined above (weighted and LB-based) against the

“baseline” schemes of VFF balancing and the Greedy-FF (initial coloring). Fig. 4.7

and Table 4.11 show the results of our comparative evaluation.

(a) CNR (b) uk2002

Figure 4.7 Balanced coloring extensions: Distribution of color class
sizes produced by the two distance-1 balanced coloring extensions (Weighted,
LowerBound) compared to VFF balancing (without weights or lower-bounds)
and and initial coloring (Greedy-FF). Horizontal axis corresponds to colors
(bins) and vertical axis to sizes of color classes (measured in the number of
vertices).

Fig. 4.7 shows the balancing quality produced by the extension schemes and the

baseline schemes. As can be expected, the weighted scheme does not exhibit a good

balance based on the number of vertices per color bin. However, if one were to take

92

into account the sum of the weights of the vertices per bin, then the weighted scheme

does indeed achieve a balance. The LB-based scheme also shows an expected behavior,

where the color classes that contain less than γ` vertices in the initial coloring are

the only classes to receive new vertices into their bins (until the lower bound is met).

This implies that the balancing quality achieved by the LB-scheme is sub-optimal

but the benefits are expected to lie in its reduced balancing cost (which we evaluate

next).

Table 4.11 shows the run-times for the balancing step and the community detection

step (application impact) corresponding to the extension schemes and the baseline

schemes. In the case of weighted scheme, the balancing cost is comparable to that

of VFF balancing. As for the community detection step, the benefits due to using

vertex weights during balancing are not readily realized. This is because our parallel

implementation of the community detection step (Grappolo) currently uses a vertex-

based parallelization instead of an edge-based parallelization. The latter is more

conducive to the weighted scheme. As part of our future study, we plan to implement

and evaluate such an edge-based scheme in Grappolo, to better exploit the benefits

of the weighted scheme.

In the case of LB-based scheme, we observe that the balancing cost is significantly

smaller than the VFF balancing cost. This confirms our expectation of reduced work

during the balancing procedure through the use of a lower bound size. Note that this

may cause sub-optimal balancing (as shown in Figure 4.7), which in turn may affect

the end application parallel performance. Table 4.11 shows a marginal increase in

the run-times for community detection as per this expectation. In fact, as the lower

bound value (γ`) is further reduced, the size distribution of the color classes would

tend closer to the skewed distribution of the initial coloring.

93

T
a
b
le

4
.1

A
co

m
p
re

h
en

si
ve

li
st

of
b
al

an
ci

n
g

st
ra

te
gi

es
fo

r
d
is

ta
n
ce

-1
co

lo
ri

n
g

p
re

se
n
te

d
an

d
st

u
d
ie

d
in

th
is

p
ap

er
.

T
h
e

in
p
u
t

gr
ap

h
is

d
en

ot
ed

b
y
G

=
(V
,E

).
T

h
e

sa
m

e
se

t
of

st
ra

te
gi

es
ar

e
al

so
ex

te
n
d
ed

to
ob

ta
in

a
b
al

an
ce

d
p
ar

ti
al

d
is

ta
n
ce

-2
co

lo
ri

n
g

on
b
ip

ar
ti

te
gr

ap
h

in
p
u
ts

.

S
tr

a
te

g
y

C
a
te

g
o
ry

D
e
sc

ri
p
ti

o
n

G
re

ed
y-

L
U

ab
in

it
io

R
u
n

A
lg

or
it

h
m

2
w

it
h

L
U

co
lo

r
ch

oi
ce

am
on

g
p

er
m

is
si

b
le

co
lo

rs
.

G
re

ed
y-

R
an

do
m

ab
in

it
io

R
u
n

A
lg

or
it

h
m

2
w

it
h

R
an

d
om

co
lo

r
ch

oi
ce

am
on

g
p

er
m

is
si

b
le

co
lo

rs
.

S
hu

ffl
in

g-
u

n
sc

he
du

le
d

gu
id

ed
R

u
n

A
lg

or
it

h
m

2
w

it
h

F
F

co
lo

r
ch

oi
ce

st
ra

te
gy

.
B

as
ed

on
th

e
ob

ta
in

ed

co
lo

ri
n
g

id
en

ti
fy

ov
er

-f
u
ll

an
d

u
n
d
er

-f
u
ll

b
in

s.
M

ov
e

se
le

ct
ve

rt
ic

es
fr

om

ov
er

-f
u
ll

to
u
n
d
er

-f
u
ll

b
in

s
w

it
h
ou

t
ch

an
gi

n
g

th
e

n
u
m

b
er

of
co

lo
r

cl
as

se
s.

S
p

ec
ia

li
za

ti
on

s
in

cl
u
d
e

V
er

te
x
-c

en
tr

ic
(V

F
F

)
an

d
C

ol
or

-c
en

tr
ic

(C
L

U
).

S
hu

ffl
in

g-
sc

he
du

le
d

gu
id

ed
R

u
n

A
lg

or
it

h
m

2
w

it
h

F
F

co
lo

r
ch

oi
ce

st
ra

te
gy

.
B

as
ed

on
th

e
ob

ta
in

ed

co
lo

ri
n
g

id
en

ti
fy

ov
er

-f
u
ll

an
d

u
n
d
er

-f
u
ll

b
in

s.
M

ov
e

se
le

ct
ve

rt
ic

es
fr

om

ov
er

-f
u
ll

to
u
n
d
er

-f
u
ll

b
in

s
in

a
sc

h
ed

u
le

d
m

an
n
er

w
it

h
ou

t
ch

an
gi

n
g

th
e

n
u
m

b
er

of
co

lo
r

cl
as

se
s.

R
ec

ol
or

in
g

gu
id

ed
R

u
n

A
lg

or
it

h
m

2
w

it
h

F
F

co
lo

r
ch

oi
ce

st
ra

te
gy

.
L

et
th

e
n
u
m

b
er

of
co

lo
rs

u
se

d
b

e
C

.
L

et
γ

=
|V
|/
C

.
C

on
st

ru
ct

an
or

d
er

ed
se

t
of

ve
rt

ic
es
W

=

{V
(C

),
V

(C
−

1)
,.
..
,V

(1
)}

,
w

h
er

e
V

(i
)

d
en

ot
es

th
e

se
t

of
ve

rt
ic

es
h
av

in
g

th
e

co
lo

r
i.

R
e-

co
lo

r
ve

rt
ic

es
in
W

in
th

at
or

d
er

u
si

n
g

A
lg

or
it

h
m

2
su

ch

th
at

in
ea

ch
st

ep
,

a
ve

rt
ex

v
is

as
si

gn
ed

th
e

sm
al

le
st

p
er

m
is

si
b
le

co
lo

r
k

su
ch

th
at

th
e

si
ze

of
b
in
k

is
le

ss
th

an
γ

.

94

Table 4.2 Input statistics for the graphs used in our distance-1 coloring
study.

Input Num. Num. Degree stats

graph vertices (n) edges (m) max. avg.

random2 100,000 9,994,356 263 199.89

CNR 325,557 2,738,970 18,236 16.28

coPapersDBLP 540,486 15,245,729 3,299 56.41

rgg11-22 4,194,304 27,306,228 23 13.02

Channel 4,802,000 42,681,372 18 17.77

MG2 11,005,829 674,142,381 5,466 122.50

NLPKKT200 16,240,000 215,992,816 27 26.60

uk-2002 18,520,486 261,787,258 194,955 28.27

Europe-osm 50,912,018 54,054,660 13 2.12

95

T
a
b
le

4
.3

Q
u
al

it
y

of
b
al

an
ce

ob
ta

in
ed

b
y

th
e

d
iff

er
en

t
h
eu

ri
st

ic
s

on
d
iff

er
en

t
in

p
u
ts

.
E

n
tr

ie
s

in
ea

ch
ce

ll
sh

ow
th

e
R

el
at

iv
e

S
ta

n
d
ar

d
D

ev
ia

ti
on

(i
n

%
)

of
co

lo
r

cl
as

s
si

ze
s

ob
ta

in
ed

b
y

a
gi

ve
n

h
eu

ri
st

ic
(t

h
e

lo
w

er
th

e
va

lu
es

,
th

e
b

et
te

r
th

e
b
al

an
ce

).
T

h
e

gu
id

ed
sc

h
em

es
V

F
F

an
d

C
L

U
p
ro

d
u
ce

th
e

sa
m

e
n
u
m

b
er

of
co

lo
rs

as
th

e
in

it
ia

l
co

lo
ri

n
g

sc
h
em

e
(G

re
ed

y
-F

F
).

T
h
e

n
u
m

b
er

of
co

lo
rs

p
ro

d
u
ce

d
b
y

G
re

ed
y
-F

F
,

R
ec

ol
or

in
g

an
d

th
e

tw
o

ab
in

it
io

sc
h
em

es
is

p
ro

v
id

ed
in

p
ar

en
th

es
is

(n
ex

t
to

th
ei

r
re

sp
ec

ti
ve

R
S
D

va
lu

es
).

In
p
u
t

In
it

.
co

lo
ri

n
g

G
u
id

e
d

sc
h
e
m

e
s

A
b
in

it
io

sc
h
e
m

e
s

gr
ap

h
G

re
ed

y
-F

F
V

F
F

C
L

U
S
ch

ed
-R

ev
R

ec
ol

or
in

g
G

re
ed

y
-L

U
G

re
ed

y
-R

an
d
om

ra
n
d
om

2
37

.1
7%

(5
2)

0
.0

8
%

0.
09

%
26

.2
1%

22
.7

4%
(5

7)
9.

10
%

(8
2)

21
.0

4%
(7

3)

C
N

R
58

7.
73

%
(8

5)
0
.0

3
%

0.
04

%
16

.4
4%

13
.8

1%
(8

8)
12

.0
3%

(2
11

)
24

.2
9%

(2
09

)

co
P

ap
er

sD
B

L
P

34
2.

41
%

(3
36

)
0.

69
%

0
.1

5
%

12
.0

1%
10

.1
7%

(3
40

)
0
.1

1
%

(3
37

)
23

.1
5%

(3
38

)

rg
g1

1-
22

12
9.

03
%

(1
5)

0
.0

0
%

0
.0

0
%

14
.6

9%
26

.6
6%

(1
5)

4.
29

%
(1

7)
38

.9
3%

(1
6)

C
h
an

n
el

12
8.

99
%

(1
2)

0
.0

0
%

7.
16

%
7.

55
%

35
.7

5%
(1

4)
4.

84
%

(1
6)

20
.0

5%
(1

7)

M
G

2
12

72
.3

1%
(2

,1
43

)
0.

38
%

0
.2

1
%

9.
57

%
25

.3
4%

(2
33

5)
18

.0
9%

(2
16

9)
94

.3
7%

(2
17

2)

N
L

P
K

K
T

20
0

99
.8

8%
(4

)
0
.0

0
%

17
.6

5%
7.

95
%

72
.1

3%
(6

)
0.

00
%

(2
3)

1.
64

%
(2

3)

u
k
-2

00
2

18
85

.1
5%

(9
43

)
0.

08
%

0
.0

1
%

4.
88

%
3.

53
%

(9
45

)
2.

94
%

(1
01

0)
28

.3
4%

(1
01

8)

E
u
ro

p
e-

os
m

12
6.

87
%

(5
)

0
.0

0
%

0
.0

0
%

6.
70

%
39

.9
0%

(6
)

0.
00

%
(7

)
12

.0
7%

(6
)

96

Table 4.4 Parallel run-time (in seconds) of the VFF scheme on different
number of cores of the Tilera platform. Times shown are only for the bal-
ancing procedure (i.e., initial coloring time is not included).

Input Number of threads

graph 1 2 4 8 16 32 36

Channel 7.55 4.57 3.37 2.59 2.23 2.06 2.13

uk-2002 163.22 84.68 45.59 26.32 16.87 12.11 11.66

MG2 460.22 254.66 154.16 85.97 54.56 34.95 33.29

Table 4.5 Parallel run-times (in seconds) of the VFF scheme on different
number of cores of the AMD x86 platform. Times shown are only for the
balancing procedure (i.e., initial coloring time is not included).

Input Number of threads

graph 1 2 4 8 16 32

CNR 0.15 0.17 0.15 0.15 0.15 0.14

Channel 0.79 1.79 1.77 2.27 1.59 1.70

uk-2002 35.60 23.30 14.03 10.31 9.49 8.74

Europe 11.78 15.98 20.55 19.90 18.97 16.96

MG2 70.67 44.14 24.00 14.84 10.76 10.69

Table 4.6 Parallel run-times (in seconds) of the three balancing schemes
{VFF, Sched-Rev and Recoloring} on 16 Tilera cores.

Input graph VFF Sched-Rev Recoloring

Channel 2.23 2.19 3.28

uk-2002 16.87 8.71 36.97

MG2 54.56 27.70 185.19

97

Table 4.7 Runtime (in seconds) comparison for the Guided VFF scheme
vs. Ab initio (Greedy-LU) balancing scheme. All runs were performed on 32
threads of the AMD x86 platform.

Input graph Guided Ab initio

Init. coloring VFF (Greedy-LU)

CNR 0.15 0.14 0.19

Channel 1.29 1.70 3.21

uk-2002 5.74 8.74 10.1

Europe 8.69 16.96 21.85

MG2 27.75 10.69 36.88

98

T
a
b
le

4
.8

E
va

lu
at

io
n

of
th

e
b
al

an
ci

n
g

h
eu

ri
st

ic
s

on
a

p
ar

al
le

l
co

m
m

u
n
it

y
d
et

ec
ti

on
ap

p
li
ca

ti
on

,
G

ra
pp

ol
o.

A
ll

ti
m

in
g

re
su

lt
s

ar
e

in
se

co
n
d
s

an
d

w
er

e
ob

ta
in

ed
on

36
th

re
ad

s
of

th
e

T
il
er

a
m

an
y
co

re
p
la

tf
or

m
.

In
p
u
t

w
/
o

b
a
la

n
ce

d
co

lo
ri

n
g

w
/

b
a
la

n
ce

d
co

lo
ri

n
g

gr
ap

h
R

u
n
-t

im
e

M
o
d
.

R
u
n
-t

im
e

M
o
d
.

In
it

.
co

lo
ri

n
g

C
om

m
.

D
ec

.
In

it
.

co
lo

ri
n
g

V
F

F
ba

la
n

ci
n

g
C

om
m

.
D

ec
.

C
N

R
0.

15
3.

98
0.

91
24

0.
15

0.
15

4.
16

0.
91

19

C
h
an

n
el

1.
87

38
.8

5
0.

93
48

1.
87

2.
13

2
0
.9

4
0.

93
28

M
G

2
37

.3
1

95
4.

81
0.

99
84

37
.3

1
33

.2
9

4
8
3
.8

0
0.

99
84

u
k
-2

00
2

7.
83

40
6.

81
0.

98
95

7.
83

11
.6

6
2
5
4
.2

7
0.

98
94

E
u
ro

p
e-

os
m

17
.9

5
35

8.
26

0.
99

88
17

.9
5

20
.9

8
36

9.
19

0.
99

88

99

Table 4.9 Statistics on structure of the bipartite real-world graphs G =
(V1, V2, E) used in our study. Recall that ∆ corresponds to maximum degree.

Input |V1| |V2| |E| ∆(V1) ∆(V2)

KDD-A 8.4×106 2.0×107 3.0×108 85 6.7×104

KDD-B 1.9×107 2.9×107 5.6×108 75 3.0×106

LPCRE-B 9.6×103 7.7×104 2.6×105 844 14

LPCRE-D 8.0×103 7.3×104 2.4×105 808 13

Gene-Drug 3.0×103 1.4×104 2.9×104 283 144

Host-Pathogen 8.9×103 6.3×103 2.2×104 166 1631

Table 4.10 Parallel run-times (in seconds) of unbalanced and balanced
{VFF, Sched-Rev} partial distance-2 schemes on the AMD platform. 32
cores were used for the KDD inputs, and 16 cores were used for the remaining
inputs (due to smaller size). All runs were performed to color vertices in V2.

Input Init. VFF Sched-Rev

graph coloring balancing (1 round) (3 rounds)

KDD-A 213 130 117 305

KDD-B 606 354 154 424

LPCRE-B 0.08 0.1 0.12 0.29

LPCRE-D 0.08 0.09 0.11 0.24

Gene-Drug 0.008 0.02 0.04 0.07

Host-Pathogen 0.005 0.01 0.03 0.04

100

Table 4.11 Run-time evaluation of our extensions (weighted and LB-based)
in comparison to the VFF balancing scheme and the Greedy-FF (initial col-
oring) scheme. All executions were performed on 16 threads of our x86
platform.

Input Steps Greedy-FF VFF Weighted LB-based

(γ` =1024)

CNR
Balancing 0 0.15 0.15 0.07

Comm. Det. 1.30 1.18 1.42 1.25

MG2
Balancing 0 10.33 10.94 7.86

Comm. Det. 204.72 122.67 123.31 149.45

uk-2002
Balancing 0 9.42 9.75 3.59

Comm. Det. 50.91 41.25 44.05 51.08

101

CHAPTER 5

CONCLUSION

In this dissertation, we addressed two graphs operations: community detection and

balanced graph coloring. For community detection, we introduced effective heuristics

for parallelizing an important and widely used community detection method called the

Louvain method. As for balanced graph coloring, we provided a thorough treatment of

the problem, with our contributions spanning algorithm development, parallelization,

and application.

5.1 Community Detection

We attempted to address the dual objectives of maximizing concurrency, and retaining

the quality with respect to the serial implementation. To this end, we made two

main contributions in this dissertation. First, we presented a detailed discussion of

the challenges pertaining to parallelization of the Louvain algorithm for community

detection, and described effective heuristics to extract parallelism from the algorithm.

Second, we empirically supported the observations with a set of carefully conducted

experiments using 11 real-world networks representing a diverse set of application

domains. Compared to the serial Louvain implementation (Blondel et al., 2008),

102

our parallel implementation is able to produce community outputs with a higher

modularity for many of the inputs tested, in comparable number of iterations, while

providing real speedups of up to 16x using 32 threads. In addition, our parallel

implementation was able to scale linearly up to 16 threads for larger inputs.

5.2 Balanced Coloring

We presented multiple balancing schemes and developed parallel implementations on

conventional multicores and an emerging manycore platform (Tilera). We evaluated

their effectiveness in achieving a balanced coloring and how such results translate

to gains in an application’s performance using community detection as a motivating

case-study. Coloring is used in a number of parallel computing applications to identify

independent tasks, and we expect the detailed study presented in this dissertation

involving a family of balancing algorithms and their implementations on emerging

architectures to serve as a valuable reference to application developers who seek to

improve parallel performance of their applications using coloring. We believe that

the mathematical discussion, heuristics, and experimental evidence of these two graph

operations provided in this dissertation will benefit a wide range of researchers dealing

with increasingly larger data sets and continually weaker serial hardware performance.

5.3 Future Works

In this section we propose multiple future work elements.

i) Modularity: As mentioned in Section 3.1 and Section 3.2, modularity is the we

use to measure the quality of communities detected. However, it is not a perfect

metric because issues such as resolution limit have been identified (Fortunato

103

and Barthelemy, 2007). Therefore, a future work is to investigate the definitions

of a more suitable metric that could be used to better assess the quality of

communities in the context of specific application domains.

ii) Vertex ordering: As mentioned in Section 3.3, the Louvain method is an multi-

phase iterative process where operations are performed on each of the vertex. In

Blondel’s paper (Blondel et al., 2008), they mention that the order of vertex

processing has negligible influence on the final output modularity. However, we

found that not to be the case for some of the inputs tested—i.e., the order

indeed changes the community configurations (with or without changing the

modularity). Therefore the impact of vertex ordering on the overall quality

and convergence for an iterative algorithm like Louvain needs to be studied more

carefully.

iii) Extensions to vertex following: As mentioned in Section 3.5.3, the vertex

following heuristic is only a partial solution toward reducing the runtime. More

specifically, in its current flavor, the vertex following heuristic folds single-degree

vertices into their neighboring communities, thereby eliminating them from the

iterative steps. Instead of limiting the heuristic’s reach to only the single-degree

vertices, there is a way to extend it to longer paths until such a point where fur-

ther collapsing of subpaths into communities could potentially decrease the net

modularity. This idea can be thought of in a similar vein as the k-core decompo-

sition routine (Alvarez-Hamelin et al., 2005), except without prior information

on the value of a suitable k or fixing the value of k. However more research is

needed to expand this idea and make it effective in practice.

iv) Dynamic communities: As mentioned in Section 3.7, we proposed to incre-

mentally detect dynamic communities based on the notion of communities de-

rived from individual timesteps. However, a more complete and mathematically

104

rigorous definition would directly account for a dynamic community to span

across variable number of timesteps. More investigation is necessary to estab-

lish the relationship between incremental detection and a holistic detection of

communities directly from a dynamic graph.

v) Distributed implementation: To enhance the reach of our current implemen-

tation to extreme-scale graphs, it is important to scale up the amount of memory

and processing power available for computation. To achieve this, therefore, we

can think of implementing our community detection and coloring operations on

distributed memory platforms. We have a preliminary version of a distributed

implementation for community detection. The current version does not how-

ever, provide the benefits associated with using the coloring heuristic. We are

currently exploring alternative ways to derive maximum concurrency on a dis-

tributed platform.

105

BIBLIOGRAPHY

Alvarez-Hamelin, José Ignacio et al. (2005). “K-core decomposition of internet graphs:

hierarchies, self-similarity and measurement biases”. In: arXiv preprint cs/0511007.

Bader, David and Joe McCloskey (2009). “Modularity and graph algorithms”. In:

SIAM AN10 Minisymposium on Analyzing Massive Real-World Graphs, pp. 12–

16.

Bader, David A et al. (2012). “Graph partitioning and graph clustering”. In: 10th

DIMACS Implementation Challenge Workshop.

Barabási, Albert-László (2009). “Scale-free networks: a decade and beyond”. In: sci-

ence 325.5939, pp. 412–413.

Batagelj, Vladimir and Matjaž Zaveršnik (2002). “Generalized cores”. In: arXiv preprint

cs/0202039 (2002).

Bell, Shane et al. (2008). “Tile64-processor: A 64-core soc with mesh interconnect”. In:

Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.

IEEE International. IEEE, pp. 88–598.

Berry, Jonathan W et al. (2011). “Tolerating the community detection resolution

limit with edge weighting”. In: Physical Review E 83.5, p. 056119.

Blazewick, J. et al. (2001). Scheduling computer and manufacturing processes. 2nd

edition. Berlin: Springer.

106

Blondel, Vincent et al. (2008). “Fast unfolding of communities in large networks”. In:

Journal of Statistical Mechanics: Theory and Experiment, P10008.

Bodleander, H.L. and F.V. Fomin (2005). “Equitable colorings of bounded treewidth

graphs”. In: Theoret. Comput. Sci. 349.1, pp. 22–30.

Brandes, Ulrik et al. (2008). “On modularity clustering”. In: Knowledge and Data

Engineering, IEEE Transactions on 20.2, pp. 172–188. (Visited on 10/10/2013).

Catalyurek, Umit et al. (2012). “Graph coloring algorithms for multi-core and mas-

sively multithreaded architectures”. In: Parallel Computing 38.11, pp. 576–594.

Chavarŕıa-Miranda, Daniel, Mahantesh Halappanavar, and Ananth Kalyanaraman

(2014). “Scaling graph community detection on the Tilera Many-core architec-

ture”. In: IEEE International Conference on High Performance Computing (HiPC).

Goa, India, p. 11.

Chen, B.L. and K.W. Lih (1994). “Equitable coloring of trees”. In: J. Combin. Theory

Ser. B 61, pp. 83–87.

Connor, Richard C, Michael R Heithaus, and Lynne M Barre (2001). “Complex so-

cial structure, alliance stability and mating access in a bottlenose dolphin super-

alliance”. In: Proceedings of the Royal Society of London B: Biological Sciences

268.1464, pp. 263–267.

Culberson, Joseph and Feng Luo (1996). “Exploring the k-colorable landscape with

iterated greedy”. In: Cliques, coloring and satisfiability: Second DIMACS imple-

mentation challenge. Ed. by DS Johnson and MA Trick. American Math. Society,

pp. 245–284.

Daily, Jeff et al. (2015). “A work stealing based approach for enabling scalable optimal

sequence homology detection”. In: Journal of Parallel and Distributed Computing

79–80. Special Issue on Scalable Systems for Big Data Management and Analytics,

107

pp. 132 –142. issn: 0743-7315. url: http : //www. sciencedirect . com/science/

article/pii/S0743731514001518.

Dániel, MARX (2004). “Graph colouring problems and their applications in schedul-

ing”. In: Periodica Polytech., Electr. Eng 48.1-2, pp. 11–16.

Davis, Timothy A. and Yifan Hu (2011). “The University of Florida Sparse Matrix

Collection”. In: ACM Trans. Math. Softw. 38.1, 1:1–1:25.

DIMACS10. The 10th DIMACS Implementation Challenge - Graph Partitioning and

Graph Clustering. url: http : / / www . cc . gatech . edu / dimacs10/ (visited on

10/11/2013).

Duraisamy, Karthi et al. (2015). “High performance and energy efficient wireless NoC-

enabled multicore architectures for graph analytics”. In: Proceedings of the 2015

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems. IEEE Press, pp. 147–156.

— (2016). “High-Performance and Energy-Efficient Network-on-Chip Architectures

for Graph Analytics”. In: ACM Transactions on Embedded Computing Systems

(TECS) 15.4, p. 66.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson (1997). “Approximation Algorithms

for Bin Packing: A Survey”. In: Approximation Algorithms for NP-hard Problems.

Ed. by Dorit Hochbaum. PWS Publishing Company, pp. 46–86.

Erdös, P., A. Rényi, and V.T. Sós, eds. (1970). Combinatorial Theory and its Appli-

cation. London: North-Holland.

Erdös, Paul and Alfréd Rényi (1960). “On the evolution of random graphs”. In: Publ.

Math. Inst. Hung. Acad. Sci 5.17-61, p. 43.

Fortunato, Santo (2010). “Community detection in graphs”. In: Physics Reports

486.3-5, pp. 75–174. issn: 03701573. (Visited on 07/09/2012).

108

Fortunato, Santo and Marc Barthelemy (2007). “Resolution limit in community de-

tection”. In: Proceedings of the National Academy of Sciences 104.1, pp. 36–41.

Furmańczyk, Hanna (2004). “Equitable coloring of graphs”. In: Graph Colorings. Ed.

by Marek Kubale. Providence, Rhode Island: American Mathematical Society,

pp. 35–53.

Gebremedhin, Assefaw, Fredrik Manne, and Alex Pothen (2005). “What color is

your Jacobian? Graph coloring for computing derivatives”. In: SIAM Review 47.4,

pp. 629–705.

Gebremedhin, Assefaw Hadish and Fredrik Manne (2000). “Scalable parallel graph

coloring algorithms”. In: Concurrency - Practice and Experience 12.12, pp. 1131–

1146.

Girvan, Michelle and Mark EJ Newman (2002). “Community structure in social and

biological networks”. In: Proceedings of the National Academy of Sciences 99.12,

pp. 7821–7826. issn: 0027-8424.

Granovetter, Mark S (1973). “The strength of weak ties”. In: American journal of

sociology, pp. 1360–1380.

Griffith, Malachi et al. (2013). “DGIdb: mining the druggable genome”. In: Nature

methods 10.12, pp. 1209–1210.

Hajnal, A. and E. Szemerédi (1970). “Proof of a conjecture of P. Erdös”. In: Com-

binatorial Theory and its Application. Ed. by P. Erdös, A. Rényi, and V.T. Sós.

London: North-Holland, pp. 601–623.

Halappanavar, Mahantesh (2009). “Algorithms for vertex-weighted matching in graphs

(Ph.D. thesis)”. PhD thesis. Norfolk, VA: Old Dominion University.

Hanisch, Daniel et al. (2002). “Co-clustering of biological networks and gene expres-

sion data”. In: Bioinformatics 18.suppl 1, S145–S154.

109

Hendrickson, Bruce and Tamara G Kolda (2000). “Graph partitioning models for

parallel computing”. In: Parallel Computing 26.12, pp. 1519–1534. issn: 0167-

8191.

Jensen, Tommy R and Bjarne Toft (2011). Graph coloring problems. Vol. 39. John

Wiley & Sons.

Jones, Mark T. and Paul Plassmann (1993). “A parallel graph coloring heuristic”. In:

SIAM Journal of Scientific Computing 14, pp. 654–669.

Kalyanaraman, Ananth et al. (2016). “Fast Uncovering of Graph Communities on a

Chip: Toward Scalable Community Detection on Multicore and Manycore Plat-

forms”. In: Foundations and Trends R© in Electronic Design Automation 10.3,

pp. 145–247.

Kernighan, Brian W and Shen Lin (1970). “An efficient heuristic procedure for par-

titioning graphs”. In: The Bell system technical journal 49.2, pp. 291–307.

Khan, Arif et al. (2016). “Efficient approximation algorithms for weighted b-matching”.

In: SIAM Journal on Scientific Computing 38.5, S593–S619.

Kubale, Marek, ed. (2004). Graph Colorings. Providence, Rhode Island: American

Mathematical Society.

Louvain. findcommunities. url: https : // sites . google . com/site/findcommunities/

(visited on 10/11/2013).

Lu, Hao, Mahantesh Halappanavar, and Ananth Kalyanaraman (2015). “Parallel

heuristics for scalable community detection”. In: Parallel Computing 47, pp. 19–

37.

Lu, Hao et al. (2014). “Parallel heuristics for scalable community detection”. In:

Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE

International. IEEE, pp. 1374–1385.

110

Lu, Hao et al. (2015). “Balanced coloring for parallel computing applications”. In:

Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-

tional. IEEE, pp. 7–16.

Lu, Hao et al. (2016). “Algorithms for Balanced Graph Colorings with Applications in

Parallel Computing”. In: IEEE Transactions on Parallel and Distributed Systems.

Manne, Fredrik and Erik Boman (2005). “Balanced greedy colorings of sparse random

graphs”. In: The Norwegian Informatics Conference, NIK’2005, pp. 113–124.

Melhem, R.G. and V.S. Ramarao (1988). “Multicolor reorderings of sparse matrices

resulting from irregular grids”. In: ACM Transaction of Mathematical Software

14, pp. 117–138.

Meusel, Robert et al. Web Data Commons - Hyperlink Graphs. url: http://webdatacommons.

org/hyperlinkgraph (visited on 2014).

Meyer, Walter (1973). “Equitable coloring”. In: The American Mathematical Monthly

80.8, pp. 920–922.

Milgram, Stanley (1967). “The small world problem”. In: Psychology today 2.1, pp. 60–

67.

Newman, M. E. J (2003). “The structure and function of complex networks”. In:

SIAM Review 45, pp. 167–256.

— (2004a). “Analysis of weighted networks”. In: Phys. Rev. E 70.5, p. 056131.

Newman, M. E. J. and M. Girvan (2004). “Finding and evaluating community struc-

ture in networks”. In: Physical Review E 69.2, p. 026113.

Newman, Mark EJ (2004b). “Fast algorithm for detecting community structure in

networks”. In: Physical review E 69.6, pp. 66–133.

Papadopoulos, Nicholas et al. (2012). “Binding and neutralization of vascular en-

dothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab

and bevacizumab”. In: Angiogenesis 15.2, pp. 171–185.

111

Penrose, Mathew (2003). Random Geometric Graphs. Oxford University Press. isbn:

0198506260.

Pesantez-Cabrera, Paola and Ananth Kalyanaraman (2016). “Detecting Communities

in Biological Bipartite Networks”. In: Proceedings of the 7th ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics.

ACM, pp. 98–107.

Pommerell, C., M. Annaratone, and W. Fichtner (1992). “A set of new mapping and

coloring heuristics for distributed-memory parallel processors”. In: SIAM J. Sci.

Statist. Comput. 13, pp. 194–226.

Reddy, P Krishna et al. (2002). “A graph based approach to extract a neighborhood

customer community for collaborative filtering”. In: International Workshop on

Databases in Networked Information Systems. Springer, pp. 188–200.

Robert K. Gjertsen, Jr., Mark T. Jones, and Paul Plassmann (1996). “Parallel heuris-

tics for improved, balanced graph colorings”. In: Journal of Parallel and Dis-

tributed Computing 37, pp. 171–186.

Scherrer, Chad et al. (2012). “Feature clustering for accelerating parallel coordinate

descent”. In: Advances in Neural Information Processing Systems, pp. 28–36.

Smith, B., P.E. Bjørstad, and W. Gropp (1996). Domain Decomposition; Parallel mul-

tilevel methods for elliptic Partial Differential Equations. Cambiridge: Cambridge

University Press.

Solomonoff, Ray and Anatol Rapoport (1951). “Connectivity of random nets”. In:

The bulletin of mathematical biophysics 13.2, pp. 107–117.

Steinhaeuser, Karsten, Nitesh V Chawla, and Auroop R Ganguly (2011). “Complex

networks as a unified framework for descriptive analysis and predictive modeling

in climate science”. In: Statistical Analysis and Data Mining 4.5, pp. 497–511.

Sylvester, John Joseph (1878). “Chemistry and algebra”. In: Nature 17, p. 284.

112

Traag, Vincent A, Paul Van Dooren, and Y Nesterov (2011). “Narrow scope for

resolution-limit-free community detection”. In: Physical Review E 84.1, p. 016114.

Tucker, A. (1973). “Perfect graphs and an application to optimizing municipal ser-

vices”. In: SIAM Review 15, pp. 585–590.

Wang, W. and K. Zhang (2000). “Equitable colorings of line graphs and complete

r-partite graphs”. In: Systems Sci. Math. Sci. 13.2, pp. 190–194.

Wardeh, Maya et al. (2015). “Database of host-pathogen and related species interac-

tions, and their global distribution”. In: Scientific data 2.

Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of small-

worldnetworks”. In: nature 393.6684, pp. 440–442.

Wu, Changjun, Ananth Kalyanaraman, and William R Cannon (2012). “pGraph:

efficient parallel construction of large-scale protein sequence homology graphs”.

In: Parallel and Distributed Systems, IEEE Transactions on 23.10, pp. 1923–1933.

issn: 1045-9219.

Yap, H.P. and Y. Zhang (1998). “Equitable colorings of planar graphs”. In: J. Combin.

Math. Combin. Comput. 27, pp. 97–105.

Yu, Hsiang-Fu et al. (2011). “Feature engineering and classifier ensemble for KDD

Cup 2010”. In: In JMLR Workshop and Conference Proceedings.

Yule, G Udny (1925). “A mathematical theory of evolution, based on the conclusions

of Dr. JC Willis, FRS”. In: Philosophical transactions of the Royal Society of

London. Series B, containing papers of a biological character 213, pp. 21–87.

113

	Title Page
	Copyright
	Graduate Committee Approval
	ACKNOWLEDGEMENT
	Acknowledgments
	ABSTRACT
	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Contributions of this dissertation
	1.1.1 Key Publications

	1.2 Organization of the dissertation

	2 Background and Notation
	2.1 Background of Graph Theory
	2.2 Basic Notation

	3 Community Detection
	3.1 Problem Overview
	3.2 Problem statement and notation
	3.3 The Louvain algorithm
	3.4 Challenges in parallelization
	3.4.1 Negative gain scenario
	3.4.2 Swap and local maxima scenarios

	3.5 Parallel heuristics
	3.5.1 The minimum label heuristic
	3.5.2 Coloring
	3.5.3 The vertex following heuristic
	3.5.4 Parallel algorithm
	3.5.5 Implementation
	3.5.6 Analysis

	3.6 Experimental evaluation
	3.6.1 Experimental setup
	3.6.2 Performance evaluation
	3.6.3 Effect of multiphase coloring
	3.6.4 Effect of varying the modularity gain threshold

	3.7 Extensions to Community Detection
	3.7.1 Synchronization-based Extensions
	3.7.2 Extension to Dynamic Graphs

	4 Balanced Coloring
	4.1 Problem Overview
	4.2 Problem Statement and Background
	4.2.1 Related Work
	4.2.2 A Foundational Scheme
	4.2.3 Community Detection: A Motivating Application

	4.3 Algorithms for Balanced Distance-1 Coloring
	4.3.1 Ab initio balancing strategies
	4.3.2 Guided balancing strategies

	4.4 Parallel Algorithms
	4.4.1 Parallelization using Unscheduled Moves
	4.4.2 Parallelization using Scheduled Moves
	4.4.3 Parallel Recoloring
	4.4.4 Complexity

	4.5 Partial Distance-2 Coloring
	4.5.1 Preliminaries
	4.5.2 Algorithms
	4.5.3 Another example of an application

	4.6 Implementation on the Tilera Platform
	4.7 Experimental Results
	4.7.1 Experimental Setup
	4.7.2 Balance Quality Assessment
	4.7.3 Performance Evaluation
	4.7.4 Impact on the Community Detection Application
	4.7.5 Results on Partial Distance-2 Coloring

	4.8 Extensions to Balanced Coloring
	4.8.1 Weighted Balancing
	4.8.2 Lower Bound-based Coloring
	4.8.3 Experimental Results

	5 Conclusion
	5.1 Community Detection
	5.2 Balanced Coloring
	5.3 Future Works

	BIBLIOGRAPHY

